
Instruction Set Extensions for Cryptographic Hash
Functions on a Microcontroller Architecture

Jeremy H.-F. Constantin and Andreas P. Burg
Telecommunications Circuits Laboratory, STI-IEL, EPFL

Lausanne, VD, 1015 Switzerland
{jeremy.constantin,andreas.burg}@epfl.ch

Frank K. Gürkaynak
Microelectronics Design Center, D-ITET, ETH

Zürich, ZH, 8092 Switzerland
kgf@ee.ethz.ch

Abstract—In this paper, we investigate the benefits of instruc-
tion set extensions (ISEs) on a 16-bit microcontroller architecture
for software implementations of cryptographic hash functions,
using the example of the five SHA-3 final round candidates. We
identify the general algorithm bottlenecks, taking into account
memory footprints and cycle counts of our optimized reference
assembly implementations. We show that our target applications
benefit from algorithm-specific ISEs based on finite state ma-
chines for address generation, lookup table integration, and ex-
tension of computational units through microcoded instructions.
The gains in throughput, memory consumption, and the area
overhead are assessed, by implementing the modified cores and
applications utilizing the developed ISEs. Our results show that
with less than 10% additional core area, it is possible to increase
the execution speed on average by 172% (ranging from 21%
to 703%), while reducing memory requirements on average by
more than 40%.

Keywords-Instruction Set Extensions, Embedded Systems,
Cryptographic Hash Functions, SHA-3

I. INTRODUCTION

While the performance of microprocessors has continued
its exponential growth, small and simple microcontroller units
(MCUs) have become increasingly popular for embedded ap-
plications. MCUs are regularly integrated together with other
components to form Systems-on-Chips (SoCs) that combine
the flexibility of programmable components with the cost
benefits of increased integration densities and performance
due to modern manufacturing technology nodes below 100 nm
feature size.

Despite the use of advanced process technologies, MCU
implementations in embedded systems are still severely con-
strained by resources such as total code size and required data
memory. Furthermore, achieving a given throughput with the
least possible complexity (number of instructions) is critical
due to constraints on execution speed and energy consumption.
An efficient approach to meeting these constraints is the design
of application specific instruction set processors (ASIPs). In
many applications, the MCU is integrated in a SoC, where
it can be customized to the application with instruction set
extensions (ISEs). Such extensions typically enhance the dat-
apath of an architecture, thereby mainly improving operation
speed for a target application.

An increasingly ubiquitous application are cryptographic
algorithms. In particular, cryptographic hash functions have

become of great importance, as reflected by the public com-
petition aiming at the selection of a new standard for crypto-
graphic hashing, started in 2007 by the U.S. National Institute
of Standards and Technology (NIST) [1]. For the final, third
round (2010) of this competition the field has been reduced
to five SHA-3 candidates, with a winner algorithm expected
to be announced in 2012. Potential applications of the SHA-3
standard range from multi-gigabit data transmission protocols
to radio-frequency identification tags, which typically have to
operate with severely constrained resources. As a result, the
organizers are not only interested in the cryptographic strength
of the candidates, but also in the evaluation of the perfor-
mance of the algorithms. The public SHA-3 evaluation has
attracted many contributions on comparing the performance of
candidate algorithms on different platforms. Extensive results
have been published for hardware [2–4], and software [5,6]
implementations of SHA-3 candidates (including exploration
and usage of ISEs [7,8]).

Once an algorithm has been selected as the SHA-3 standard,
processors and MCUs with specifically tailored ISEs are
expected to appear as IP blocks or stand-alone components,
similar to the case of AES in modern CPUs. Furthermore,
many companies offer solutions [9–11] that facilitate the
design of ASIPs and the customization of commonly used
MCUs. Starting from a high-level description, such solutions
allow changes to be made to an instruction set architecture,
and not only produce the corresponding hardware description
for integration into a SoC, but also generate the necessary tool
chain (compiler, assembler, linker).

Contributions: In this paper, we consider the use of ASIPs,
in particular the optimization of MCUs with ISEs, for improv-
ing the execution speed and memory footprint of cryptographic
hash functions. We show how one can achieve considerable
performance gains, with a type of ISEs that is different
from the usual approach of common datapath extensions.
Highlighting the algorithm-specific performance bottlenecks,
we propose ISEs that facilitate the generation of memory
access patterns, lookup table integration, and extension of
computational units through microcoded instructions.

For the evaluation of our proposal, we consider the five
remaining SHA-3 candidates with respect to their suitability
for software implementation utilizing ISEs on present and
future MCUs and embedded SoCs. We report the execution



speedup, the memory reduction, and the overhead associated
with these extensions.

Outline: The paper is organized as follows: In Section II
we give an overview of the cryptographic algorithms chosen
as the target applications for this work. Section III describes
the reference MCU used throughout this evaluation, while
Section IV defines the performance metrics used in this study.
The design and evaluation flow used to determine the instruc-
tion set extensions for each candidate algorithm, and how
they are added to the base MCU is explained in Section V.
Section VI describes the proposed types of instruction set
extensions developed for this work. The results obtained from
this study are presented and compared with results from other
publications in Section VII and the sources of errors in this
work are briefly discussed in Section VIII. Finally, Section IX
provides concluding remarks.

