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Abstract The fragmentation of a brittle plate sub-
jected to dynamic biaxial loading is investigated via
numerical simulations. The aim is to extend our under-
standing of the dynamic processes affecting fragment
size distributions. A scalable computational framework
based on a hybrid cohesive zone model description of
fracture and a discontinuous Galerkin formulation is
employed. This enables large-scale simulations and,
thus, the consideration of rich distributions of defects,
as well as an accurate account of the role of stress
waves. We study the dependence of the fragmentation
response on defect distribution, material properties, and
strain rate. A scaling law describing the dependence
of fragment size on the parameters is proposed. It is
found that fragmentation exhibits two distinct regimes
depending on the loading rate and material defect dis-
tribution: one controlled by material strength and the
other one by material toughness. At low strain rates,
fragmentation is controlled by defects, whereas at high
strain rates energy balance arguments dominate the
fragmentation response.
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1 Introduction

The dynamic fragmentation of brittle solids under
intense loading continues to be a subject of significant
scientific and practical interest. One of the main chal-
lenges is the prediction of the distribution of fragment
sizes for general fragmentation events which encom-
pass a vast range of length scales, material proper-
ties, structural dimensionality, and loading conditions.
Extensive experimental studies have provided a vast
body of data of fragment size distributions (Grote
et al. 2001; Shich et al. 2000) for particular configu-
rations. Analytical and statistical theories accounting
for specific relevant mechanisms such as stress wave
propagation (Mott 1947) and energy balance (Glenn
and Chudnovsky 1986; Grady 1982) have been suc-
cessful at predicting experimentally observed charac-
teristic fragment sizes. A recent book (Grady 2010)
provides a comprehensive survey of the statistical and
energy-based theories of fragmentation as they apply
to rings and shells.

For more general fragmentation events and for a
full consideration of the physics of the problem, it has
become customary to resort to computer simulation
(Miller et al. 1999; Wittel et al. 2005; Shenoy and Kim
2003; Zhou et al. 2006a,b; Levy and Molinari 2010;
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Daphalapurkar et al. 2011). Numerical approaches aim
to describe all the relevant physical mechanisms of
the fragmentation event, which remain not well under-
stood. This includes the temporal evolution of the stress
waves within the material, crack nucleation, propaga-
tion, branching and coalescence leading to the forma-
tion of fragments.

The first challenge in describing a fragmentation
event is to determine the location within the material
where failure is more likely to initiate. In brittle mate-
rials, this normally occurs at defects such as pores,
inclusions, grain boundary and triple points which act
as stress concentration sites leading to the nucleation
of cracks. The location, density, and size of defects
thus govern crack initiation. As pointed out by Mott
during World War II, stress waves also play a signif-
icant role (Mott and Linfoot 1943). Mott developed a
well-known experiment, which consists in expanding a
ring circumferentially until it fails (Mott 1947). Owing
to the one-dimensional geometry of the ring, the only
operative failure in this test is crack initiation. This pro-
vided deep understanding of the role of crack initiation
on the dynamics of fragmentation. Mott explained that,
when a crack initiates, a release stress wave emanates
from the new free surface and propagates circumferen-
tially along the ring, unloading the surrounding mate-
rial and protecting it from further damage (Mott and
Linfoot 1943). Denoual et al. (1997) based their statis-
tical theory of brittle fragmentation on this protected
zone idea.

A second difficulty is the prediction of crack paths.
In multi-dimensional structures, cracks propagate and
branch until they reach a free surface at the exter-
nal boundary of the body or at another crack sur-
face, or until the stress intensity factor at its tip falls
below a critical threshold. The evolution of a crack
is strongly influenced by its surroundings. Indeed, the
stress field in the neighborhood of the crack tip, which
governs crack propagation, depends upon the stress
waves released by other cracks, as well as on the pres-
ence of local defects. As a result, fragmentation of
multi-dimensional structures is governed by a complex
network of interacting stress waves and by material
microstructure.

The purpose of this study is to investigate the role of
stress waves and material properties in dynamic frag-
mentation processes in brittle plates subject to biaxial
loading at a wide range of strain rates. Toward this
end, we employ an advanced computational frame-
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work based on a discontinuous Galerkin formulation
of the continuum problem (Noels and Radovitzky
2006, 2008) and cohesive zone models of fracture
(Radovitzky et al. 2011). Although the structure and
the applied loading considered are bi-dimensional, out-
of-plane responses resulting from the fragmentation
process are fully accounted for in the three dimensional
numerical framework. We show that, although material
properties and loading rate significantly influence the
average fragment size, a unique characteristic response
of the plate fragmentation exists. We also compare
the numerical results to analytical models based on
energy balance arguments (Grady 1982), which helps
to explain the role of the additional governing mecha-
nisms controlling fragmentation at low and high strain
rates neglected in simplified models.

