

Incremental Identification of Reaction Systems Minimal Number of Measurements

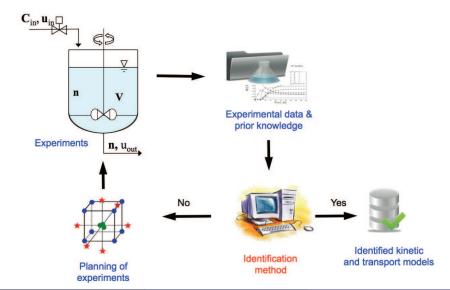
J. Billeter, S. Srinivasan and D. Bonvin Laboratoire d'Automatique EPFL, Lausanne, Switzerland

AIChE Annual Meeting 2012, Pittsburgh, PA

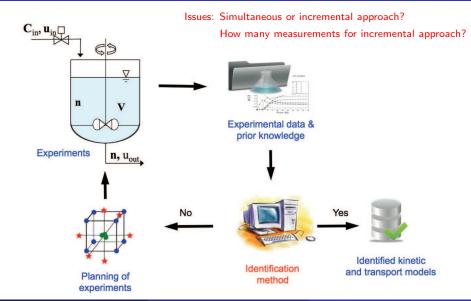
Outline

- Identification of reaction systems from measured data
 - Simultaneous or incremental approach?
 - Number of measurements for incremental identification?
- Minimal state representation
 - Homogeneous w/o outlet (batch, semi-batch) → extents of reaction
 - Homogeneous with outlet → vessel extents of reaction
 - ullet Gas-liquid with outlet o vessel extents of reaction and mass transfer
- Number of measurements for full state reconstruction
 - Gas-liquid reaction system with outlet
- Conclusions

Context – Kinetic investigation Iterative procedure



Context – Kinetic investigation Iterative procedure



Homogeneous reaction systems

Balance equations

Homogeneous reaction system consisting of S species, R independent reactions, p inlet streams, and 1 outlet stream

Mole balances for S species

$$\dot{\mathbf{n}}(t) = \mathbf{N}^{\mathrm{T}} \ V(t) \ \mathbf{r}(t) + \mathbf{W}_{in} \ \mathbf{u}_{in}(t) - \frac{u_{out}(t)}{m(t)} \mathbf{n}(t), \ \mathbf{n}(0) = \mathbf{n}_0$$

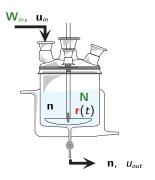
(S)
$$(S \times R)$$
 (R) $(S \times p)$ (p)

Mass m, volume V and molar concentrations \mathbf{c}

$$extit{m}(t) = \mathbf{1}_{\mathsf{S}}^{\scriptscriptstyle \mathrm{T}} \, \mathbf{M}_{\scriptscriptstyle W} \, \mathbf{n}(t), \; \; V(t) = rac{m(t)}{
ho(t)}, \; \; \mathbf{c}(t) = rac{\mathbf{n}(t)}{V(t)}$$

Global macroscopic view

Generally valid regardless of temperature, catalyst, solvent, etc.



Gas-liquid reaction systems

Balance equations

Assumptions

- the gas and liquid phases are homogeneous
- the reactions take place in the liquid bulk only
- no accumulation in the boundary layer

Liquid phase

$$\dot{\mathbf{n}}_{l}(t) = \mathbf{N}^{\mathrm{T}} V_{l}(t) \mathbf{r}(t) + \mathbf{W}_{m,l} \zeta(t) + \mathbf{W}_{in,l} \mathbf{u}_{in,l}(t) - \frac{u_{out,l}(t)}{m_{l}(t)} \mathbf{n}_{l}(t), \quad \mathbf{n}_{l}(0) = \mathbf{n}_{l0}$$

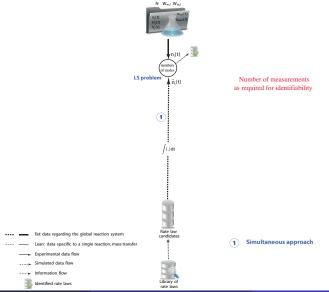
$$(S_{l}) \quad (S_{l} \times R_{l}) \quad (S_{l} \times P_{l}) \quad (P_{l}) \quad (S_{l} \times P_{m}) \quad (P_{m})$$