II. APPLICATION

The target applications for this work are cryptographic hash
functions in general. As our ASIP benchmark we chose the five
final round SHA-3 candidate algorithms: BLAKE, Grøstl, JH,
Keccak, and Skein. For the competition, NIST has stated that
the selection for the final round has been done with the factor
of diversity in mind, which makes this particular algorithm
subset interesting, as it covers various different approaches for
the task of cryptographic message digest calculation (hashing).

All algorithms are based on the common principal of
combining message data (in fixed block sizes) with internal
state data to produce an output hash value of fixed size
(224, 256, 384 or 512 bit). Each message block is processed
separately using the same core algorithm, transforming the
previous internal state into a new state. The internal state data
is commonly partitioned into state words of fixed size (8-64
bit) and the state is modified through multiple passes through
a set of core functions for each message block.

All SHA-3 candidate hash functions consist of three main
elements: state word permutations, state word transformations
and lookups in tables of constants. Permutations generally
relate to memory moves, transformations are realized using
basic arithmetic and logical operations, such as addition,
XOR, AND, NOT and state word rotations. The values of
the incorporated constants are algorithm specific and depend
on the current round number or internal state data (e.g., S-Box
lookup table).

The five SHA-3 algorithms used for benchmarking in this
work differ in: internal state size (512-1600 bit) and state
organization (e.g., 8x8 matrix of bytes, or 8 64-bit state
words), message block size (512-1088 bit), and lookup ta-
ble utilization (e.g., for initial constants only, or state data
dependent lookups). Some algorithms like Keccak apply the
mentioned full range of arithmetic and logical operations,
while algorithms like Grøstl can be described efficiently only
using XOR and memory moves, with the help of suitable
lookup tables and an underlying architecture that supports
byte-mode memory accesses (cf. Subsection III-A).

III. EMBEDDED MICROCONTROLLER ARCHITECTURE

In this work we use our custom implementation of the
Microchip PIC24 16-bit architecture [12], as reference imple-
mentation. This microcontroller was selected mainly because
a functionally verified description was available through an
earlier unrelated project.

A. Instruction Set Architecture Summary

The chosen reference MCU is a 16-bit Harvard architecture
with a total of 87 base instructions encoded in a 24-bit
instruction word [13]. The majority of the instructions allow
for a variety of different addressing schemes and operand
modes, resulting in 190 different effective instructions. All
operands and destinations can be either addressed in byte
or word mode, for most instructions. Word mode represents
native 16-bit data addressing, while byte mode only operates
on the least significant byte of the corresponding data word.
This feature is not necessarily supported by all 16-bit MCU
architectures, and can be an important factor for the overall
performance of an algorithm implementation (cf. Grøstl). The
ALU uses a 16-entry general purpose register array, including
a stack pointer register. In addition there are several status
and control registers, and a 16-bit repeat loop counter used
in conjunction with the REPEAT instruction. This command
repeats the following instruction as often as specified, allowing
for very simple hardware loops, thus reducing the program size
and cycle count overhead due to branching.

B. Micro Architecture Summary

The micro architecture of our PIC24 implementation is
inspired by and hence very similar to that of the original
PIC24. It comprises three pipeline stages and executes almost
all instructions in a single cycle. However, a slightly more
advanced form of data bypassing is implemented in our
design. The commercial implementation issues stalls if a data
dependency stems from a register, which is used with a register
indirect addressing mode in the subsequent instruction. Our
implementation employs full data bypassing which leads to a
cycle count reduction of 10-30% for an average application.
The memories for program and data are external from the core,
each accessible with a latency of one clock cycle. As in the
commercial device, the data memory is realized as a dual-port
memory, which enables a read- and a write-access in the same
clock cycle.

IV. PERFORMANCE METRICS

Throughout this paper, we report four main performance
metrics when presenting our results. In this section we describe
these metrics, and explain how they are calculated. Please note
that for all algorithms, we only consider the respective versions
proposed as replacements for SHA-256.

A. Cycle Count

The cycle count is a measure for the complexity and also
for the energy consumption of an implementation on a specific
processor. It is also inversely proportional to the throughput



which describes how fast the hash algorithm works for a given
clock frequency. Every hash algorithm has a defined message
block length. For all SHA-3 candidates this is 512 bits, except
for Keccak which uses 1088-bit message blocks. In this paper,
we report the long message performance (i.e. no finalization
round) in the commonly used cycles/byte format.

B. Data Memory
The microcontroller used in this work uses 16-bit wide data

memory, realized as a static random access memory (SRAM).
In a microcontroller, the total amount of SRAM available for
all applications is a scarce resource due to the fact that SRAMs
occupy significant circuit area for practical memory sizes. The
data memory utilization is always expressed in number of
bytes throughout this paper.

