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abstract: In this paper we study the dynamic behavior of an isotropic Kirchhoff-
Love beam and investigate the equilibrium position of an Euler-Bernoulli beam. Using the
discrete Euler-Lagrange and Lagrange-d’Alembert principles, we simulate the behavior
by means of variational integrators and, in particular, AVIs (Asynchronous Variational
Integrators). We place special emphasis on the geometric structure underlying stress
resultant beam models and propose B-spline shape functions for AVI-method.

1 introduction

Discrete variational mechanics and associated numerical integrators have seen a major
development in recent years. There has been a growing realization that stability of nu-
merical methods can be improved for certain systems by algorithms that are compatible
with variational and geometric structures, such as preservation of the symplectic form
on phase space and of the momentum maps arising from the symmetries of the system.
Discrete mechanics has been developed as a result of the interplay of classical theoretical
mechanics, numerical analysis, and computer science. It has become increasingly impor-
tant in concrete applications. Remarkably, to our knowledge, there is no major application
of these discrete mechanics techniques to civil engineering.
The aim of this note is to apply structure preserving algorithms to concrete problems in
construction, like thin-shells with irregular surfaces. The major future objective is the
search and development of a practical tool to study these irregular surfaces. Here we
consider a three dimensional isotropic Kirchhoff-Love beam model as a special kind of
shell having a narrow width. Our goal is to provide variational integrators associated with
mathematical models of beams and to carry out a dynamic and static two-dimensional
simulation.

2 notation and definitions

Denote by B the material reference configuration of the shell, assumed to be a smooth
closed two-dimensional submanifold of R

3. A deformed state of the shell, that is, a con-
figuration, is given by an embedding φ : B → S = R

3, where S is physical space. Let C be
the set of all such configurations. A motion of B is a curve t ∈ R �→ φt = φ(t, ·) ∈ C.
If {θα}, α = 1, 2, is a coordinate system on B, the configuration φ is written as

(θ1, θ2) ∈ B φ�−→ (z1(θ1, θ2), z2(θ1, θ2), z3(θ1, θ2)) ∈ R
3, (1)

where {zj(θ1, θ2)} are the Euclidean coordinates of the spatial point x = φ(X), where the
material point X ∈ B has coordinates (θ1, θ2).
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In the standard spatial orthonormal basis {̂ij}, j = 1, 2, 3, of S = R
3, the basis vectors of

the tangent space Tx (φ(B)) to the current configuration φ(B) are given by

eα :=
∂zj

∂θα
îj , α = 1, 2, j = 1, 2, 3. (2)

Let {Zj(θ1, θ2) | j = 1, 2, 3} be the Euclidean coordinates of the material point X ∈ B ⊂
R

3 and let {Eα | α = 1, 2} be the basis of the tangent space TXB to the material refer-
ence configuration associated to the coordinate system {θ1, θ2}. According to standard
Kirchhoff-Love assumptions, we take the reference shell director1 T to equal the third
basis vector

E3 =
E1 × E2

|E1 × E2| ⊥ TXB (3)

In this work we consider the simplest properly invariant isotropic2 constitutive relations
for the effective membrane and shear stress resultants. So we define the unit normal

e3 =
e1 × e2

|e1 × e2| (4)

to the deformed surface φ(B) to be the deformed shell director t.
Denote by 〈·, ·〉x the standard inner product in R

3 for vectors based at x ∈ S = R
3 and

by 〈·, ·〉X the standard inner product in R
3 for vectors based at X ∈ B. The components

gαβ of the metric tensor on φ(B) (obtained by pulling back by the inclusion map the inner
product 〈·, ·〉x on R

3 to φ(B)) are defined by gαβ(x) := 〈eα, eβ〉x. Similarly define the
components Gαβ of the metric on B by Gαβ(X) := 〈Eα,Eβ〉X. Let [Gαβ ] := [Gαβ ]−1 and
[gαβ ] := [gαβ ]−1.