The mesh convergence of the fracture energy and
fragment size distributions has long been a recognized
issue in the numerical simulation of dynamic fragmen-
tation (Molinari et al. 2007). That study showed the
need for high mesh resolution in the unidimensional
case. A unique advantage of this simulation capabil-
ity is its inherent parallel scalability, which enables
large-scale simulation of dynamic fragmentation and
thus to obtain converged results. The study presented
here also furnishes, as a sideline, a three-dimensional
convergence study of dynamic fragmentation at high
loading rates.

In the next section we briefly summarize the main
features of the discontinuous Galerkin, cohesive zone
model formulation and its scalable numerical imple-
mentation. Section 3 provides a detailed description of
the numerical test used for the dynamic fragmenta-
tion which corresponds to the dynamic bi-axial tensile
of bi-axial tensile loading of a thin plate for a large
range of strain rates from quasi-static to very highly
dynamic loadings. Section4 is devoted to studying the
numerical convergence of the simulations where it is
shown that the number of fragments and the distribu-
tion of fragment masses are independent of the mesh
if the element size is sufficiently small. In Sect.5,
the evolution of the average fragment size with strain
rate and material parameters is investigated. We com-
pare our results to prior one-dimensional numerical
results (Levy and Molinari 2010), as well as ana-
lytical energy models (Glenn and Chudnovsky 1986;
Grady 1982) in order to underline their limitations.
Finally, in Sect.6, we expose the reasons for these
limitations, and provide a discussion summarizing
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the physical mechanisms that operate during dynamic
fragmentation.

2 Numerical framework

2.1 The hybrid discontinuous Galerkin: cohesive zone
model formulation

2.1.1 Motivation

We adopt the scalable framework for modeling dynamic
fracture and fragmentation of solids in three dimen-
sions presented in Radovitzky et al. (2011), Seagraves
and Radovitzky (2009). The method is based on a
combination of a discontinuous Galerkin (DG) for-
mulation of the continuum problem (with ten-node
tetrahedral elements) and the cohesive zone model
of fracture, hereinafter referred to as CZM. Prior to
fracture, the flux and stabilization terms arising from
the DG formulation at inter-element boundaries are
enforced via interface elements, much like in the con-
ventional intrinsic cohesive element approach, albeit
in a way that guarantees consistency and stability.
Upon the onset of fracture, the traction-separation law
governing the fracture process, hereinafter referred to
as TSL, becomes operative without the need to insert a
new cohesive element.

The main advantage of the method is that it avoids
the need to propagate topological changes in the mesh
as cracks and fragments develop, which enables the
indistinctive treatment of crack propagation across pro-
cessor boundaries and, thus, the scalability in parallel
computations. Another advantage of the method is that
it preserves consistency and stability in the uncracked
interfaces, thus avoiding issues with wave propagation
typical of intrinsic cohesive element approaches.

For completeness, we summarize the main steps of
the formulation in the following.

2.1.2 Weak formulation

Let us consider the dynamic motion of a body, whose
reference configuration is 2 at time #y. At any time
tin T = [tinitial> tfinat], the position x of the mate-
rial point X is described by the deformation map-
ping:

x=90(X,1) VXeQ, VreT (1)

Its boundary surface 92 is partitioned into a Dirich-
let part dp$2p, a Neumann part dy €29, and an internal
boundary 97<2¢, such that 0290 = app U an2o U
0720 and Ip Ry N Iy N 7Ry = B. 970 can eit-
her represent a physical discontinuity (such as a frac-
ture surface) or a numerical discontinuity (such as the
boundary between two elements of the mesh). At an
internal boundary 9; o, the jump [e] and the average
(e) operators are defined as:

®) + o]
2
The weak formulation of the hybrid discontinuous

Galerkin—CZM is (Radovitzky et al. 2011; Seagraves
and Radovitzky 2009):
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In this expression, P is the first Piola—Kirchhoff
stress tensor, B a stabilization parameter (B > 0), &y
the element characteristic length, N the unit normal to
the reference configuration, and C the tangent material
moduli. T is the cohesive traction, which is function of
the jump in displacements across the interface and is
responsible for describing the fracture process. Follow-
ing Noels and Radovitzky (2008), in the simulations we
adopt p = 4.