C. Program Memory
The PIC24 microcontroller is based on the Harvard ar-

chitecture with separate data and program memories. This
allows each memory to have a different bit-width. The PIC24
microcontroller uses a 24-bit wide program memory.

In practice, the program memory could be implemented as a
read-only memory or a one-time programmable memory, both
of which have less hardware overhead than an SRAM as used
for the data memory. While still a significant burden, program
memory is therefore often not as expensive as data memory.

All PIC24 instructions are either one or two instruction
words long, and can hence be stored as three or six bytes
respectively. The overall comparison tables always list the
total number of bytes. We use the word text to describe the
complete content of program memory. Static initialization data
(e.g. a set of hash chain init values) is normally used once per
execution of an algorithm. It can therefore in practice be stored
in sections linked to the less expensive program memory, and
is hence in addition to program code also accounted for as
text.

D. Area
A hardware implementation always involves a compromise

between operation speed, power and energy used, and the
circuit area. In this study, all microcontroller descriptions
are synthesized using a standard-cell-based design flow for a
90 nm CMOS technology. Furthermore, all MCU instances re-
ported in this study are extensively analyzed regarding area re-
quirements for the full range of different core clock constraints
covering all target constraint corners (cf. Section VII-B). Area
overhead of the proposed ISEs with respect to the original
implementation or any other absolute area figures given in
comparison tables and the continuous text are always for a
chosen reference core clock speed of 200 MHz.

Area is expressed in terms of kilo Gate Equivalents (kGEs),
where one GE is taken as the area of a 2-input NAND gate
with a standard driving strength. The conversion factor is
3.136µm2 per GE. The results are all synthesis results, and
do not include post-layout parasitic effects.

The total area of the microcontroller subsystem comprises
of the data memory, program memory, and the actual MCU

core. In a typical implementation, the two memories would be
implemented as large SRAM macros. Even if very modest
sizes were to be selected for these memories, the SRAMs
would occupy at least two thirds of the total area. Since
the memory overhead is large and determining a fair size of
memory is not straightforward, we report only the change in
the core area in this comparison.

V. DESIGN FLOW

The design flow used in our implementation and evaluation
process is illustrated in Fig. 1. The flow comprises a hardware
implementation path and a software development, optimization
and verification path.

PIC24
ISA

LISA
Description

SHA-3
Algorithms

Code-
Optimization
Complete?

Bottleneck
Analysis

Instruction 
Set 

Extensions

Processor
Designer

Instruction Set 
Simulator

Sim. Results
Cycles / Memory

Assembly
Code

No

Yes

Silicon Area /
Circuit Timing

RTL
Synthesis

RTL
Description

Fig. 1. Illustration of the design flow and tools employed for implementation,
benchmarking, and development of instruction set extensions.

On the processor architecture side, the instruction set archi-
tecture (ISA) and the microarchitecture of the PIC24 processor
are first described in LISA (Language for Instruction Set
Architectures), a language tailored to the design of appli-
cation specific processors [14,15]. This description is then
automatically translated into a register transfer-level (RTL)
VHDL description that can be synthesized into gates using
RTL synthesis tools (Synopsys DC Ultra) to evaluate silicon
area and performance. The design is mapped to a standard-
performance regular threshold-voltage 90 nm CMOS technol-
ogy, with nominal supply voltage of 1.0 V. In addition to the
hardware description, Processor Designer [9] generates the
basic software tool chain (assembler and linker) and a fully
cycle-accurate instruction set simulator (ISS).

On the software side, the algorithm specifications for the
five SHA-3 candidates provide the starting point for an initial
benchmark implementation in the native assembly language of



the PIC24 ISA. Multiple iterations of profiling and software-
optimization are carried out, with the help of profiling tools
provided by the ISS, to reduce code and memory size and to
reduce cycle counts. All implementations are always verified
against the provided test patterns to guarantee full compliance
with the original algorithm specifications.

At the point, where no further gains are achieved using
the standard ISA of the PIC24 microcontroller, the different
algorithms are analyzed manually, to identify specific per-
formance and memory bottlenecks. For each candidate, we
identify custom instructions that promise an improvement in
terms of memory footprint and/or cycle count, while being
compatible with the general architecture of the core with
only minor modifications. To be more precise, the extended
implementations remain fully backward compatible and no
changes are made to key components such as the register file,
the memory interfaces, the pipeline stages, or the instruction
formats. The additional instructions are incorporated into
the LISA model and into the assembly descriptions of the
SHA-3 kernels. ISEs are fine tuned through multiple iterations
of hardware/architecture and code adjustments followed by
benchmarking of gains in terms memory utilization and cycle
count.

VI. INSTRUCTION SET EXTENSIONS

Although the reference PIC24 ISA comprises a large num-
ber of instructions, our implementations without ISEs mainly
focus on a core set of instructions, directly matching the
base operations intrinsic to the class of cryptographic hash
functions, as described in Section II. During the optimization
phase, improvements are mainly achieved by efficient use
of all available operand addressing modes provided by the
architecture, and applying coding techniques such as unrolling
and precomputation, where feasible (execution time versus
program and data memory trade-offs).

