Journal article

A feasibility study of an auxiliary power unit based on a PEM fuel cell for on-board applications

Proton exchange membrane (PEM) fuel cells show characteristics of high power density, low operating temperature, and fast start-up capability, which make them potentially suitable to replace conventional power sources (e.g., internal combustion engines) as auxiliary power units (APU) for on-board applications. This paper presents a methodology for a preliminary investigation on either sizing and operating management of the main components of an on-board power system composed by: (i) PEM fuel cell, (ii) hydrogen storage subsystem, (iii) battery, (iv) grid interface for the connection to an external electrical power source when available, and (v) electrical appliances and auxiliaries installed on the vehicle. A model able to reproduce the typical profiles of electric power requests of on-board appliances and auxiliaries has been implemented in a computer program. The proposed methodology helps also to define the sizing of the various system components and to identify the fuel cell operating sequence, on the basis of the above mentioned load profiles. Copyright © 2006 by ASME.

    Keywords: Computer simulation ; Density (specific gravity) ; Fuel cells ; Low temperature effects ; Mathematical models ; Hydrogen storage subsystem ; On-board applications ; Proton exchange membrane fuel cells ; Auxiliary power systems ; epfl-smartgrids


    University of Bologna, DIEM, viale Risorgimento 2, Bologna 40136, Italy University of Bologna, DIE, viale Risorgimento 2, Bologna 40136, Italy, Cited By (since 1996): 5, Export Date: 25 April 2012, Source: Scopus, doi: 10.1115/1.2349527, Language of Original Document: English, Correspondence Address: Bagnoli, M.; University of Bologna, DIEM, viale Risorgimento 2, Bologna 40136, Italy, References: Bagnoli, M., De Pascale, A., "Performance Evaluation of a Small Size Cogenerative System Based on a PEM Fuel Cell Stack" (2005) GT2005-68451, Proceedings of ASME Turbo Expo 2005, , June 6-9, Reno-Tahoe, NV; (2004) Fuel Cell Handbook, , US Department of Energy, 7th ed., EG&G; Services Parsons, Inc., Morgantown, WV; Brandon, N., Hart, D., (1999) An Introduction to Fuel Cell Technology and Economics, , Imperial College, London; Gunes, M.B., Ellis, M.W., "Evaluation of Fuel Cell Based Combined Heat and Power Systems for Residential Application" (2001) Proc. of 2001 ASME IMECE, , Nov. 11-16, New York, IMECE/AES-23651; Thring, R.H., (2004) Fuel Cells for Automotive Applications, , ASME Press, New York; Bostic, E., Sifer, N., DuBois, T., Bolton, C., "Fuel Cell Systems for the American Warfighter" (2004) J. Fuel Cell Sci. Technol., 1 (1), pp. 1-72


    Record created on 2012-05-01, modified on 2016-08-09


Related material