Using Robots to Understand Social Behavior

Mitri, S., Wischmann, S., Floreano, D. and Keller, L.

Abstract

A major challenge in studying social behavior stems from the need to disentangle the behavior of each
individual from the resulting collective. One way to overcome this problem is to construct a model of the
behavior of an individual, and observe whether combining many such individuals leads to the predicted
outcome. This can be achieved by using robots. In this review we discuss the strengths and weaknesses of
such an approach for studies of social behavior. We find that robots - whether studied in groups of
simulated or physical robots, or used to infiltrate and manipulate groups of living organisms - have
important advantages over conventional individual-based models and have contributed much to the study
of social behavior. In particular, robots have increased our understanding of self-organization and the
evolution of cooperative behavior and communication. However, the resulting findings have not had the
desired impact on the biological community. We suggest reasons for why this may be the case, and how the

benefits of using robots can be maximized in future research on social behavior.
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1 Introduction

Social behavior, both in humans and other organisms, has for many years drawn the attention of
researchers from a range of fields, as it poses interesting questions from mechanistic and
evolutionary viewpoints. Many approaches have been used to study social behavior. These
approaches can be classified over a scale of “situatedness”, which we define as the extent to
which individuals are embedded in an environment that can be sensed and modified by those
individuals (Varela et al.,, 1991; Clark, 1996). The situatedness spectrum ranges from abstract

mathematical models on one end to field work in natural habitats at the other end (Fig. 1).
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At one extreme of the situatedness scale, observational or experimental studies performed in the
field are useful in that they include the whole complexity of the organisms and their
environment. However, while such studies allow one to infer correlations, they rarely permit to
unambiguously demonstrate causations, for example in how the behavior of an organism is
affected by those of other individuals in the population. The realization of this limitation has led
to an active field of experimental studies performed in the laboratory where it is easier to control
variables of interest. While these studies have provided important insights into the social
behavior of organisms, an important limitation is that it is frequently difficult or impossible to

manipulate the behavior of individuals to investigate the response of other group members.
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Figure 1. Different approaches to studying social behavior on a scale of situatedness, i.e., the
extent to which individuals are embedded in an environment that they can sense and modify. The
shaded box represents the robotic models covered in this article.

At the other end of the scale, abstract mathematical models allow one to boil down collective
systems to their minimal components and explore the effects of what are considered to be key
parameters on their dynamics. While abstract models can make powerful predictions, they
generally model populations as a whole thereby neglecting or strongly simplifying the spatial
environment, local interactions, life cycle dynamics and phenotypic plasticity (DeAngelis & Mooij,
2005). The realization of the importance of these factors has led to the development of
Individual-Based Models (IBMs, a term often used interchangeably with “agent-based models”
(Grimm & Railsback, 2005)), where “agents” are modeled individually. Such models allow one to
consider individual differences such as age or size and their possible interactions (Judson, 1994;
Grimm & Railsback, 2005). These agent-based models have played an important role in

explaining social behaviors, and have thus largely been accepted as part of the toolbox for



modeling social systems from small groups to populations and ecosystems (DeAngelis & Mooij,

2005). Agents in these IBMs are typically implemented using computer simulations.

More recently, researchers have resorted to using robots spanning different levels of
situatedness, including simulated robots, physical robots, and “mixed models” where physical
robots and animals interact (Garnier, 2011; Krause et al, 2011). The aim of this review is to
discuss how the use of robots can complement experimental and theoretical studies on social

behavior.

Robots have been introduced as a means to study social behavior relatively recently, and the
approach has quickly gained momentum (see Garnier (2011) and Krause et al. (2011) for recent
reviews). We define a physical robot as “a machine that is able to interact physically with its
environment and perform some sequence of behaviors, either autonomously or by remote
control” (Krause et al., 2011). Essentially, robotic models of collective behavior are IBMs in which
individually-programmed robots interact. As in conventional IBMs, all components of the
individual robots are given, making it easier to understand their collective behavior, compared to
that of living organisms. However, the main advantage of using robots in a real physical
environment over IBMs within a simulated environment is that fewer assumptions need to be
made regarding the environmental properties (e.g., spatial constraints, perceptual noise, signal
propagation). This is because the laws of physics are included “for free” in robotic models. A
direct consequence of this is that experiments using robots are more likely to lead to unexpected
and interesting outcomes whenever some property of the physical world that would intuitively
not have been included in an abstract environment has an important influence on the resulting
collective behavior. This assumes, however, that these physical properties and the resulting
behavior are not caused by artifacts that are specific to the robots and do not have parallels in

the natural world.