We investigate three different forms of performance bottle-
necks that can not be removed using the reference ISA. First,
we analyze conventional basic operations, which however have
to be carried out on data word lengths that are wider than the
ones supported by the underlying native architecture (e.g. 64-
bit data words on a 16-bit MCU). Depending on the operation,
these often have to be emulated by a whole set of assembly
instructions. A very relevant example in the context of cryp-
tographic hash functions is the rotation of state data words.
Furthermore, we examine complex memory access patterns,
which produce overhead in form of advanced address arith-
metic and potential multiple accesses of the same data. Last,
we investigate static data memory requirements in the form
of lookup tables, occupying valuable data memory space, and
further increasing the number of required memory accesses.
Derived from these three types of performance bottlenecks,
the following subsections describe the corresponding three
classes of proposed ISEs for cryptographic hash functions.
Moreover, algorithm-specific examples are given, as well as
our assessment of individual applicability regarding the set of
five investigated SHA-3 algorithms.

A. Extension of Computational Units through Microcoded
Multi-Cycle Instructions

The most common way of extending an ISA is by introduc-
ing new computational units to the datapath of the processor.
The new instruction hence performs a new computational task,
e.g. the calculation of a multiply-accumulate operation. In the
case of cryptographic hash functions the main computational
bottleneck on an MCU lies in the support for large data word
rotations. These rotations in general need to be performed
on 64-bit words for all algorithms which use this operation,
namely BLAKE, Keccak and Skein.

The problem of a 64-bit data word rotation on a 16-bit
architecture can be solved in the form of a microcoded multi-
cycle instruction, with minimal additions to the processor
datapath. Since the 16-bit architecture supports at most a
double register writeback, the 64-bit word rotation instruction
needs two cycles to complete. In each cycle, only three specific
values are rotated to create two resulting MCU native data
words. Thus, the required hardware only amounts to two 16-
bit barrel shifters, and not a full 64-bit barrel shifter. The
emulation of a generic 64-bit rotate by an arbitrary amount of
bits utilizing the PIC24 ISA requires 12 cycles, which results
in a speedup of all rotation operations by a factor of 6.

Even more complex arithmetic operations such as a matrix
multiplication in the field of F256 on a 8x8 matrix of 8-bit state
words (as required by Grøstl), can be supported by the help
of small extensions to already existing computational units.
Adding a few simple shift units and XOR units on small 8-bit
input values can provide a considerable speedup factor of 14.4
for this operation, when combined with the right microcoded
multi-cycle operand and memory addressing support.

B. Finite State Machines for Data Address Generation

As described in Section II, cryptographic hash functions are
heavily based on permutations. These permutations of state
words generally follow some fixed permutation tables, which
are intrinsic to the algorithm definition. Effectively, this means
that state data needs to be loaded and stored in regular patterns,
but often not in the sequential fashion in which the state words
are mapped in memory. The existence of multiple of these
access patterns applied to the same state, often renders general
relabeling or physical reordering of state words in the data
memory impossible. The assembly implementations therefore
have to generate these memory address patterns by the use
of additional instructions. Moreover, there is often a trade-off
between which data can be loaded efficiently without much
overhead at the current position in the algorithm, and which
data is actually needed for immediate calculations and can
be retained temporarily in the general purpose register file of
limited size.

ISEs that enable the efficient generation of memory accesses
based on a loop counter (e.g., the PIC24 REPEAT counter),
can significantly reduce this type of performance bottleneck,
especially on resource constrained systems without consid-
erable cache hierarchies. The ISEs essentially map part of
the loop-based program flow in the algorithm core onto a



microcoded instruction. Based on a small finite state machine
(FSM), the instruction generates for each state (repetition
count) the required data memory address offsets, register
indices, and operand data. We note that this FSM based
method is particularly applicable, if the computational part
of the repeated instruction is simple, and performs a clear
transformation of the state data without much computational
effort.

The proposed replacement of program code by an ISE has
two effects in general: execution speedup through memory
access optimization, and considerable code size reduction,
depending on the repetition count of the new instruction and
its comprising computational complexity.

The Grøstl algorithm with its very modular structure of
its operations, and their rather low complexity, can especially
benefit from this method. All four of the hash function’s core
operations can be replaced by one single instruction each,
utilizing the described ISE type. The BLAKE and JH ISEs
also apply this approach for their custom instructions, although
to a lesser extent.

C. Lookup Table Integration

Due to the large area occupied by on-chip memory, reduc-
tion of data memory consumption is often as important as
the speedup of algorithm execution. A prime candidate for
significant reduction of data memory is the removal of static
lookup tables (LUTs). Almost all of the evaluated algorithms
use some form of LUT or constant table of various size, with
the exception of Skein, which only requires initial state data
(stored as text in the program memory, cf. IV-C).