It can be observed that in the dG-CZM formulation,
in addition to the classic terms corresponding to the
Principle of Virtual Work, surface integrals on the inter-
nal boundary ;¢ appear. Prior to fracture (o = 0),
the simulation proceeds according to the prescription
of the DG terms which enforce compatibility and equi-
librium at interelement boundaries in a weak manner.
Upon the onset of fracture, the TSL describing the frac-
ture process becomes operative (a0 = 1). Another dif-
ference of the dG-CZM and the original CZM is that
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the fracture criterion is evaluated directly at the interel-
ement boundary as opposed to the bulk element quad-
rature points. In addition, the dG-CZM formulation
allows for partially-cracked interface elements, where
one or more quadrature points satisfy the fracture cri-
terion and the TSL becomes operative, and where the
remaining quadrature points remain uncracked. This
affords purely-local sub-grid resolution of emerging
cracks.

2.1.3 Traction-separation law (TSL)

In this work we adopt the Camacho and Ortiz (1996)
linear irreversible law. It relates the cohesive stress o
and the crack tip opening 3.05. Ocon 1S defined by the
norm of the cohesive traction T, while §.,, is expressed
by:

Scoh = /82 + Y2 87 4)

dn and §; are respectively the normal and tangential
parts of the displacement jumps across the interface
[¢]- The parameter Y balances the tension and shear
contributions. In the simulations, we take Y = 1.

Denoting the cohesive strength o, and the critical
opening 3., the cohesive stress ogo 1S given by the
expression:

Ocoh —1— dcoh . for Scoh >0,
O¢ de¢
dcoh = dmax and D < 1 : opening ®))
o]
—coh 1- Bmi, for 8con < dmax and
0'C 8C
D < 1: closing and reopening 6)

The parameter D describes the local state of damage
in terms of the maximum opening and ranges between
zero and one:

D = min (6";‘”‘, 1) (7)

C

The cohesive energy is the area under the curve.
When fracture is complete, it is equal to the toughness
GC — 0-(‘28(3 .

2.1.4 Numerical implementation
It is rather straightforward to update a usual finite ele-

ment code to get to the present hybrid implementation.
The main technical difference lies in the definition of a
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suitable internal boundary. When the initial domain is
partitioned into E elements (Qo ~ Qon = U f: 1 Qe),
the interior boundary d; €2 can be composed of all the
boundaries between elements:

E
910 = (U aszg) \aszOh 8)

e=1

The discretization in space commonly gives:
MX 4+ R™ (x) = R (x) 9)
where R and R are internal and external force
arrays, M is the lumped mass matrix and x is the nodal
coordinate array. R embodies the terms of both the
discontinuous Galerkin and the cohesive formulations.

Furthermore, the discretization in time is a con-
ventional explicit integration. A second-order central
difference scheme with mass lumping is adopted. A
condition on the time step is required to guarantee sta-
bility:

E
At < Atep, with Aty = IIllIll (he) (10)
e=

c®)?
where  is the stabilization parameter of the discontin-

uous Galerkin formulation, c is the wave speed, and &,
is the characteristic dimension of element e.

3 Definition of the problem
3.1 Description of the test

We consider a thin square plate of dimension L pjqre =
10cm and thickness 0.15 mm. The value of the thick-
ness is modified when appropriate to the element size
to ensure the good quality of the mesh. Since the plate
remains very thin in all the simulations, varying the
thickness does not affect the fragmentation pattern. The
material properties used as baseline in simulations cor-
respond to aluminum oxide AD-995: Young’s modulus
E = 370GPa, Poissonratiov = (.22, volumetric mass
p=3,900kg m~3, static failure strength o, = 262 MPa
and toughness G, = 50 N/m. These parameters will be
modified in the following sections in order to under-
stand their influence on the fragmentation process
(c.f. Table 1). The plate is subjected to biaxial ten-
sion during the entire duration of the test (Fig. 1a). Ini-
tial displacements and velocities are such that the plate
undergoes uniform expansion with no initial propagat-
ing stress waves. We vary the strain rate from 10 s~!
to 103 s~!. These boundary conditions lead to the frag-
mentation of the plate, as displayed in Fig. 1b.
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Table 1 Material parameters used in the simulations

Young’s modulus  Volumetric mass Toughness (N/m) o in (MPa) Weibull modulus ~ Scale parameter

(GPa) (kg/m?) (MPa)
Mat. 1 370 3,900 50 264 2 50
Mat. 2 275 3,750 50 264 2 50
Mat. 3 260 3,690 50 299 20 50
Mat. 4 260 3,690 50 305 2 500
Mat. 5 370 3,900 250 264 2 50
Mat. 6 370 3,900 50 104 2 50
Mat. 7 600 3,900 50 264 2 50
Mat. 8 370 6,327 50 264 2 50
Mat. 9 370 1,054 50 264 2 50
Mat. 10 370 3,900 50 69 2 50
Mat. 11 370 3,900 50 284 20 30