So far, most of the studies involving robots have been conducted by computer scientists and
engineers with the effect that much of the published work is unknown to biologists. It is
therefore timely to review these studies, assess the extent to which they have contributed to our

understanding of social behavior, and outline the most promising directions for future research.



In this article, we classify robotic models used to study social behavior into three categories: (1)
simulated robots, where the physical environment and the robots are modeled in computer
simulations, (2) physical robots where experiments are conducted with real robots, and (3)

mixed models where physical robots interact with living organisms (grey shaded area in Fig. 1).

2 Simulated robots

Simulated robots, here defined as computer simulations of physical robots and their
environment, are at an intermediate level on the situatedness scale between conventional IBMs
and experiments with physical robots (Fig. 1). While simulated robots may first appear to be
equivalent to conventional IBMs, they critically differ in that they are designed to mimic physical
robots and their environment, thus forcing the modeler to take constraints in perception,
actuation, space and resources into account. Simulated robots have the three following
characteristics: (1) they have an extended body (i.e., they occupy space in the world) rather than
being a point; (2) they gather information about the environment through sensors that are
morphologically located and limited in range and accuracy rather than having an ideal perceptual
system that can access global and perfect information; and (3) they move in an extended space
with finite distances and resources rather than in mathematical spaces which often have no
boundaries and/or infinite resources (see e.g., Fig. 2A). All these factors can significantly affect
the outcome of social behaviors that imply physical and perceptual interactions within a confined
space. In addition, complete knowledge of the components and functioning of the modeled
physical robot and its environment reduces the number of assumptions that need to be made
when constructing the simulation, compared to a conventional IBM, which models living

organisms that may not be fully understood.

The recent rise in computational power and simulation technology (Waldner, 2008) has led to
the development of off-the-shelf robotic simulators that include models of a number of
commercially available robots (e.g, Webots™ robot simulator (Michel, 2004)). The degree of
realism of these robot simulations varies greatly, ranging from kinematic models of motion and

collisions to the more recent physics-based models where friction, masses, elasticity, gravity, and



other physical forces are accurately captured (Bourg, 2002). Typically, the development of
robotic simulations is based on systematic experiments, in which the behavior of the physical
robots and their simulated counterparts are compared until the latter prove to be reliable
substitutes for the former (e.g., Mondada et al. (2004)). This systematic approach ensures that
the assumptions and design decisions in constructing a given model are more explicit, rigorous

and less likely to be chosen for convenience.

Compared to conventional IBMs, the increase in model situatedness reduces the risk of
overlooking important properties of the physical environment on social behavior. For example,
in a study on the evolution of communication using simulated robots, Mitri et al. (2009) found
that the clustering of foraging robots (Fig. 2B) around a food source provided inadvertent
information to other robots on food location thus greatly influencing the selection pressure on
communicative strategies. The resulting strategies - which depended on the existence of
inadvertent information - provided an explanation for the high variability in communicative
strategies in many animal species that had been difficult to explain prior to this study. Models
using simulated robots thus provide an advantage over conventional IBMs in scenarios where

spatial and visual effects are likely to influence social behavior.

Physics-based robotic simulations have an important advantage over the use of physical robots
because they allow one to conduct numerous experiments with many individuals. This is an
important issue if one wants to conduct experimental evolution over hundreds of generations.
For example, an experiment on the evolution of communication where 100 groups of 10 foraging
robots each had to forage for 20 minutes during each of 500 generations, lasted less than a week
with a cluster of 40 computers in simulation (Mitri et al., 2009). Assuming no interruption to the
experiments, the total run-time would have been almost two years for each of the three
experimental treatments if the experiments would have been conducted with physical robots.
Interestingly, it was possible to implement the evolved behavior in physical robots at the end of
the 500 generations of selection to confirm the robustness of the behavior observed in the

simulations (Fig. 2B).