Removal of constant table data from memory is possible
through integration of these LUTs into the processor core.
There are two types of LUTs that can be found: tables holding
round or data dependent constants, and LUTs providing (often
considerable) execution speedup through precomputation. The
required indices for these LUTs can come from different
sources, such as the current round number or state data.

This class of ISEs has been utilized for all four applicable
algorithms, moving every LUT from data memory into the
MCU core. Integration of LUTs up to the size of 1344 bytes
in the case of JH (for precomputed round constants enabling
an efficient bit-sliced implementation of the algorithm), only
resulted in negligible core area overhead of around 2 kGE,
compared to an SRAM implementation of 14 kGE for an
equal data size. In the case of Grøstl, which utilizes an S-Box
LUT as it is used in AES, the integration of two parallel 8-bit
LUTs in hardware additionally facilitates speedup of the state
substitution by a factor of 4.2.

D. Implementation Overview

The implementations of the ISEs map the three proposed
concepts onto specific instructions, for each algorithm indi-
vidually. Table I gives an overview of the three different
ISE types and specifies for each candidate which algorithm
parts are addressed by which category. Speedup of an ISE

TABLE I
OVERVIEW OF PROPOSED INSTRUCTIONS AND THEIR INDIVIDUAL

PERFORMANCE AND MEMORY GAINS, GROUPED BY ISE-TYPE.

Extension of Computational Units (VI-A)
Function realized by ISE Speedup

BLAKE 32-bit rotation 6.0
Grøstl MixBytes step 14.4
JH bit-sliced S-Box + L/MDS 2.0
Keccak 64-bit rotation (single) 2.5

64-bit rotation (+mem.permut.) 4.1
Skein 64-bit rotation (generic) 6.0

FSMs for Address Generation (VI-B)
Function realized by ISE Speedup

BLAKE constant XOR message 4.0
Grøstl AddRoundConstant step (P/Q) 3.2/1.5

ShiftBytes step 3.4
MixBytes step 14.4

JH Swap permutation 5.2

Lookup Table Integration (VI-C)
Function realized by ISE Mem. [byte]

BLAKE initialization constants 64
Sigma permutations 224

Grøstl S-Box 256
F256 Multiplication LUTs 512

JH bit-sliced round constants 1344
Keccak round constants 96

is reported relative to the corresponding realization of that
particular function using the standard PIC24 ISA.

For an in-detail description and discussion of all proposed
instructions on a software/ISA level please refer to [16].

VII. IMPLEMENTATION RESULTS

Our results are structured into two main parts: covering the
aspects regarding software performance utilizing ISEs, and
assessing the exact hardware performance of the proposed
extended MCU cores.

A. Software Performance

1) Instruction Set Extensions: By developing ISEs for the
PIC24 ISA we are able to provide a speedup of about 1.4 for
our benchmark algorithms in the general case (for the slowest
4 out of 5 candidates), with the exception of Grøstl for which
we achieve a speedup of 8. Table II shows these results in
detail and compares the area overhead that the ISEs incur to
the reference microcontroller. For an in-depth evaluation of the
area and timing requirements of the implemented cores refer
to Section VII-B.

It can be observed that for 3 out of 5 candidates, the ISEs
did not result in any noticeable core area overhead, while
still providing significant improvements, in both cycle-count
(reduction on average around 30%) and memory requirements
(Table IV). This is mainly due to the factor that some ISEs



TABLE II
IMPROVEMENT OF HASHING SPEED (LONG MESSAGE) AND CORE AREA BY

USING ISES FOR ALL SHA-3 CANDIDATES

Cycles/Byte Core Area [kGE]
PIC24 +ISE Speedup +ISE Overheada

BLAKE 155.2 102.9 1.51 22.77 -0.5%
Grøstl 462.3 57.6 8.03 24.97 +9.1%
JH 463.8 383.5 1.21 25.20 +10.1%
Keccak 188.3 131.7 1.43 22.22 -2.9%
Skein 157.6 112.6 1.40 23.00 +0.5%

aReference Core Area: 22.88 kGE at 200 MHz

did not actually add datapath components, but provided small
FSMs, that are able to resolve complex but regular address-
ing schemes to fetch operands for already present datapath
components (XOR, AND, ADD). The smallest speed up that
is obtained through the ISEs is for JH (about 20%), whereas
the largest improvement with a speedup factor of over 8 is
obtained for Grøstl. Interestingly, these two implementations
both resulted in about 10% area overhead, which is still
negligible.

One important parameter when determining how much
faster an algorithm can be implemented is the number of
memory accesses (read/write) required for the algorithm. Since
the memory bandwidth for the given architecture will not
change with additional instructions, the program will always
be limited by these numbers. Part of the speedup is achieved
by eliminating memory accesses, mostly by embedding oper-
ational constants into the ISE, and optimization of the load-
and store-patterns for state words. In Table III we list the
number of read and write memory accesses for all candidate
algorithms. It can be seen that only for Grøstl a significant
improvement could be made. This also explains the relatively
high performance gain for this algorithm.