Fig. 1 a Plate under biaxial
tension. Dashed arrows \
indicate the extent of initial ﬂ
velocity amplitudes. Plain
arrows indicate boundary

conditions in displacements. 77
b Fragmented plate from < -4
which we can extract
fragment masses ]
L T T :
1 1
: -
P E— - -

3.2 Modeling of material heterogeneity
and parametric studies

Every material is inherently heterogeneous. It may con-
tain pores, inclusions, grain boundaries, crystal imper-
fections, which we will collectively refer to as defects.
Since they have tendency to concentrate stresses,
these defects are favorable locations for fracture initia-
tion. Experimental evidence (Weibull 1939) has shown
that the failure strength of most materials follows a
Weibull distribution. We associate the failure strength
of a defect to the cohesive strength of its associated

cohesive element. The distribution of cohesive strengths
is thus given by:

Oc —Oc. min m
F(Gc)zl—e_( ) (11)
Oc.min 18 the minimum cohesive strength, which cor-
responds to the quasi-static failure strength. m is a
material parameter called Weibull modulus. A is the
scale parameter, and depends on the material and on the
geometry of the structure. In the present paper, we have
tested the response of several distributions of defects
plotted in Fig. 2.
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1e-07
Mat.4
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400 600 800

Cohesive strength(MPa)

Fig. 2 Probability density function of some of the distributions
of cohesive strengths studied (see Table 1)

As part of the study, we also vary material param-
eters (Young’s modulus, volumetric mass, toughness).
Table 1 details each set of parameters used in the sim-
ulations.

4 Numerical convergence

We first verify the validity of the computed results
through a convergence study. In the case of frag-
mentation, convergence can either concern the num-
ber of fragments or the distribution of fragment sizes.
Reaching convergence may, however, be technically
challenging since fine meshes are usually required to
capture the smallest fragments. We benefit from the
efficiency of the parallel implementation that the for-
mulation detailed in Sect. 2 provides. Running simu-
lations on many processors allows us to increase the
degrees of freedom significantly and obtain converged
results at high strain rates (up to 10°/s).

A plate made of aluminum oxide AD-995 with
nearly no defects (Mat. 11 in Table 1) is meshed with
8,000-6,000,000 degrees of freedom. We compute the
average fragment size and distribution of fragment
masses. Figure 3 displays the evolution of the num-
ber of fragments with degrees of freedom, obtained for
¢ = 10*s™!, in two cases: with and without dust. In
the absence of a clear physical definition, we name
dust the fragments composed of one or two tetrahedra.
This elimination prevents the element size from dic-
tating the regular fragment size and allows a compar-
ison with experimental results, since techniques used
to measure fragment sizes have a minimum size that
can be resolved. Although the chosen definition of dust
is entirely dependent on the mesh size, we observed
that dust amounts to a negligible (and vanishing, for
increasingly fine meshes) volume fraction. The curves
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in Fig. 3 first increase rapidly and linearly, implying
that every edge of the mesh is at least damaged. Then,
they slightly decrease until reaching their final value.
Some edges of the mesh are broken, others are dam-
aged or intact. Convergence in terms of number of frag-
ments is thus achieved for meshes with at least 200,000
degrees of freedom. To the best of our knowledge, con-
vergence has been reached in one dimension (Molinari
et al. 2007), but this is the first attempt of fragment
convergence in three dimensions.

Besides, distribution of fragment masses can also be
made independent from the mesh if dust is neglected.
Figure 4 plots the inverse of the cumulative density func-
tion of the normalized fragment masses in two cases:
accounting for all the fragments, and neglecting dust.
Note that, in Fig. 4, the x-axis involves the average frag-
mentmass in order tocompare only the shape of distribu-
tion of fragment mass (and not the number of fragments,
already shown previously). When dust is included in
the statistics, the curves do not superimpose, whereas
they are very close and show stronger scaling if dust is
neglected. This observation suggests that the shape of
the distribution of fragment masses is substantially more
sensitive to dust than to mesh fineness.

In summary, for fine enough meshes, the number of
fragments and the shape of the fragment mass distri-
bution are independent from the number of degrees of
freedom. All the results that will be presented in the
following sections were computed on sufficiently fine
meshes, to obtain converged values. Note that the criti-
cal mesh size for convergence is function of strain rate
(i.e. number of degrees of freedom increases with strain
rate).