3 discrete variational mechanics

Let φ(B) × φ(B) be the discrete configuration space associated to the deformed surface
φ(B) and define the discrete path space by Cd(φ(B)) := {xd = {xk}N

k=0 | xk ∈ φ(B),xk =
xd(tk), tk = kh, tk ∈ [0, T ]}; h is the time step. A discrete path xd ∈ Cd is said to be a
solution of the discrete Euler-Lagrange equations if

D2Ld(xk−1,xk) + D1Ld(xk,xk+1) = 0, for all k = 1, ..., N − 1, (5)

where Ld : φ(B) × φ(B) → R is a discrete Lagrangian of order r, that is, it satisfies

Ld(xk,xk+1, Δt) =
∫ tk+1

tk

L(x, ẋ)dt + O(Δt)r+1, (6)

where L is the Lagrangian of the continuous systems and x(t) is the solution of the Euler-
Lagrange equations satisfying x(tk) = xk and x(tk+1) = xk+1.

4 avi as mechanical tool for beam dynamics

4.1 Thin-shell with uniform and small width

In this section we consider a thin shell with uniform small width satisfying the Krichhoff-
Love hypotheses. With these assumptions the shell can be regarded as beam.

1We assume the existence of a traction vector t for the motion of B in S.
2Isotropic at a point means that all orientation preserving rotations about that point are material

symmetries.
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The strain mesures relative to the dual spatial surface basis are given by ([4], p. 287):

εij :=
1
2
( 〈ei, ej〉 − 〈Ei,Ej〉

)
(7)

ραβ :=
〈

∂Eα

∂θβ
,E3

〉
−

〈
∂eα

∂θβ
, e3

〉
. (8)

For the simplest properly invariant isotropic constitutive relations we postulate the exis-
tence of a stored energy function of the displacement field u of the form ([3], p. 2044)

W (u) =
1
2

(
Eh

1 − ν2

)
Hαβγδεαβεγδ +

1
2

(
Eh3

12(1 − ν2)

)
Hαβγδραβργδ (9)

where E is Young’s modulus, ν is Poisson’s ratio, h is the thickness of the shell, and

Hαβγδ = ν GαβGγδ +
1
2
(1 − ν) (GαγGβδ + GαδGβγ). (10)

To ensure that the bending energy is finite we use B-splines3. The general form of quadratic
uniform B-splines is:

xa(u) =
1
2
(u2, u, 1)

( 1 −2 1
−2 2 0

1 1 0

)
(xa−1,xa,xa+1)T , with 0 � u � 1, (11)

where a is a node of the triangulation T of the beam in the reference configuration B and
a−1, a+1 are the neighboring nodes of a. For a 1-simplex K ∈ T associated to the beam,
the local Lagrangian has the form

LK(xK , ẋK , t) = TK(ẋK) − VK(xK , t), (12)

xK is the vector of positions of all nodes in the element K, VK(xK , t) is the elemental
potential energy, and

TK(ẋK) =
1
2
ẋt

KmK ẋK , (13)

where mK is the mass matrix element (symmetric positive definite).
A particular choice of discrete Lagrangian, resulting in explicit integrators of the central-
difference type, is given by

Lj
K =

∫ tj+1
K

tjK

TK (ẋK(t)) dt −
(
tj+1
K − tjK

)
VK

(
xj+1

K , tj+1
K

)
(14)

where Lj
K is defined on the interval [tjK , tj+1

K ] for tjK = jΔtK (the jth time step for the
element K). To guarantee energy conservation it is necessary to ensure that a valid time
step for each element is always determined for each tj . As noted in [1], p. 199, if we fix
the time step ΔtK for each simplex K, the total energy of the system oscillates around a
constant value without growth or decay.
The corresponding discrete action is

Sd =
∑
K∈T

∑
1�j<NK

Lj
K

≈
∑

a

Na−1∑
i=0

1
2
ma(ti+1

a − tia)
∥∥∥∥xi+1

a − xi
a+1

ti+1
a − tia

∥∥∥∥2

−
∑
K

NK−1∑
j=0

(tj+1
K − tjK)VK(xj+1

K ), (15)

3In R
3, if we want smallest element in the mesh, the subdivision of the surface obtained by loop or

Catmull-Clark subdivisions are guaranted to be H2.
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where xi
a is the position of the node a at time tia. The position and the time are dependent

on two 1-simplices, one on each side.
The discrete version of Hamilton’s principle states that the discrete trajectory having
prescribed initial and final endpoints renders the discrete action stationary with respect
to admissible variations of the nodal coordinates xa. This leads to the discrete Euler-
Lagrange equations Di

aSd = 0 for all a ∈ T such that tinitial < tia < tfinal and a ∈ T \∂dB,
where ∂dB is the discretization of the boundary of the reference configuration B.
Thus, the element K accumulates and memorizes the impulses over the time interval
(tj−1

K , tjK). At the end of the interval, the element releases its memorized impulses by
imparting percussions on its nodes.