TABLE III
CHANGE IN THE NUMBER OF MEMORY ACCESSES DURING THE

PROCESSING OF ONE MESSAGE BLOCK FOR ALL SHA-3 CANDIDATES.

Read Write
PIC24 +ISE Change PIC24 +ISE Change

BLAKE 2,370 1,682 -29% 1,187 1,187 0%
Grøstl 16,566 3,126 -81% 13,271 2,391 -82%
JH 11,836 9,874 -17% 4,141 4,099 -1%
Keccak 14,660 14,779 0% 7,345 7,416 +1%
Skein 5,264 5,264 0% 3,289 3,289 0%

From a system designers point of view, more often than
not the amount of memory used by an algorithm is even more
important than its outright execution speed. We have listed the
total data and program (text) memory used by all candidate
algorithms separately for both the standard and the enhanced
instruction set implementation of PIC24 in Table IV. It can be
seen that the largest combined improvement is achieved for JH

(61.5% total reduction) and Grøstl (71.3% total reduction).
Whereas the smallest improvement is achieved for Skein
(17.7% total reduction).

Text is generally saved through the compaction of more
complex algorithm parts into single instructions, especially by
mapping address generation patterns onto FSM based instruc-
tions. In the case of frequent use of rotations, their single
instruction representation additional reduces the program code
size. The data memory footprint is reduced by integrating
round constants and other lookup tables into the processor
core.

TABLE IV
REDUCTION OF DATA AND INSTRUCTION MEMORY BY USING

INSTRUCTION SET EXTENSIONS FOR ALL SHA-3 CANDIDATES.

Data [byte] Text [byte]
PIC24 +ISE Reduction PIC24 +ISE Reduction

BLAKE 488 200 -59.0% 1,028 818 -20.4%
Grøstl 982 214 -78.2% 2,619 819 -68.7%
JH 1,550 206 -86.7% 4,649 2,183 -53.0%
Keccak 448 352 -21.4% 3,480 2,415 -30.6%
Skein 242 242 0.0% 5,734 4,678 -18.4%

2) Reference Implementation: We give a short compari-
son of the software performance of our reference assembly
implementations with other published works on MCU based
systems. Since our reference implementations are the basis
for the developed ISEs and the reported relative performance
gains, we list our implementation results together with other
published results in Table V, to show that our standard PIC24
ISA implementations are reasonable in comparison with the
current state of the art.

The relative performance of the algorithms is given in
relation to BLAKE to allow for easy comparison of the
individual performance differences between the various MCU
platforms. It can be observed that in general 32-bit MCU
architectures clearly benefit in terms of cycle count over a
16-bit architecture, since most algorithms internally use state
word sizes that are larger (64-bit) than the native word sizes
of the MCUs.

The most important study of SHA-3 algorithm performance
on MCU based systems has been done by Christian Wenzel-
Benner and Jens Gräf [18]. They maintain a web-page [17],
where their results are published. These results have also
been included in the eBASH website [5]. Thomas Pornin [6]
has developed a library (sphlib) which uses standard C, and
therefore could easily be ported to a variety of platforms. The
library includes comparisons on several platforms, but does not
necessarily reflect the results that are achievable with hand-
crafted assembly kernels.

B. Hardware Performance

A general overview of the area requirements for the im-
plemented cores is given in Table II. The digital design flow
is known to produce results that vary as much as ±5%, so



TABLE V
COMPARISON OF THROUGHPUT NUMBERS [CYCLES/BYTE] OF PUBLISHED MICROCONTROLLER SHA-3 IMPLEMENTATIONS.

NUMBERS IN PARENTHESES SHOW PERFORMANCE NORMALIZED TO BLAKE PERFORMANCE.

This work [6] [6] [17] [17]
Architecture PIC24 PIC24+ISE ARM-M3 ARM920T ARMv5TE ATmega128
Datapath 16-bit 16-bit 32-bit 32-bit 32-bit 8-bit

BLAKE 155 (1.00) 103 (1.00) 89 (1.00) 54 (1.00) 87 (1.00) 1241 (1.00)
Grøstl 462 (2.98) 58 (0.56) 455 (5.11) 313 (5.79) 216 (2.48) 11198 (9.02)
JH 464 (2.99) 384 (3.72) 370 (4.16) 395 (7.31) 361 (4.15) 3829 (3.06)
Keccak 188 (1.21) 132 (1.28) 192 (2.16) 197 (3.65) - 1115 (0.89)
Skein 158 (1.02) 113 (1.10) 128 (1.44) 129 (2.39) 184 (2.11) 1444 (1.16)

changes smaller than 5% can not reliably be presented. In
fact for 2 out of 5 algorithms, the core area for the processor
actually decreases slightly when ISEs are added.

It must be noted that in the best case, the core area
represents at most one third of the total area of the overall
MCU subsystem. The other two thirds are used by data
and instruction memory. For example, the generated SRAM
macro blocks used for evaluation and complete synthesis of
the designs in this work, are of the sizes 2048 instructions
(6 Kbyte) and 1024 data words (2 Kbyte), together occupying
an area of 50.28 kGE. As such, the net-overhead due to
the ISEs is even smaller. Factoring in the possible system
memory size reductions due to improved code size and usage
of working data, the total area would potentially even decrease.

