Measurement-based Real-Time Optimization of Chemical Processes

This chapter presents recent developments in the field of process optimization. In the presence of uncertainty in the form of plant-model mismatch and process disturbances, the standard model-based optimization techniques might not achieve optimality for the real process or, worse, they might violate some of the process constraints. To avoid constraints violations, a potentially large amount of conservatism is generally introduced, thus leading to sub-optimal performance. Fortunately, process measurements can be used to reduce this sub-optimality, while guaranteeing satisfaction of process constraints. Measurement-based optimization schemes can be classified depending on the way measurements are used to compensate the effect of uncertainty. Three classes of measurement-based real-time optimization methods are discussed and compared. Finally, four representative application problems are presented and solved using some of the proposed real-time optimization schemes.

Pushpavanam, S.
Published in:
Advances in Chemical Engineering, 1-50
Academic Press, Elsevier

Note: The status of this file is: Involved Laboratories Only

 Record created 2012-05-01, last modified 2018-01-28

External links:
Download fulltextURL
Download fulltextn/a
Rate this document:

Rate this document:
(Not yet reviewed)