Figure 2. Robots used to study social behavior. A. Simulated robots to study coordination of
collective behavior (Baldassarre et al., 2006). B. Foraging robots used to study the evolution of
communication (Mitri et al., 2009). C. Modeling rat pup aggregation behavior using robots (C’)
(May et al., 2006). D. Robotic bee to test hypotheses on honeybee dance language (Michelsen et
al,, 1992). E. Robots used to explore decision-making in cockroaches (Halloy et al., 2007).

3 Physical robots

Compared to simulated robots, studies with physical robots implicitly include properties of a
physical environment. They therefore provide a particularly valuable tool when one or more of
these properties are expected to be important in influencing social interactions. This is nicely
illustrated by two studies on the aggregation behavior of the German cockroach Blatella
germanica. Using an IBM based on empirically measured values, Jeanson et al. (2005) attempted
to reproduce the behavior of the cockroaches. Although there was a qualitative agreement
between simulations and empirical data, the IBM led to larger aggregates than those formed by
the cockroaches. A follow-up study with physical robots provided a better match with the
empirical data (Garnier et al,, 2008). An analysis of the results revealed that this was because
Jeanson et al. (2005) had not included the possibility for the software agents to hide behind each
other. The software agents in the IBM were thus able to perceive many more individuals in a
cluster, resulting in larger and more stable aggregates than with robots and real cockroaches

(Garnier et al., 2008).

Another property of robotic systems that is rarely taken into account in conventional IBMs are

physical interactions between individuals that influence each other’s movement. The role of such



physical interactions was demonstrated in a study where a swarm of small ant-like robots was
programmed to collect objects scattered in an arena (Krieger et al, 2000). These experiments
revealed that foraging efficiency was lower in larger groups because there was more interference
among robots than in smaller groups. This study thus provided a possible explanation for the

observation that per capita productivity decreases with group size in many social insects.

Friction and body shape were found to also be crucial to collective behavior in a study with rat-
like robots aimed at mimicking how new-born rat pups form aggregations in small spaces (May
et al, 2006). When setting up a baseline algorithm where robots were programmed to move
randomly, the authors found that this random algorithm best fit the collective behavior observed
in the pups. Although it was commonly thought that new-born rat pups have an instinctive
attraction to objects and other rat pups (Schank et al., 2004), the study by May et al. provided a
novel testable hypothesis whereby pups may simply be moving randomly and, as a result of their
body shape and the friction between individuals, end up huddled in tight aggregations (see Fig.

2Cand C).

4 Mixed models

A particularly powerful application of physical robots to the study of social behavior is the
possibility of infiltrating animal societies with physical robots. Such mixed models allow the
experimenter to gain insights into the animals’ behavioral codes. While the use of dummies and
decoys to manipulate and study animal behavior dates back to ethologists of the 1930s and 40s
(Tinbergen, 1948), the use of robots as dummies allows the experimenter to program more
sophisticated behavioral sequences and to conduct closed-loop experiments where a robot can
react to sensory input triggered by an animal. For example, robots were used to test how groups
of cockroaches select a common shelter (Halloy et al., 2007). The decision-making process was
studied by covering four robots with filter paper carrying the cockroaches’ odor and mixing them
with a group of 12 cockroaches. While groups of 16 cockroaches showed a preference for darker
shelters, the authors found that this collective decision could be altered if the four robots were

programmed to choose the less-preferred brighter shelters. From these experiments, the authors



concluded that a minority of individuals could strongly influence the groups’ decisions (see Fig.
2E), thus supporting conclusions drawn by previous studies using IBMs (Couzin et al., 2005;

Huse et al.,, 2002).

Similarly, Michelsen et al. (1992) used a robotic bee to test a long-standing controversy regarding
the honeybee dance language. The use of robots permitted the authors to disentangle the roles of
several components of the waggle dance on the bees’ foraging behavior, thus confirming that the
waggle dance conveys abstract information on distance and direction of a source of food (Fig.