For assessment of the design corners, emphasizing optimiza-
tion for high speed or low area, the reference core as well as all
five modified versions, each including their algorithm-specific
ISEs, are implemented and synthesized for various timing
constraints. As shown in Fig. 2, we perform an area-delay
trade-off evaluation for all six designs, by synthesizing each
architecture multiple times, while sweeping the core clock
constraint.

4 6 8 10 12 14
18

20

22

24

26

28

30

32

34

36

38

40

clock period [ns]

co
re

 a
re

a
 [

k
G

E
]

 

 

 200 MHz

Ref. / no ISE
BLAKE ISE
Grostl ISE
JH ISE
Keccak ISE
Skein ISE

Fig. 2. Maximum core clock period versus core area for the reference design
and five cores with individual instruction set extensions each.

Optimization for area shows a size of 19.0 kGE for the
reference core as well as the core with Keccak ISEs. The cores
with BLAKE ISEs and Skein ISEs each occupy a minimum
area of 19.5 kGE, while Grøstl ISEs and JH ISEs each produce
extended minimal core sizes of 21.4 kGE, due to integration
of relatively large LUTs in the processor datapath. All designs
optimized for area can still operate at a core clock frequency
of about 70 MHz.

Hard constrained synthesis, i.e. optimization for speed,
shows a similar picture of the designs performing on a compa-
rable level regarding maximum clock frequency and required
core area. Maximum frequencies are around 260 MHz, with
the exceptions of the two cores with BLAKE ISEs (248 MHz)
and Keccak ISEs (267 MHz). The occupied area for the high
speed designs varies between 34.7 kGE (Keccak) and 39.5
kGE (JH), around the reference core without ISEs (37.5 kGE).
These figures can mainly be explained by the mentioned
optimization-variations during synthesis, which can especially
be observed for the core with Keccak ISEs, which is identical
to the reference core plus three additional instructions.

As a result, it can be seen that the area overhead produced
by the introduced ISEs is in general negligible, independent
of the clock constraint.

To give the synthesizer some room for exploiting various
techniques to trade-off speed versus area, the reference clock
period for general overhead comparison is chosen at 5 ns,
about 1 ns above the achievable minimum, hence allowing
for all six designs to meet the same timing constraint. The
difference in core area can this way be attributed to the
overhead due to the ISEs only.

VIII. SOURCES OF ERROR

Although we have tried to minimize the sources of errors,
there are several factors that may have influenced the results,
especially regarding the relative performance comparisons of
the five SHA-3 candidates, and their suitability for ISEs.

A. Choice of the MCU

All our results are given on a particular MCU. It is fair to
say that, this MCU is not the most widely used embedded
processor. However we believe that it is not a bad choice
as a generalized 16-bit MCU, since it has a simple Harvard
architecture, and a relatively large number of single cycle



instructions which makes it easy to implement. We do not
think that the evaluation of our presented ISE concepts would
differ significantly if another MCU were to be used, however
we can not exclude this possibility.

B. Designer Experience
During this work, several critical parts have been performed

manually. The design flow used in this project required all
candidate algorithms to be manually implemented in assem-
bly language. In the later stages, potential ISEs have been
determined by manually analyzing the first implementations.
And finally, the optimized implementations utilizing the ISEs
have been coded manually as well. Even though we believe
that we have tried our best to implement all these steps equally
well, it is possible that some optimization possibilities were
overlooked in the process.

C. Reporting Overhead
Our experience is that synthesis results have an accuracy

of roughly ±5% depending on many factors. All presented
numbers are generated using only front-end design data and do
not accurately reflect the parasitic effects from placement and
routing. However, we have significant experience with back-
end design, and do not believe that the relative performances
would be much affected during the post-layout phase.

IX. CONCLUSION

It is well known that instruction set extensions (ISEs) can
increase the performance of an application on a given mi-
croprocessor architecture, through addition of datapath units.
Considering algorithm-specific performance bottlenecks re-
garding memory consumption and execution time on resource
constrained systems, we proposed dedicated ISEs based on
lookup table integration and microcoded instructions using
finite state machines for operand and address generation,
which do not significantly add to the processor datapath.

Looking at the application-specific case of cryptographic
hash functions on a 16-bit MCU for SoC, we assessed the po-
tentials of these ISEs for all five SHA-3 final round candidates,
representing a variety of different hash algorithms. We show
that our proposed ISEs can provide significant speedup, hence
enabling throughput increase and reduced energy consump-
tion, in addition to substantial memory footprint reduction.