4.2 Simulations

The mechanical model on which the simulation results presented here are based does
not have an analytical solution. Thus, to calibrate such results requires an appropriate
experimental setup able to display quantifiable dynamic and static behavior. This is not
presented in this paper and left for a future publication. In the following section, the
same approach is applied to the Bernoulli beam problem presenting in this case an exact
analytical solution.
Figure 4.2 displays the behavior of several beams with increasing stiffness. These
results were obtained using a module of elasticity E ranging from E = 11 to E =
11000, ν = 0.3, with a beam of length L = 2m, width h = 1mm, and density
ρ = 400kg/m3. The time of the experiment is one second in each case.
In all experiments, the value of the time step for each element is computed as
Δt = f h

c
where f = 1

100
(or close to it), and h is the radius of the largest ball

contained in the element.
The time steps in seconds for each 1-simplex, from left to right, are:

0.0046, 0.0066, 0.0098, 0.0120, 0.0139, 0.0148, 0.0139, 0.0120, 0.0098, 0.0066.

If N is the number of nodes on the beam, define the position na of the node a at
time t = 0 on the beam by using the rules

Xa = 2S−1
(na − 1

N − 1

)S

L, Xa =
(
1 − 2S−1

(N − na

N − 1

)S)
L, (16)

the first for the first N
2

nodes and the second for the last N
2

nodes.
In practice, even when the step time is not adapted to each step, the total energy
of the system oscillates around a constant value for very long times without growth
or decay. Energy behaviour is excelent locally as well as globally.

5 avi for planar euler-bernoulli beam statics

To get an equilibrium position in a static problem we use a system with dissipation.

5.1 Discrete Lagrange-d’Alembert principle

We consider a non-conservative system with dissipation. The discrete version of
the Lagrange-d’Alembert principle states that the discrete trajectory {qk}, with
prescribed initial and final endpoints, is a solution of the equation

δ

N∑
k=0

Ld(qk, qk+1) +
N∑

k=0

[
F−

d (qk, qk+1)δqk + F+
d (qk, qk+1)δqk+1

]
= 0, (17)
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Module of elasticity E = 1100,  value of f = 0.01,  skew S = 1.5 Module of elasticity E = 11000,  value of f = 0.01,  skew S = 1.5
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Figure 1: Simulation trajectories of the thin-shell model for different material stiffness

where F−
d and F+

d are left and right discrete forces. The associated forced discrete
Euler-Lagrange equations are hence

D2Ld(qk, qk+1) + D1Ld(qk+1, qk+2) + F+
d (qk, qk+1) + F−

d (qk+1, qk+2) = 0. (18)

In our case we use the discrete force

F−
d (qk, qk+1) = 0, F+

d (qk, qk+1) = −λ
(qk+1 − qk)

(tk+1 − tk)
, λ ∈ R. (19)

5.2 Euler-Bernoulli planar beam

For the Euler-Bernoulli beam the assumptions of infinitesimal deformations are ap-
plied and the material is assumed to be hyperelastic and isotropic. Let B be the
reference configuration of the beam, G the metric on B, and g the metric on S.
Assume that the configuration φ is of the form

φ : B → φ(B) ⊂ S, X �→ x = φ(X) = X + u(X), (20)
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where u(X) is the displacement.
The cross-section of the undeformed beam is determined by unit length vectors i1
and i2, such that {iI}I=1,2,3 is an orthonormal basis chosen to be the standard basis
of S. The cross-section A ⊂ R

2 of the beam is an open set with compact closure.
Points in A are written as s = ξ1i1 + ξ2i2.
Consider the orthogonal transformation :

R → SO(3), ξ3 �→ Λ(ξ3), (21)

such that dI(ξ
3) = Λ(ξ3)iI , where {dI} the standard orthonormal basis of S = R

3

after deformation. The cross-section is now determined by d1(ξ
3) and d2(ξ

3). The
spatial representation of the beam is:

x = φ(X) = ϕ0(ξ
3) +

2∑
α=1

ξαdα(ξ3), (22)

where ξ3 ∈ I ⊂ R �→ ϕ0(ξ
3) ∈ R

3 is the line of centroids.