2D).

The robots used in mixed models, rather than being models in their own right, can be regarded as
experimental tools used to interact with and manipulate real organisms, and therefore do not fit
as cleanly into the scale of situatedness as the simulated and physical robots discussed above.
Nevertheless, they have played an important and increasing role in the study of social behavior at
the intersection of robotics and biology, as reviewed by Krause et al. (2011). Mixed models and
the use of “cyborgs” where animal behavior is manipulated by electronic devices have already
allowed to push the boundaries of behavioral research and there are a number of exciting future
research avenues in wildlife management, the exploration of imitation and social learning, the

decoupling of morphology and behavior and the study of social networks (Krause et al., 2011).

5 Robots have advanced our understanding of social behavior

The study of social behavior has centered around understanding apparently sophisticated and
complicated collective behavior both from a mechanistic and evolutionary viewpoint. A number
of important questions relating to these viewpoints have been addressed using physical robots,
simulated robots or mixed models. We have compiled these into a list of 52 studies, some of

which have generated novel and testable hypotheses (Table 1).

One such question is how individuals coordinate their efforts to achieve a common goal (Couzin,
2009). Experiments using both physical and simulated robots have been instrumental in showing

that efficient self-organization processes can occur even with little sensory information



(Melhuish et al.,, 2006; Holland & Melhuish, 1999; Baldassarre et al.,, 2006; Grof3 et al., 2008). For
example, in experiments by Grof3 et al. (2008), simple physical robots following identical local
rules were required to retrieve a heavy “prey” and transport it to a “nest” - a relatively complex
task that could not be conducted by any individual robot alone. The authors found that the robots
self-organized into groups performing different tasks (e.g., forming a path from the object to the
nest), illustrating that division of labor can take place simply due to differences in local
perception, in the absence of inter-individual differences and individual recognition. Self-
organization has also been shown to take place without any communication (Kube & Bonabeau,
2000) or memory (Holland & Melhuish, 1999). Both of these studies, in which physical robots
were used, have generated predictions that can be tested experimentally, for example to
determine which of a number of algorithms is used by foraging ants. Other mechanisms, such as
the use of simple oscillatory processes in neural networks, have been shown to lead to self-
organized, synchronized light emission patterns in groups of physical robots interacting with
each other at close ranges, perhaps analogous to synchronized firefly light production
(Wischmann & Pasemann, 2006; Wischmann et al., 2006). Similarly, the production of rhythmic
signals can evolve as a means to allow simulated robots to coordinate group behaviors,

suggesting that turn-taking in duetting birds may serve a similar purpose (Di Paolo, 2000).

While the behavior of robots in these studies was mostly pre-programmed, other studies have
investigated how social behavior can evolve by the mere effect of mutation and selection
(Floreano & Keller, 2010). For example, Nolfi and Floreano (1998) have shown how competitive
co-evolution between populations of predator and prey robots can drive the evolution of novel
pursuit or escape strategies that were not observed when only one of the two populations was
evolving. The study has also suggested that co-evolving organisms may evolve to specialize to
their current opponents, a hypothesis which was later tested in co-evolving populations of
bacteria and parasitic bacteriophages (Buckling & Rainey, 2002). Experimental evolution has
also been used to investigate the role of genetic relatedness on the evolution of cooperative
behavior. By allowing simulated robots to evolve in groups with different levels of relatedness,

Waibel et al. (2011) were able to conduct a quantitative test of Hamilton’s rule (Hamilton, 1964)



and demonstrate that it was possible to exactly predict the minimum relatedness required for
altruism to evolve when the costs and benefits of altruistic behaviors could be controlled.
Table 1. The articles in this table were chosen because they report on research using simulated

robots, physical robots or mixed models, and explicitly state that they aim to understand social
behavior in living organisms. One representative article was chosen when numerous articles had

similar conclusions. Citations in bold have generated new, testable hypotheses.