5 Evolution of the average fragment size
with strain rate

A series of simulations was conducted to confirm the
1D result that material parameters strongly influence
the fragmentation behavior (Zhou et al. 2006b). Table 1
shows the set of material parameters investigated. Fig-
ure 5 shows the average fragment size s,,¢, (computed
without dust) for several strain rates. It exhibits an obvi-
ous dependence with respect to both strain rate and
material parameters.

In this section, we investigate if there exists a way
of scaling these scattered points in order to gather them
into a representative curve. We define the normalized
strain rate and the normalized average fragment size:
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Fig. 3 Evolution of the 700 -
number of fragments with All computed fragments
the degrees of freedom, for w 07
; b 104 o1 =
the strain rate ¢ = 10™ s S 500 4
£
o
g 4004
-
© 300 1 !
3 - Neglecting dust-like fragments
£ 200 - -
=]
P-4
100 -
0L+ . S e . S e . e
1e+04 1e+05 1e+06 1e+07
Degrees of freedom
Fig. 4 Inverse of the With dust Without dust
cumulative density function 1 T~ . 4 1
of the fragment mass in two - dof =6.10
cases: with and without 08 1 dof = 600.10% 0.8
accounting for dust
(fragments composed of one 06 4 06 ddof = 376104
or two tetrahedra). The "-g ’ dof = 375.10 5 o= 375 dof = 150.104
x-axis is normalized by the - ,“_’
average fragment mass- %47 dof = 150.10% %47 dof=6.104
Strain rate is £ = 10*s~!
0.2 0.2
dof = 600.10 4 \
0 T T T 0 T T e .
0.001 0.01 0.1 1 10 0.1 1 10
m/m aver m/m aver
Fig. 5 Average fragment
size evolving with strain
rate in log-log axes. Nine
materials are fragmented
over the range & = 103 s~!
toé = 10°s~!, and two 10°3
materials are fragmented 'é‘ ]
over the range ¢ = 10s~! to — ~-Mat.6
¢ = 10° s~!. Material - *+Mat2 -+-Mat.7
o g -+Mat.3 -—+Mat.8
parameters are detailed in = +~Mat.d +-Mato
. m . .
Table 1. Note that we dld. +~Mat.5 -=-Mat.10
not report data for all strain +—Mat.11
rates and all materials, as we :
could not achieve numerical
convergence for all cases on o
our commodity cluster . : : : .
Y 10! 102 103 10° 10°
Strain rate (s™)
T & - Saver oY ¢ G. E
€= and § = —— (12) beh = —5— and sop = — (13)
ch Sch E- G, (o

where &, is the characteristic strain rate and s, is the
characteristic fragment size. Initially, ¢.;, and s., were
derived for homogeneous materials with unique cohe-
sive strength o, (Drugan 2001; Zhou et al. 2006b):

These characteristic quantities reveal the relative imp-
ortance of material properties. For instance, the cohe-
sive strength influences strongly the characteristic
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- Mat.1 -+ Mat.6
= Mat.2 - Mat.7
-+ Mat.3 -+ Mat.8
-+ Mat.4 -+Mat.9
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Levy and Molinari's law

o
(empirical, heterogeneous ring) /
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Fig. 6 Normalized average @
fragment size 5 function of ‘0 Grady's law
{‘(;’gnllggzede:t%g‘ I;g;er_;;n 'E (theoretical, energy-based)
—. XES. 1 1 J
of the present results to g 10
Grady’s, Levy and o
Molinari’s, and Glenn and b
Chudnovsky’s models. The % e —
scaling is defined by Eq. 15 o
g 109
© Glenn and Chudnovsky's law
% (theoretical, energy-based)
N
®
E
o 10t :
= 104 10°

strain rate, as it appears to the power three in its defi-
nition.

Predictions of the average fragment size for such
homogeneous materials have been proposed by Grady
(1982) and Glenn and Chudnovsky (1986), who based
their models on energy balance arguments. In his key
paper (Grady 1982), by equating local kinetic energy
and fracture energy, Grady establishes a general expres-
sion of the fragment’s characteristic length scale in
dynamics. In two dimensions, it is:

24\ /3
SGr = (Tz) (14)
€

Glenn and Chudnovsky (1986) generalized Grady’s
derivation to quasi-static loadings. Potential energy is
prevailing in quasi-static, whereas kinetic effects are
dominant in dynamics. They wrote the balance between
potential, kinetic, and failure energy at the fragment
scale. It led to an analytical expression of the average
fragment size whose representative curve is displayed
in Fig. 6.