i3

i1

d1

u1

u3

Figure 2: Deflection of the Bernoulli beam

In this work we assume throughout than {ii} is the orthonormal basis of R
3, G = I,

and that the thickness and the width of the beam are uniform.
Let ξ1d1(ξ

3) + ξ2d2(ξ
3) denote the position of a point in the cross-section, which

remains planar and normal to the line of centroids upon bending the Bernoulli
beam. The set of cross-sections has a longitudinal plane of symmetry. Also, for
small deformations, with ζ the slope of the cross-section, we take the displacement
u (X) to have the form

u1 (ξ1, ξ2, ξ3) = u1 (ξ3) ,
u2 (ξ1, ξ2, ξ3) = const,

u3 (ξ1, ξ2, ξ3) ≈ −ξ1ζ = −ξ1 ∂u1(ξ3)
∂ξ3 .

(23)

The local internal energy W (E) depends only on the strain tensor

E =
1

2

(∇u(X) + (∇u(X))T
)

(24)

since we consider a linear constitutive law with small deformations. The bending
energy function of the displacement field uK for a beam element K of length l is

W (uK) =
1

2

∫ 1

0

lEI

(
∂2u1

∂ξ3∂ξ3

)2

dξ1, (25)
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where E is Young’s modulus and I is the second moment of the cross section. As
previously, we use quadratic uniform B-splines for each beam element K

uK(w) =
1

6
(w2, w, 1)

(
1−2 1

−2 2 0
1 1 0

) (
ua

ua+1

ua+2

)
=

2∑
i=0

N i(w)ua+i, (26)

where w ∈ [0, 1], a, a + 1, a + 2 are control points, and {N i}i=0,1,2 are given by

N0(w) =
1

2

(
w2 − 2w + 1

)
, N1(w) =

1

2

(−2w2 + 2w + 1
)
, N2(w) =

w2

2
.

(27)
The internal energy WK has the expression

WK(uK , t) =
1

2

∫ 1

0

lEI uTBT
1 B1u dw, (28)

where

B1 =
1

l2
(1,−2, 1) (29)

We use Hermitian cubic shape functions as in the finite element method:

uK(w) = Nu =
(
Nu2

a
(w), Nαa(w), Nu2

a+1
(w), Nαa+1(w)

)
(u2

a, αa, u
2
a+1, αa+1)

T, (30)

where w ∈ [−1, 1], a, a + 1 are the extreme nodes of the beam element K and
N = {Nu2

a
(w), Nαa(w), Nu2

a+1
(w), Nαa+1(w)} is given by⎧⎪⎪⎨⎪⎪⎩

Nu2
a
(w) = 1/4(1 − w)2(w + 2)

Nαa(w) = l/8(1 − w)2(w + 1)
Nu2

a+1
(w) = 1/4(2 − w)(w + 1)2

Nαa+1(w) = −l/8(1 − w)(w + 1)2

(31)

The internal energy WK is

WK(uK , t) =
1

4

∫ 1

−1

lEI uTBT
2 B2u dw. (32)

where

B2 =

(
6w

l2
,
3w − 1

l
,−6w

l2
,
3w + 1

l

)
(33)

5.3 Simulation

Experimental results were obtained using a module of elasticity E = 11.108 with a
beam of length L = 1m, width h = 2mm, depth = 1mm, and density ρ = 400kg/m3.
During the numerical experiments we tested end-fixed, hybrid (end-fixed, simply
supported), cantilever, simply supported, and intermediate load (end-fixed) situa-
tions. Experimental results are associated with true analytical solutions on the same
plot, where s = 1 means uniform mesh, k clamped coefficient, and D the number of
elements in the mesh (see Figure 5.3).
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Fixed end, D=10, s =1, k = 0.6 Hybrid, D=10, s =1, k = 0.6

Canteliver, D=10, s =1, k = 0.344 Simply supported, D=10, s =1, k = 0.6

Intermediate load, D=10, load = 1, Xload = 0.5, s =1, k = 0.6
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Figure 3: Simulation results of the Bernoulli model using different boundary conditions
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