Preliminary Exploration of Pedestrian Destinations using Traces from WiFi Infrastructures

Antonin Danalet, Michel Bierlaire, Bilal Farooq

STRC 2012
Presentation Outline

1. Motivation
2. Data collections
3. Discriminating destinations from signals
4. Future works
I. Motivation
Destinations of pedestrians

- Input for destination choice analysis
- Input for route choice analysis
- Input for pedestrian OD matrix
Pedestrian data collections

Depends on scale and information you’re interested in:

- Dedicated GPS
- Smartphones
- Manual counting
- Single-row laser-range scanners (LD-A)
- Pedometer
- Eye-tracking
- Cameras
- GSM
How to measure pedestrian destinations?

- Cameras
 - Privacy issues
 - Need of a large coverage

- Smartphones
 - Mode detection
 - Acceptance by the user
Approach

Everybody has a smartphone in the pocket

Device-centric

Communication infrastructure

Friday, September 7, 2012
Traces from WiFi infrastructures

• Available in most campuses, transportation hubs, shopping centers and city centers

• Mode is mostly walking in these contexts

• No additional costs required
Literature

• Traces from communication infrastructure used with cell towers (Calabrese et al., 2011)

• With WiFi, destinations are APs or aggregation of APs (Aschenbruck et al., 2011)
2. Data collections
EPFL campus

- Access to WiFi infrastructures
- Most people on campus are pedestrians
- Precise map of campus available
Data collections

• 2 data collections using WiFi infrastructures at EPFL:

1. Access points data: localization of the AP to which a user is connecting (anonymously for all users)

2. Cisco Context Aware API: triangulation based on signal strength (for 12 known participants)
Video not available in PDF format
Please visit:
http://www.youtube.com/watch?v=bbzkZVmVbVo
Pedestrian network

- 4 levels of path (major, inter-, intra-building, access to rooms)
- 56’655 edges, 50’131 vertices
- 17’502 public “points of interest”
- 13’783 “rooms”
<table>
<thead>
<tr>
<th>Categories</th>
<th>Destinations</th>
<th>Count</th>
<th>In the model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access</td>
<td>Information Desk</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Entrances</td>
<td>42</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Car</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parking lots</td>
<td>55</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Electric plug</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Public transportations (bus stops, ticket machines)</td>
<td>9</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Bike</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parkings</td>
<td>93</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Electric plugs</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Center</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Road accesses</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Delivery Point</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Disabled (obstacles, WC, automatic doors)</td>
<td>20</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Meeting points</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Education</td>
<td>Schools</td>
<td>9</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Auditorium</td>
<td>23</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Librairies</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>Services</td>
<td>Restaurants</td>
<td>21</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Snack bars</td>
<td>17</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Shops</td>
<td>7</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Caretakers</td>
<td>11</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Associations</td>
<td>9</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Museums, exhibitions</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Services (child care, travel agency, language center, ...)</td>
<td>19</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Secretariats</td>
<td>12</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Workshops</td>
<td>29</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Hotels</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Student housing</td>
<td>4</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Post stations</td>
<td>22</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Borneo camipro</td>
<td>9</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Electronic money chargers</td>
<td>3</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Cash</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Xerox machines</td>
<td>12</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Public printers</td>
<td>77</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Phones</td>
<td>32</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>WiFi</td>
<td>791</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Showers</td>
<td>42</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Recycling</td>
<td>175</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Network plugs (802.1x, DHCP, ...)</td>
<td>15024</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Camipro</td>
<td>870</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Fire safety</td>
<td>11</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Pictures</td>
<td>20</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Panoramas</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Points of interest on campus

Friday, September 7, 2012
Points of interest by floor

- Public
- Offices
- Classrooms

Friday, September 7, 2012
3. Discriminating destinations from signals
Probabilistic measurement model

• Goal:
 • Extract possible lists of destinations visited by pedestrians (and their likelihood)
 • using:
 • Traces from WiFi infrastructure
 • Pedestrian network
Definitions and goal

- **Measurement:** $\hat{s} = (\hat{x}, \hat{t})$
- **State variable:** $d = (x, t^-, t^+)$
- **Goal:** Associate a likelihood to each list of destinations with arrival and departure times $P(\hat{s}_1, \ldots, \hat{s}_n|d_1, \ldots, d_n)$
Generation of \mathcal{X}

- For each signal \hat{s}, define a domain of data relevance (Bierlaire and Frejinger, 2008) and consider all destinations \mathcal{X} in it
- For AP data: a 50-meter radius circle around each AP
- For Cisco data: a square with a 95% confidence interval
Number of points of interest for each signal

Signals (in chronological order)
Generation of t^-, t^+

- $t^-_i \in [\hat{t}_{i-1} + tt x_{i-1}, x_i, \hat{t}_i]$
- $t^+_i \in [\hat{t}_i, \hat{t}_{i+1} - tt x_i, x_{i+1}]$
\[\hat{x}_{i+1} \]
\[\hat{x}_i \]
\[\hat{x}_{i-1} \]
\[t_{i-1} \]
\[t_i \]
\[t_{i+1} \]

\[tt_{x_{i-1}, x_i} \]
\[t^+ \]
\[tt_{x_i, x_{i+1}} \]
\[\hat{x}_{i+1} \]

\[\hat{x}_i \]

\[\hat{x}_{i-1} \]

\[\hat{t}_{i-1} \]

\[\hat{t}_i \]

\[\hat{t}_{i+1} \]

\[\tau \tau_{x_{i-1},x_i} \]

\[\tau \tau_{x_i,x_{i+1}} \]
Travel time

- \(t_{t x_i , x_{i+1}} = \frac{\text{dist}(x_i, x_{i+1})}{v} \)

- Chen, 2012: Speed distribution for pedestrians from smartphone data
 \[
 f(v) = \omega \lambda e^{-\lambda v} + (1 - \omega) \frac{1}{v \sqrt{2\pi\tau^2}} e^{-\frac{(\ln v - \mu)^2}{2\tau^2}}
 \]
Algorithm 2: Weight definition procedure for each edge in the pedestrian network

if \(door = \text{closed} \) then
 weight = \(\infty \);
else
 if \(\text{Major Route} \) then
 hierarchical factor = 1;
 else if \(\text{Inter-building Route} \) then
 hierarchical factor = 1.2;
 else if \(\text{Intra-building Route} \) then
 hierarchical factor = 1.5;
 else if \(\text{Access to Offices} \) then
 hierarchical factor = 2.0;

floor factor = 1;
if \(\text{Up} \) then
 if \(\text{Ramp} \) then
 floor factor = 3;
 if \(\text{Stairs} \) then
 floor factor = 15;
if \(\text{Down} \) then
 if \(\text{Ramp} \) then
 floor factor = 2;
 if \(\text{Stairs} \) then
 floor factor = 12;

lift factor = 0;
if \(\text{Elevator} \) then
 elevator factor = 40;

weight = length \cdot \text{hierarchical factor} \cdot \text{floor factor} + \text{elevator factor};
Measurement model: \(P(\hat{x} | x) \)

- Friis law for free-space environment: \(\propto \frac{1}{dist(p, \hat{p})^2} \)
- In case of absorption by obstacles, reflection, scattering, refraction: more complicated. 2 solutions:
 - fingerprinting
 - relate RSS to distance
- Wang et al. (2003), Cisco: \(\propto \frac{1}{dist(p, \hat{p})^3} \)
Future works

- Develop the probabilistic model
- Explore the outcome for route choice
- Explore the outcome for OD matrix estimation
Slides and contact information:
http://people.epfl.ch/antonin.danalet