Recently, using expanding ring numerical tests,
Levy and Molinari (2010) generalized these expres-
sions to heterogenous materials:

O aver € G E
—— and s; =

E 2 GC g,aver
where o, 4yer 15 the average of the cohesive strengths.
The function f(defects) is a semi-empirical function,
expressed as the product of two independent functions
f1 and f>. The first function fj is associated with the
shape of the cohesive strength distribution. It quanti-
fies the effect of stress wave interactions. For instance,

Ech = f(defects) (15)
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when the left tail has an infinite slope (such as the
uniform distribution), numerous cracks initiate simul-
taneously when the stress reaches the weakest link’s
strength o, ;. This leads to a rapid response during
which stress waves barely interact; many fragments are
generated independently. On the contrary, when the left
tail has a null slope (such as the normal distribution),
cracks are initiated smoothly, one after the other. Stress
waves have time to interact and to release the struc-
ture; fewer fragments are generated. Therefore, simi-
larly as the fragment size s.;,, which is inversely pro-
portional to the number of fragments, f} is a decreasing
function of the left tail’s slope of the cohesive strength
distribution. Empirical arguments have shown that f;
ranges between 1 and +/2 (Levy and Molinari 2010).
The second function f5 is a decreasing function of the
ratio between 0 gver — O¢,min and O¢ aver, and ranges
between 0 and 1. It quantifies the amount of break-
able defects. Given the peak stress o peqk, the maxi-
mum number of defects that may break is the proba-
bility of finding a cohesive strength smaller than peak
stress times the number of defects. For instance, while
peak stress remains lower than o¢ 4ye,, two distribu-
tions with the same o, 4, may not result in the same
number of fragments. Distributions with large standard
deviation may generate many small fragments because
they contain more breakable defects. Hence, f>, and
a fortiori 5.y, are decreasing with o, gver — O¢. min. 1O
summarize, the function f(defects) conveys the idea
that variations of the tail of the left slope of the distri-
bution of cohesive strengths yield distinct fragmenta-
tion behavior, and that the minimum and the average
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cohesive strengths constrain the maximum number of
breakable defects.

Levy and Molinari (2010) proposed a unique empir-
ical law to describe the evolution of the normalized
average fragment size with normalized strain rate for
one-dimensional fragmentation:

_ 3
T ka5 e (16)

Figure 6 displays these three models, along with
numerical results for the plate under biaxial tension.
The scaling defined in one-dimension brings all the
computed values into areasonably narrow range. While
the fit is not perfect, we find interesting that a simple
one-dimensional model can capture the global trend of
a wide range of two-dimensional fragmentation results,
in which crack propagation and branching mechanisms
play arole. Hence, the present numerical study extends
the validity of Eq. 15 to quasi two-dimensional frag-
mentation of heterogeneous materials subjected to ten-
sile loadings.

By contrast, our computed values do not precisely
follow energetic estimates. Apart from the fact that we
recover the —2/3 power law exponent (Eq. 14), Fig. 6
highlights significant differences. In quasi-statics, the
average fragment size is about twice Glenn and Chud-
novsky’s predictions (Glenn and Chudnovsky 1986),
whereas it is lower by a factor of two than Grady’s
characteristic size in dynamics. These major differ-
ences are due to energetic and dynamics effects. Exper-
imental evidence (Grady and Kipp 1995) suggests that
Grady’s prediction overestimates the actual fragment
size, therefore confirming our numerical simulations.

In the following, we describe the physical mecha-
nisms governing the low and high strain rate responses,
and emphasize the main reasons why energy models do
not predict the average fragment size as accurately as
numerical simulations.

6 Strength and toughness controlled regimes
6.1 Some limitations of the energy balance arguments

Let us first derive the basic energy arguments, based
on Grady’s and Glenn and Chudnovsky’s interpreta-
tions. A fragment is supposed to be square-shaped with
dimension s. We assume linearity before failure. At the
time of failure, the stress within the fragment is 6 peqk
and the associated volumetric energies are:

211
2
(o
peak
= 17
€pot E (17)
p &2 52
€kin = —5 (18)
2G
er = —= (19)
S

€pot» €kin and er are respectively the volumetric poten-
tial, kinetic, and failure energies.

At low strain rates, kinetic energy is negligible.
Potential energy prevails, and the size of the fragment
is:

4 G.E
€pot =€r = SQ§ = — < (20)
O-peak

By contrast, at high strain rates, potential energy
is negligible, and kinetic energy controls the process.
Fragment size is the one derived by Grady in Eq. 14:

24 Gc)l/ }
p &2

€kin = er = Spy = ( (2D
The transition between the quasi-static and the
dynamic regimes occurs at the strain rate ¢7 g such that:

. 3 c:;’?eak ¢

Spy =Sgs = €rg = \/;EZ—GC (22)

érr defines the limit between the quasi-static and
the dynamic regimes, that are respectively governed
by potential and kinetic energies. One should note the
correspondences with the scaling parameters defined in
Sect. 5. The characteristic strain rate €., is proportional
to €7g, and the characteristic size s.; has a form close
to sps. Relations 20 and 21 thus constitute a physical
interpretation of the scaling.

