A Comparison Between Joint Coordinate System and Attitude Vector for Multi-segment foot Kinematics

The joint angles of multi-segment foot models have been primarily described using two mathematical methods: the joint coordinate system and the attitude vector. This study aimed to determine whether the angles obtained through these two descriptors are comparable, and whether these descriptors have similar sensitivity to experimental errors. Six subjects walked eight times on an instrumented walkway while the joint angles among shank, hindfoot, medial forefoot, and lateral forefoot were measured. The angles obtained using both descriptors and their sensitivity to experimental errors were compared. There was no overall significant difference between the ranges of motion obtained using both descriptors. However, median differences of more than 6 were noticed for the medial-lateral forefoot joint. For all joints and rotation planes, both descriptors provided highly similar angle patterns (median correlation coefficient: R>0.90), except for the medial-lateral forefoot angle in the transverse plane (median R=0.77). The joint coordinate system was significantly more sensitive to anatomical landmarks misplacement errors. However, the absolute differences of sensitivity were small relative to the joints ranges of motion. In conclusion, the angles obtained using these two descriptors were not identical, but were similar for at least the shank-hindfoot and hindfoot-medial forefoot joints. Therefore, the angle comparison across descriptors is possible for these two joints. Comparison should be done more carefully for the medial-lateral forefoot joint. Moreover, despite different sensitivities to experimental errors, the effects of the experimental errors on the angles were small for both descriptors suggesting that both descriptors can be considered for multi-segment foot models. (C) 2012 Elsevier Ltd. All rights reserved.

Published in:
Journal of Biomechanics, 45, 11, 2041-2045
Oxford, Elsevier

 Record created 2012-05-19, last modified 2018-01-28

Rate this document:

Rate this document:
(Not yet reviewed)