It was shown that most improvements were made by instruc-
tions that provided efficient generation of memory address pat-
terns. Rather than adding datapath units, to calculate complete
functions, especially beneficial were instructions that handled
complex (but regular) memory accesses as a result of constant
permutation templates. Furthermore, moving constant lookup
tables from data memory into the processor’s datapath turned
out to be highly beneficial in reducing memory footprints at
negligible core-area overhead. Minor extensions of existing
computational units, combined with state driven microcoded
instruction execution, to support rotation operations on larger
bit-widths (64-bit) within the limits of the native 16-bit archi-
tecture, proved to be especially helpful for significant speedup
of most of the SHA-3 algorithms.

In three out of five cases, the ISEs had no measurable
impact on the core area of the microcontroller, in the two other
cases, the overhead was limited to 10%, whereas the execution
speed improved by 172% on average over five candidates. In
particular, we were able to improve the execution speed of
Grøstl by more than a factor of 8, and reduce its memory
consumption by more than 70%. This has moved Grøstl from
being one of the slowest implementations (about 3 times
slower) to the fastest implementation by some margin (1.75
times faster than the next algorithm).

ACKNOWLEDGMENT

The authors would like to thank Prof. H. Meyr (specifically
M. Witte and F. Borlenghi) for the inspiring discussions and
their support for the work with Processor Designer which was
instrumental for getting started on this project.

REFERENCES
[1] NIST, “Announcing request for candidate algorithm nominations for a

new cryptographic hash algorithm (SHA-3) family,” Federal Register,
Vol.72, No.212, 2007, http://www.nist.gov/hash-competition.

[2] The ECRYPTII Group, “The SHA-3 zoo,” http://ehash.iaik.tugraz.at/
wiki/The SHA-3 Zoo.

[3] K. Gaj, J.-P. Kaps, V. Amirineni, M. Rogawski, E. Homsirikamol, and
B. Y. Brewster, “ATHENa: Automated Tool for Hardware EvaluatioN,”
2011, http://cryptography.gmu.edu/athena/.

[4] L. Henzen, P. Gendotti, P. Guillet, E. Pargaetzi, M. Zoller, and
F. Gürkaynak, “Developing a hardware evaluation method for SHA-3
candidates,” in Cryptographic Hardware and Embedded Systems, CHES,
vol. 6225, 2010, pp. 248–263.

[5] D. J. Bernstein and T. Lange (editors), “eBACS: ECRYPT Benchmark-
ing of Cryptographic Systems,” http://bench.cr.yp.to.

[6] T. Pornin, “sphlib, Update for the SHA-3 third round candidates,” http:
//www.saphir2.com/sphlib.

[7] R. Benadjila, O. Billet, S. Gueron, and M. Robshaw, “The Intel AES
instructions set and the SHA-3 candidates,” in Advances in Cryptology,
ASIACRYPT, 2009, vol. 5912, pp. 162–178.

[8] P. Grabher, J. Großschädl, S. Hoerder, K. Järvinen, D. Page, S. Tillich,
and M. Wójcik, “An exploration of mechanisms for dynamic cryp-
tographic instruction set extension,” in Cryptographic Hardware and
Embedded Systems, CHES, 2011, vol. 6917, pp. 1–16.

[9] Synopsys, “Automating the design and implementation of custom
processors (Processor Designer, LISA 2.0),” http://www.synopsys.com/
Systems/BlockDesign/ProcessorDev/Pages/default.aspx.

[10] Tensilica, “Xtensa customizable processors,” http://www.tensilica.com/
products/xtensa-customizable.htm.

[11] Target Compiler Technologies, “IP designer,” http://www.retarget.com/
products/ipdesigner.php.

[12] Microchip, “PIC24HJXXXGPX06/X08/X10 Data Sheet,” http://ww1.
microchip.com/downloads/en/DeviceDoc/70175H.pdf.

[13] ——, “16-bit MCU and DSC programmer’s reference manual,” http:
//ww1.microchip.com/downloads/en/DeviceDoc/70157D.pdf.

[14] A. Hoffmann, T. Kogel, A. Nohl, G. Braun, O. Schliebusch, O. Wahlen,
A. Wieferink, and H. Meyr, “A novel methodology for the design of
application-specific instruction-set processors (ASIPs) using a machine
description language,” in Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol.20, no.11. IEEE, 2001, pp. 1338–
1354.

[15] O. Schliebusch, R. Leupers, and H. Meyr, Optimized ASIP Synthesis
from Architecture Description Language Models. Springer, 2007.

[16] J. Constantin, A. Burg, and F. K. Gürkaynak, “Investigating the potential
of custom instruction set extensions for SHA-3 candidates on a 16-
bit microcontroller architecture,” Cryptology ePrint Archive, Report
2012/050, 2012, http://eprint.iacr.org/2012/050.

[17] C. Wenzel-Benner and J. Gräf, “XBX: eXternal Benchmarking eXten-
sion,” http://xbx.das-labor.org/trac.

[18] ——, “XBX: eXternal Benchmarking eXtension for the SUPERCOP
Crypto Benchmarking Framework,” in Cryptographic Hardware and
Embedded Systems - CHES, vol. 6225, 2010, pp. 294–305.