To verify whether these expressions are valid, we
compare them to numerical simulations. Figure 7a rep-
resents the evolution of the average fragment size with
strain rate for materials Mat. 1 and Mat. 9 (see Table 1),
along with the theoretical sizes sgs and spy. To get a
plot independent of material parameters, we normal-
ize the strain rate by €7r, and the fragment size by
sos. Figure 7 underlines that the energy arguments pro-
vide good general trends. However, they do not pre-
dict accurately the value of transition £€7g, and the
average fragment size sgyer: at low strain rates, we
compute Sqper > Sps, Whereas at high strain rates,

Saver < Spy. More precisely, for the specific example
displayed in Fig. 7, we observe that 54y, 2 25095 and
Saver = Spy /2 (Fig. 7b). It suggests that only half of the

potential energy is converted into failure energy at low
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Fig. 7 Fragment sizes
evolving with strain rate in
log-log axes for materials
Mat. 1 and Mat. 9 (Table 1).
Saver 18 the computed
average fragment size, sgg
and spy are the theoretical
quasi-static and dynamic
sizes. a Energy models only
provide trends. b With
adequate rescaling of sgg
and spy, we can infer the
proportion of energy used in
failure
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strain rates, and that four times the local kinetic energy
is consumed in failure at high strain rates. It appears that
another source of energy provides additional energy to
complete fragmentation. These observations underline
the limitations of the energy arguments. The physical
mechanisms involved in energy transfers are more com-
plex than simple energy conversions. Numerical sim-
ulations have the ability to track the time evolution of
the energies, and allow us to access more details. In
the following section, we explain the origins of these
limitations raised by energy models, and describe qual-
itatively the energetic and dynamic processes involved
in fragmentation.

6.2 Physical mechanisms underlying energy transfers
in fragmentation

The energy transfers described previously involve two
fundamental assumptions: the input energy (kinetic or
potential) is fully consumed in failure, and the energy
transfers only occur at the fragment scale. The first
argument implies that, once a fragment is generated,
it has a rigid body motion and does not vibrate elasti-
cally, which is not necessarily true. The second argu-
ment infers that failure appears instantaneously and
the absence of interactions. Indeed, in Eqgs. 17-22,
fragment scale is assumed independent from structure
scale; the equations are written in the fragment refer-
ence frame. The energy contained in a fragment only
depends on its size and the value of peak stress at
failure time. However, there exists an external source
of energy, originating from energy exchanges between
the forming fragments and the plate, and occurring dur-
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ing the fragmentation process. While cracks propagate
and while a fragment is not fully created, it accumulates
additional energy, which should appear in the energy
balance. From our simulations, it is clear that fragmen-
tation is not an instantaneous process and that dynamic
effects play a key role.

Figure 8a, c display the time evolution of potential,
kinetic, and failure energies contained in the entire plate
at strain rates £ = 100s~! and ¢ = 10° s~! for mate-
rial Mat. 9 (see Table 1). They are typical responses
at low and high strain rates, and involve very distinct
mechanisms.

In both plots, since the material is elastic, potential
energy first increases quadratically with time. Mean-
while, kinetic energy is constant and cohesive energy
remains null. It corresponds to the loading phase.
Then, stress is high enough (compared to the cohe-
sive strengths) and failure initiates. In the failure phase,
cohesive and kinetic energy increase, whereas potential
energy decreases. In comparison to the loading phase,
the duration of the failure phase may vary significantly,
depending on the strain rate. This results in very distinct
responses.

At low strain rates (Fig. 8a), the loading phase is
much longer than the failure phase. Energy variations
after peak stress occur very briefly. When the load-
ing is quasi-static, fragmentation is a highly dynamic
process. Stress waves propagate very fast compared
to the body motion and release quickly the structure.
An extensive network of stress wave interactions estab-
lishes (Chambart et al. 2011), and the plate undergoes
arapid and chaotic fragmentation process. The instan-
taneity assumption made in energy models, is thus
acceptable. However, the assumption which states that
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Fig. 8 Time evolution of
the volumetric energies for
material Mat. 9 (Table 1).
Left scale is associated to
volumetric potential e,
and volumetric cohesive er
energies, while right scale is
associated to volumetric
kinetic energy e;,. Strain
rateisaé = 100s~ 1, b
zoom on the 5-7 ps of figure
(a), and (¢) £ = 109 s~!
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potential energy is fully converted into failure energy, is
not verified. While it is true that failure energy mainly
stems from potential energy and that the conversion
is rapid, as highlighted by Fig. 8a, potential energy is
not fully employed in failure. It is also used to accel-
erate the fragments and increase their kinetic energies.
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6 6.5 7
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+90.2
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=
=
S
L 89.8 3“.
F89.6
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Therefore, Eq. 20 provides a lower bound of the frag-
ment size. The actual fragment size is necessarily larger
than sps. In summary, when ¢ < £7g, peak potential
energy (which is related to the distribution of cohe-
sive strengths) mainly governs the amount of energy
dissipated in failure. Kinetic energy at failure onset
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is lower than potential energy, and plays a secondary
role in energy conversion processes. The distribution
of cohesive strengths governs the global fragmentation
response. As a result, we state that fragmentation is
strength controlled.