Simulated robots Physical robots Mixed models
Floreano et al., 2007 Floreano et al., 2007 Faria et al., 2010
Marocco et al., 2003 Garnier et al,, 2008 Fernandez-Juricic et al., 2006
Melhuish et al., 2006 Garnier et al., 2009 Goth & Evans, 2004

S | Mitrietal,2009 GroR et al., 2008 Halloy et al., 2007
E Waibel, 2011 May et al., 2006 Martins et al., 2005
° Wischmann et al., 2012 | Melhuish et al., 2006 Michelsen et al., 1992
2 Ord & Stamps, 2008
e Partan et al., 2009
° Patricelli et al., 2002
g-\ Patricelli et al., 2006
T Reaney et al., 2008
Reaney, 2009
Rundus et al., 2007
Sumpter et al., 2008
Taylor et al., 2008
Baldassarre et al., 2006 Belpaeme & Birk, 1997 Bohlen, 1999
Di Paolo, 2000 Birk & Wiernik, 2002 Gribovskiy et al., 2010
Labella et al., 2006 Garnier et al., 2007 Kubinyi et al., 2004
Marocco et al., 2003 Holland & Melhuish, 1999 Landgraf et al., 2008
Marocco & Nolfi, 2006 Krieger & Billeter, 2000 Takanishi et al., 1998
Mataric, 1993 Krieger et al., 2000
> Mitri et al., 2009 Kube & Bonabeau, 2000
S Quinn, 2001 Labella et al., 2006
o Mataric, 1993
%_ McFarland, 1994
1_>u< Nolfi & Floreano, 1998
Rubenstein et al., 2009
Schmolke & Mallot, 2002
Steels & Vogt, 1997
Steels, 1998
Vogt, 2000
Wischmann & Pasemann, 2006
Wischmann et al., 2006

Several other studies have also focused on the evolution of communicative behavior, a question
that has been difficult to address using other experimental methods, because many forms of
animal communication evolve over large time-scales and leave no fossil record. For example,
Quinn (2001) demonstrated that signals between two simulated robots can evolve from sensors
that were originally used for obstacle avoidance rather than communication, thus suggesting a

mechanism for the evolution of natural communication channels. Other studies have investigated



how group structure may affect the likelihood to cooperate and communicate. Experimental
evolution in groups of robots differing in genetic relatedness revealed that honest
communication can evolve in simulated robots when communicating individuals are highly
related (Floreano et al, 2007), while unrelated individuals evolve to suppress information
transfer to other group members (Mitri et al., 2009, 2011). Wischmann et al. (2012) have
similarly used experimental evolution in robot groups to explain how variations in
communication systems can occur as a result of the order in which novel phenotypic traits are
acquired in independently evolving populations. The study also demonstrates a trade-off
between communication efficiency and robustness. Studying communicative behavior in animal
groups has also benefited from the use of robots. Mixed models have succeeded in revealing the
importance of communication in some group behaviors (Ferndndez-Juricic et al,, 2006; Reaney et
al,, 2008), disentangling the different components of signaling systems (Martins et al., 2005; Goth
& Evans, 2004; Patricelli et al., 2002; Michelsen et al.,, 1992; Rundus et al,, 2007), and showing
how these components interact to increase communication efficiency in noisy environments

(Partan et al., 2009; Taylor et al., 2008; Ord & Stamps, 2008).

Wheeled and humanoid robots have similarly been used to investigate human language and
explore how continuous perceptual data can be mapped onto discrete “words” or symbols
(Harnad, 1990). These studies have established that interacting with the environment and with
other simulated or physical robots can lead to categorization of perceptual data (Marocco et al.,
2003; Marocco & Nolfi, 2006), the formation of “vocabularies” (Steels & Vogt, 1997; Vogt, 2000)
and even simple forms of syntax (Steels, 1998). Because the perceptual data that a robot is
exposed to, as opposed to a simulated individual, is similar in richness to information collected
by a living organism, the use of robots has proven to be a valuable tool in understanding how
living organisms categorize information and map it onto symbols. For example, a robot may
approach the same object from different sides, but will still need to recognize the object in order

to assign a name to it (Loetzsch & Spranger, 2010).

