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Swamee et al. (2012) presented an explicit approximation for the (implicit) three-

parameter infiltration equation of Parlange et al. (1982). Our main purpose is to suggest how 

they might improve their formula based on an existing approximation for the three-parameter 

infiltration equation, given by Parlange et al. (2002). 

The infiltration formulas of Green and Ampt (1911), Talsma and Parlange (1972) and 

Parlange et al. (1982), given here as Eqs. (1)-(3), respectively, are: 
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where we have used the notation of Swamee et al. (2012), i.e.,    is dimensionless time,    is 

dimensionless infiltration and   is the interpolation parameter introduced by Parlange et al. 

(1982). Equations (1) and (2) are, respectively, the   = 0 and   = 1 limits of Eq. (3), i.e., Eq. 

(3) interpolates between Eqs. (1) and (2). 

To find infiltration as a function of time,   (  ), each of Eqs. (1)-(3) must be inverted. For 

the inversion of Eq. (3), Swamee et al. (2012) presented the approximation: 
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taking   = 0 and 1 to invert Eqs. (1) and (2), respectively. Swamee et al. (2012) developed Eq. 

(4) as an alternative to using the analytical approximations of the Lambert W function (Barry 

et al., 1993, 1995, 2000, 2002, 2005). Parlange et al. (2002) provided the inversion: 
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Equation (5) is valid for all     and has a maximum relative error of 0.048% (Parlange et al., 

2002). 

Certainly, Eq. (5) is more complex than Eq. (4), but, by construction, it satisfies three 

important conditions, none of which are obeyed by Eq. (4). First, for   = ½, Eq. (5) becomes: 

       ln [  √  exp ( 
  
 
)]  (11)  

which is the exact solution to Eq. (3) for this case (Parlange et al., 2002). Second, the exact 

short-time limit of Eq. (3) is: 

lim
    

   √     (12)  

which is also given by Eq. (5). Third, the long-time limit of Eq. (3) is, for   ≠  : 
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and, for   = 0: 

lim
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A systematic comparison was made of the relative and absolute errors of Eqs. (4) and (5) over 

the range of applicability of Eq. (4), with results given for both relative and absolute errors in 

Fig. 1. For the relative error, the ordinate indicates the number of leading digits that are 

correct. Because Eq. (4) was based on an optimization procedure over the range, 10-3 ≤    ≤ 

103, it is not surprising that it loses accuracy outside this range (not plotted). It would be, we 

suggest, useful to amend Eq. (4) to satisfy the conditions given by Eqs. (11)-(14). This would 

result in a simple, useful but more accurate expression. 
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Figure 

 

Figure 1. Maximum errors of Eqs. (4) and (5), given by line-drawn and filled symbols, 

respectively, calculated for 10-3 ≤    ≤   3. Diamonds show the relative error and triangles 

the absolute error. In the case of the relative error (diamonds), plotting in this form indicates 

the number of digits of accuracy (Barry et al., 1995). Equation (5) is exact for     ½  thus the 

number of correct digits is, in principle (i.e., subject to machine computation/round-off errors 

only), infinite. 
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