By contrast, at high strain rates (Fig. 8c), the loading
phase is shorter than the failure phase. Failure initia-
tion is influenced by a decrease in potential energy.
However, the drop is not instantaneous, as assumed in
the energy models. Fragmentation is a time dependent
process. The reason for this lies in the ratio between
stress wave velocity and material velocity (that is pro-
portional to the loading rate and the plate dimension).
Since they are initiated almost simultaneously, defects
barely undergo any stress wave effect. The stress field
evolves smoothly leading to few stress wave interac-
tions that grow independently from each other. The
fragmentation process continues until stress is low
enough everywhere (at least smaller than the minimum
cohesive strength). Then, the energy involved in failure
has released the plate from further damage evolution,
and failure is completed. Moreover, it is obvious from
Fig. 8c that peak potential energy is not high enough
to provide this failure energy. An additional conver-
sion of energy takes place: kinetic energy is indirectly
employed. It is used to stretch the plate, while cracks
continue growing, and potential energy is constantly
supplied. Since this second conversion requires time to
occur, energy models do not take it into account. As
a result, they underestimate fragment size. The aver-
age fragment size that we have computed confirms this
interpretation (Fig. 7a, b). Therefore, when ¢ > &g,
the governing mechanism is related to the amount of
energy dissipated in each microcrack, and not to the
cohesive strengths values. We call it the toughness con-
trolled regime.

7 Conclusion

We simulated the fragmentation of a thin plate sub-
jected to biaxial tension, for a wide range of strain
rates. A hybrid numerical framework, coupling discon-
tinuous Galerkin and cohesive approaches, has been
used. In the context of fragmentation, the main advan-
tage of the discontinuous Galerkin framework is its
ability to handle naturally discontinuities like frac-
ture lines, and to be easily parallelized. Cohesive ele-
ments are activated dynamically, as soon as local stress
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reaches the cohesive strength. By defining Weibull
distributions of cohesive strengths, we modeled the
micro-structural heterogeneity of the material. Vary-
ing the parameters used in the material parameters
(Young’s modulus, volumetric mass, toughness, mini-
mum cohesive strength, scale parameter, and Weibull
modulus) allowed us to quantify their influence on
fragmentation. We tackled the issue of convergence
and showed that, for fine enough meshes, the number
of fragments, and the distribution of fragment masses
are independent of the number of degrees of free-
dom.

The study of the average fragment size and its com-
parison to energy models has revealed the prevailing
role of the dynamics of stress waves and energy transfer
in fragmentation. First, we observed that, although the
average fragment size is highly dependent upon mate-
rial parameters, an adequate scaling gathered the scat-
tered responses into a reasonable trend. Also valid in
one-dimension, this general response is characteristic
of the fragmentation of a heterogeneous plate loaded in
biaxial tension. It highlights the limitations of energy
models, as well as the existence of two regimes, the
strength and the toughness controlled regimes. The
transition has been derived analytically as a function
of material properties.

The strength controlled regime occurs at low and
intermediate strain rates. It is dominated by the quasi-
instantaneous conversion of potential energy into failure
energy. The extensive network of stress waves accom-
panies this highly dynamic fragmentation response,
and few fragments are generated. The toughness con-
trolled regime is characterized by a relatively longer
fragmentation response, and occurs at high strain rates.
Since stress waves propagate at a speed close to the
material point velocities, defects barely undergo any
stress wave effect. They do not interact as much with
each other and damage evolves smoothly. Both kinetic
and potential energy are employed in failure. In this
toughness controlled regime, the amount of dissipated
energy prevails, irrespective of the cohesive strengths
values. Future work will extend these energetic con-
siderations to a broader class of loading conditions,
including impacts. Our work also shows the fundamen-
tal need of an experimental database of characteristic
strain rates for brittle materials.
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