6 Evaluating robotic models



Although robotic models have been useful in addressing a variety of issues on social behavior,
these studies are only infrequently integrated into the biological literature. Subsequently, hardly
any of the hypotheses generated by robotic models outlined above have been tested using living
organisms. There are at least two main reasons for this. The first is that many of these studies are
published in computer science or artificial life journals that are infrequently read by the
biological community. The second reason is that many of these studies do not use a “hypothesis-
driven” approach (Table 1, see also “strong inference” (Platt, 1964)). Currently, much of the work
in biology consists of hypothesis-driven experiments with researchers designing experiments to
test a specific hypothesis. So far only a minority of the experiments conducted with robotic
models are of this type. Most have been “exploratory” with a model being constructed to explore
whether the implicit inclusion of the robots’ physical properties will reveal novel aspects
concerning the collective behavior in question. While such exploratory studies may be less
constrained in how they approach a given problem, and thus may uncover unexpected patterns,
they carry the risk of not answering a particular question. Furthermore, because these studies
are not designed to test a specific hypothesis, the results are usually less convincing and it may
be more difficult for a biological audience to draw parallels and apply these findings to their own
work. In hypothesis-driven experiments, on the other hand, controlled manipulations make it
easier to understand causal mechanisms, and thus to link the model results to similar natural

phenomena.

Since the birth of the scientific method, scientists and philosophers have been debating the most
promising and efficient methods to improve our understanding of nature. In the 17th century,
Francis Bacon discussed this point, asking whether researchers should collect data in an
exploratory manner “without premature reflection or any great subtlety” (Bacon, 1620). These
observations could then be used to construct scientific theories. In a recent article, Franklin
(2005) argued that scientists tend to resort to such exploratory methods when a new tool
becomes available for data collection, and when that tool allows for the collection of vast
amounts of data. This allows them to map out new scientific territory. Consistent with Franklin’s
analysis, researchers studying social behavior with robots have initially mostly conducted

exploratory studies to determine whether the embodiment of agents in a physical world leads to



surprising outcomes increasing our understanding of social behavior. More recently, the trend

appears to have shifted towards a higher proportion of hypothesis-driven studies (see Table 1

and Fig. 3).
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Figure 3. Figure 3: Histogram of the number of hypothesis-driven versus exploratory studies
over the last 2 decades.

The shift from exploratory to hypothesis-driven experiments is to a large extent due to a recent
increase in studies using mixed models. This is perhaps because mixed models are often
designed by researchers working on a living system and who use robots to address a specific
question that could not be answered otherwise. The robots thus often serve as an experimental
tool to systematically vary parameters and test for their effects. These hypothesis-driven studies
also appear to have led to a greater number of novel hypotheses that can be tested in a biological

context than exploratory studies (see highlighted studies in Table 1).

Another reason why biologists might be reluctant to utilize results from robotic studies is that it
is not always clear how the behavioral code of the robot is implemented and whether this
implementation is biologically relevant. One way to overcome this problem would be for

modelers to explicitly and objectively define the behavioral code that is used by a robot in order



to provide the reader with sufficient information to evaluate the results of a study and its

parallels in biological organisms.

7 Summary and future directions

Our review of the literature shows that robots have contributed to our understanding of social
behavior, both through exploratory studies, whereby the complexity of the robots’ social
behavior in a physical environment is used to inspire further empirical studies, and through
hypothesis-driven experiments. Robots represent a modeling niche by occupying the
situatedness space between agent-based models and real organisms. Because one has full access
to the sensors and actuators of a robot, it is easier to control and understand than a living
organism. At the same time, the increase in situatedness compared to agent-based computer
simulations provides an advantage whenever certain physical features of the real world are
expected to influence social behavior or when the question is specifically about the influence of
certain physical properties that can be considered with the robot. The examples listed in this
review illustrate how visual and spatial effects can influence aggregation, search or
communicative behaviors (Jeanson et al., 2005; Garnier et al., 2008; Mitri et al., 2009), and how
friction and collisions between individuals can play an important role in collective foraging
(Krieger et al.,, 2000; Krieger & Billeter, 2000; Kube & Bonabeau, 2000; Waibel et al,, 2011) and

clustering behaviors (Holland & Melhuish, 1999; May et al., 2006; Melhuish et al., 2006).