Gas phase

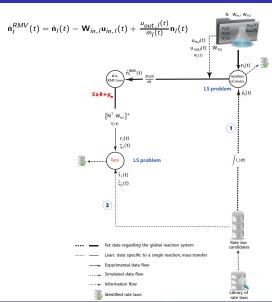
$$\dot{\mathbf{n}}_{g}(t) = -\mathbf{W}_{m,g} \, \boldsymbol{\zeta}(t) + \mathbf{W}_{in,g} \, \mathbf{u}_{in,g}(t) - \frac{u_{out,g}(t)}{m_{g}(t)} \mathbf{n}_{g}(t), \quad \mathbf{n}_{g}(0) = \mathbf{n}_{g0}$$

$$(S_{g}) \quad (S_{g} \times \rho_{g}) \, (\rho_{g}) \quad (S_{g} \times \rho_{m}) \, (\rho_{m})$$

Simultaneous approach



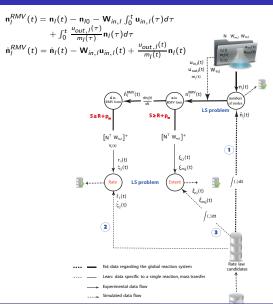
Incremental rate-based approach



at least R + p_m measurements

- Simultaneous approach
- 2 Incremental rate-based approach

Incremental extent-based approach



at least R + p_m measurements

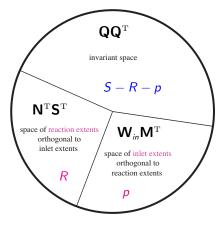
- Simultaneous approach
- 2 Incremental rate-based approach

Outline

- Identification of reaction systems from measured data
 - Simultaneous vs. incremental approach
 - Number of measurements for incremental identification
- Minimal state representation
 - Homogeneous w/o outlet (batch, semi-batch) → extents of reaction
 - Homogeneous with outlet → vessel extents of reaction
 - Gas-liquid with outlet → vessel extents of reaction and mass transfer
- Number of measurements for full state reconstruction
 - Gas-liquid reaction system with outlet
- Application Kinetic Identification
 - Simultaneous approach
 - Incremental approaches
- Conclusions

Homogeneous reaction systems without outlet

Orthogonal spaces in three-way decomposition



S-dimensional space, R + p variants

$$\begin{bmatrix} \mathbf{S}^{\mathrm{T}} \\ \mathbf{M}^{\mathrm{T}} \end{bmatrix} = \begin{bmatrix} \mathbf{N}^{\mathrm{T}} \ \mathbf{W}_{in} \end{bmatrix}^{+}$$

 $oldsymbol{\mathsf{Q}}$ orthogonal to $oldsymbol{\mathsf{N}}^{\mathrm{T}}$ and $oldsymbol{\mathsf{W}}_{\mathit{in}}$

$$\dot{\xi}_{r,i}(t) = V(t) r_i(t) \qquad \xi_{r,i}(0) = 0$$

$$\dot{\xi}_{in,j}(t)=u_{in,j}(t)$$
 $\xi_{in,j}(0)=0$

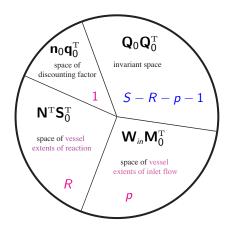
$$\boldsymbol{\xi}_{\scriptscriptstyle iv} = \mathbf{Q}^{\scriptscriptstyle \mathrm{T}} \left(\mathbf{n} - \mathbf{n}_0 \right) = \mathbf{0}_{S-R-p}$$

$$\mathbf{n}(t) = \mathbf{N}^{\scriptscriptstyle\mathrm{T}} \, oldsymbol{\xi}_{\scriptscriptstyle r}(t) + \mathbf{W}_{\scriptscriptstyle in} \, oldsymbol{\xi}_{\scriptscriptstyle in}(t)$$

Amrhein et al. (2010), AIChE Journal, 56(11), 2873-2886.