However, the benefit of using robotic models rather than conventional IBMs depends on the
particular question one is addressing. Ideally, the chosen model will be similar enough to the real
system to include all the factors of interest and relevance, yet simple enough to allow control
over the various parameters of the model and adequate analysis of the results. Consequently,
robots are not always the tool of choice. Rather, they should be considered only when the
properties of a robot, physical or simulated, are likely to influence the outcome of a particular
experiment. Furthermore, if the conclusions of a study using robots are found to be independent
of any such physical properties, one can then reduce the complexity of the study to a simpler

model that captures the natural observation more concisely. A further limitation of using robots



is that some observations may be due to artifacts that are particular to the robots, and may not
correspond to any natural phenomena. This problem can be avoided by conducting a detailed
analysis of the mechanisms responsible for an observed behavior, and making concrete

comparisons with empirical biological data (Webb, 2009).

Nevertheless, we believe that there is much potential for the use of robots that has yet to be
explored. For example, there is much discussion on how individual and kin recognition affect
decisions made within a collective (Sheehan & Tibbetts, 2008; Paterson & Hurst, 2009; Nehring
et al, 2011). Because such recognition is based on noisy sensory information, distinguishing
between individuals may be difficult both for animals and robots that must solve the task in the
physical world. It would be interesting to see whether similarities in sensory perception between
animals and robots - compared to abstract agents - may give some insights into the role of peer
recognition in collective decision-making. In robots and animals one might, for example, expect a

certain level of error in recognizing others that may influence the social dynamics of the group.

Another potential use of robots is to study the interplay between mechanistic properties that are
highly dependent on physical factors, and effects arising over evolutionary time. Mayr (1961)
and Tinbergen (1963) were perhaps the first to argue for the synergistic benefits of a
complementary approach addressing both proximate (mechanistic) and ultimate (evolutionary)
causes. As has been discussed in this review, the use of evolutionary robotics has been
instrumental in exploring such questions in groups of robots, and has resulted in important
contributions to our understanding of the evolution of social behavior, thus highlighting the
strength of robotic models. Such a complementary approach could be similarly applied with
mixed models to study the interplay between behavioral and evolutionary processes. A nice
illustration of this idea is provided by a study where blue jays searched for digital moths on
computer monitors (Bond & Kamil, 2002). The digital moths that were not pecked by the birds
survived to subsequent generations, thus allowing to investigate how selection shapes
phenotypic properties of moths. Although this study did not involve robots, it may inspire similar
studies using mixed models where the robots’ controllers or morphology can evolve in parallel
with organisms with a short generation time. Such an approach provides a unique opportunity to

investigate how social interactions can affect the evolutionary pathway of organisms and the



evolution of complex social systems (Rosenthal & Evans, 1998; D’Eath, 1998; Baldauf et al., 2008;

Moiseff & Copeland, 2010).

Finally, it is important to note that physical robots have become cheaper and simulations easier
to design and perform. Robotic research platforms have also become available, such as the
Symbrion system, which consists of hundreds of miniature robots that can be used for
evolutionary and collective experiments (Kernbach et al, 2008). This should contribute to
making robotic systems more frequently used to address biological questions that are difficult or

impossible to address with real organisms.

8 Conclusions

1. Robots have made important contributions to the study of self-organization, communication

and the evolution of competitive and cooperative behavior.

2. Both exploratory and hypothesis-driven studies using robots have generated novel hypotheses
that can be tested using living organisms. However, the more recent shift toward hypothesis-

driven studies is likely to make these findings more accessible to the biological community.

3. The choice of modeling tool depends on the question of interest and can be selected from
different levels of “situatedness”. The model should be similar enough to the real system being
studied to include all components that are relevant to generating the observed empirical data, yet

simple enough to be amenable to detailed analysis and understanding.

4. Robots are useful when properties of the physical environment (e.g., visual and spatial effects,

friction and collisions) are likely to influence the outcome of the social behavior.
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