Homogeneous reaction systems with outlets

Orthogonal spaces in four-way decomposition



S-dimensional space, R + p + 1 variants

$$\begin{bmatrix} \mathbf{S}_0^{\mathrm{T}} \\ \mathbf{M}_0^{\mathrm{T}} \\ \mathbf{q}_0^{\mathrm{T}} \end{bmatrix} = \begin{bmatrix} \mathbf{N}^{\mathrm{T}} \ \mathbf{W}_{\mathit{in}} \ \mathbf{n}_0 \end{bmatrix}^+$$

 $oldsymbol{Q}_0$ orthogonal to $oldsymbol{N}^{\mathrm{T}},~oldsymbol{W}_{\mathit{in}}$ and $oldsymbol{n}_0$

$$\dot{x}_{r,i} = V r_i - \frac{u_{out}}{m} x_{r,i} \quad x_{r,i}(0) = 0$$

$$\dot{x}_{in,j} = u_{in,j} - \frac{u_{out}}{m} x_{in,j} \quad x_{in,j}(0) = 0$$

$$\dot{\lambda} = -\frac{u_{out}}{m} \lambda$$
 $\lambda(0) = 1$

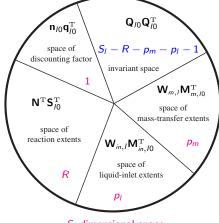
$$\mathbf{x}_{iv} = \mathbf{Q}_0^{\mathrm{T}} \, \mathbf{n} = \mathbf{0}_{S-R-p-1}$$

$$\mathbf{n}(t) = \mathbf{N}^{\mathrm{T}} \, \mathbf{x}_{r}(t) + \mathbf{W}_{in} \, \mathbf{x}_{in}(t) + \mathbf{n}_{0} \, \lambda(t)$$

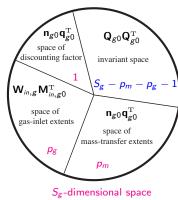
¹ Bhatt et al. (2010), I&EC Research, 49:7704-7717

Gas-liquid reaction systems with outlets

Orthogonal spaces in five-way and four-way decomposition



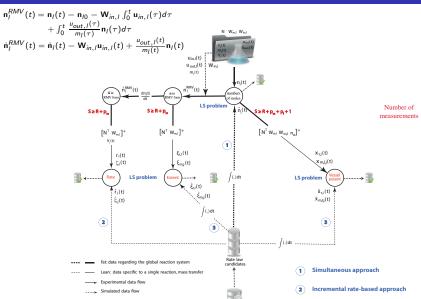
 S_l -dimensional space $R + p_m + p_l + 1$ variants



 $p_m + p_g + 1$ variants

Dimensionality of the dynamic model: $(R + 2p_m + p_l + p_g + 2)$ and not $(S_l + S_g)$ Bhatt et al. (2010), I&EC Research, 49(17), 7704-7717.

Incremental vessel-extent-based approach



Outline

- Identification of reaction systems from measured data
 - Simultaneous vs. incremental approach
 - Number of measurements for incremental identificaion
- Minimal state representation
 - Homogeneous w/o outlet (batch, semi-batch) → extents of reaction
 - ullet Homogeneous with outlet ightarrow vessel extents of reaction
 - \bullet Gas-liquid with outlet \to vessel extents of reaction and mass transfer
- Number of measurements for full state reconstruction
 - Gas-liquid reaction system with outlet
- Conclusions

Number of measurements for full state reconstruction Gas-liquid reaction systems, unknown rate expressions $\mathbf{r}(t)$ and $\zeta(t)$

The idea is to estimate p_{m_g} mass-transfer rates from gas-phase measurements and p_{m_l} from liquid-phase measurements, with $p_{m_g} + p_{m_l} = p_m$

Gas phase

$$\begin{split} &\tilde{\mathbf{n}}_g^{MV}(t) = \mathbf{n}_g(t) - \mathbf{W}_{in,g} \, \mathbf{x}_{in,g}(t) - \mathbf{n}_{g0} \, \lambda_g(t) \\ &\dot{\mathbf{x}}_{in,g} = \mathbf{u}_{in,g} - \frac{u_{out,g}}{m_g} \, \mathbf{x}_{in,g} & \mathbf{x}_{in,g}(0) = \mathbf{0}_{p_g} \\ &\dot{\lambda}_g = -\frac{u_{out,g}}{m_g} \, \lambda_g & \lambda_g(0) = 1 \\ &\mathbf{x}_{m_g,g}(t) = -(\mathbf{W}_{m_g,g})^+ \, \tilde{\mathbf{n}}_g^{MV}(t) \end{split}$$

which requires measurements of p_{m_g} numbers of moles, $\mathbf{u}_{in,g}(t)$ and $u_{out,g}(t)$

Number of measurements for full state reconstruction

Gas-liquid reaction systems, unknown rate expressions $\mathbf{r}(t)$ and $\zeta(t)$

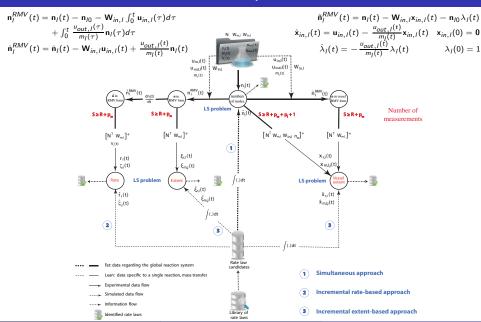
Liquid phase

$$\begin{aligned} \mathbf{x}_{m_g,l}(t) &= \mathbf{x}_{m_g,g}(t) - \delta_{m_g}(t) \\ \dot{\delta}_{m_g} &= -\frac{u_{out,l}}{m_l} \, \delta_{m_g} + \left(\frac{u_{out,l}}{m_l} - \frac{u_{out,g}}{m_g}\right) \mathbf{x}_{m_g} \\ \tilde{\mathbf{n}}_l^{RMV}(t) &= \mathbf{n}_l(t) - \mathbf{W}_{in,l} \, \mathbf{x}_{in,l}(t) - \mathbf{n}_{l0} \, \lambda_l(t) - \mathbf{W}_{m_g,l} \, \mathbf{x}_{m_g,l}(t) \\ \dot{\mathbf{x}}_{in,l} &= \mathbf{u}_{in,l} - \frac{u_{out,l}}{m_l} \, \mathbf{x}_{in,l} \\ \dot{\lambda}_l &= -\frac{u_{out,l}}{m_l} \, \lambda_l \\ \mathbf{x}_{in,l}(0) &= \mathbf{1} \\ \begin{bmatrix} \mathbf{x}_r(t) \\ \mathbf{x}_{r,l}(t) \end{bmatrix} &= \begin{bmatrix} \mathbf{N}^{\mathrm{T}} \ \mathbf{W}_{m_l,l} \end{bmatrix}^{+} \tilde{\mathbf{n}}_l^{RMV}(t) \end{aligned}$$

which requires measurements of $R + p_{m_l}$ numbers of moles, $\mathbf{u}_{in,g}(t)$ and $u_{out,g}(t)$

Total number of measurements

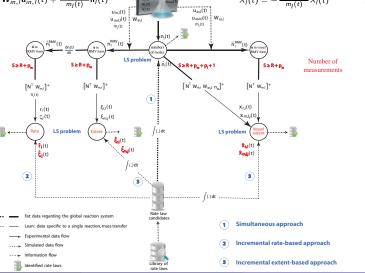
 $R + p_{m_l} + p_{m_e} = R + p_m$ numbers of moles plus the inlet and outlet flows



$$\begin{split} \mathbf{n}_{I}^{RMV}(t) &= \mathbf{n}_{I}(t) - \mathbf{n}_{I0} - \mathbf{W}_{in,I} \int_{0}^{t} \mathbf{u}_{in,I}(\tau) d\tau \\ &+ \int_{0}^{t} \frac{u_{out,I}(\tau)}{m_{I}(\tau)} \mathbf{n}_{I}(\tau) d\tau \\ &+ \int_{0}^{t} \frac{u_{out,I}(\tau)}{m_{I}(\tau)} d\tau \\ &+ \int_{0}^{t} \frac{u_{out,I}($$

Difficulty

Differentiation or integration of noisy and scarce data



Conclusions

- Incremental approaches allow dealing with each rate individually
 - Rate-based approach
 - computation of \mathbf{n}_{l}^{RMV} using flow measurements
 - differentiation of sparse and noisy data
 - requires measurement of $R + p_m$ quantities
 - Extent-based approach
 - ullet computation of \mathbf{n}_{l}^{RMV} using flow measurements
 - ullet requires measurement of $R+p_m$ quantities
 - Vessel-extent-based approach
 - transformation of \mathbf{n}_l requires measurement of $R + p_m + p_l + 1$ quantities
 - ullet computation of ${f n}_I^{RMV}$ requires measurement of $R+p_m$ quantities
- Need for additional measurements
 - Calorimetry, gas consumption
 - Spectroscopic measurements
 - via calibration, calibration-free?