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Abstract

Polar coding is a new technique introduced by Arıkan [1] based on a phenomenon
called channel polarization. Polar codes are appealing as an error correction method
since they are proved to achieve the symmetric capacity of any B-DMC using low
complexity encoders and decoders, and their block error probability is shown to de-
crease exponentially in the square root of the block length. In fact, two basic channel
transformations lie at the heart of channel polarization. The recursive applications
of these transformations result in channel polarization which refers to the fact that
the channels synthesized in these transformations become in the limit either almost
perfect or completely noisy. This is shown by analyzing channel parameters such as
the symmetric capacity and the Bhattacharya parameter. An important characteris-
tic of polar codes is that they are channel specific codes. For that particular reason,
the channel over which we communicate information should be considered during
the code design. However, the binary erasure channel and the binary symmetric
channel stand out as extremal channels among all B-DMCs in terms of the evolu-
tion of the channel symmetric capacity and the Bhattacharyya parameter under the
basic channel transformations. In this thesis, we generalize this extremality result to
a more general parameter E0(ρ,W ), defined by Gallager [2] as part of the random
coding exponent, for a B-DMC W with uniform input distribution. We show that
the binary erasure channel and the binary symmetric channel are also extremal with
respect to the evolution of the parameter E0(ρ,W ) under the basic channel trans-
formations. Then, we conjecture an inequality between E0(ρ,W ), E0(ρ,W−), and
E0(ρ,W+). In the process, we note that the function E0(ρ,W )/ρ is interpreted as
a general measure of information using Rényi’s entropy functions. Moreover, we
discuss an application on the compound capacity of polar codes under successive
cancellation decoding where the extremality of the binary erasure channel is used
to derive a lower bound. We also provide a discussion on the compound capacity
of linear codes which includes polar codes as sub-class. We show that while linear
codes achieving the compound capacity of symmetric channels exist, the existing
results on the compound capacity of polar codes decoded using a successive cancel-
lation decoder shows that, in general, the compound capacity of symmetric channels
is not achieved by polar codes. In addition, independently of channel polarization,
we undertake a study of another channel property: the random coding exponent in
parametric form. Note that this parametric description is a function of E0(ρ,W )
and the rate R(ρ,W ) = ∂E0(ρ,W )/∂ρ. We extend the binary erasure channel and
the binary symmetric channel extremality result in [3] in terms of E0(ρ,W ) and
the rate R(ρ,W ) to the case where we have different ρ values, i.e., E0(ρ1,W ) and
R(ρ2,W ).
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Chapter 1

Introduction

1.1 Channel Polarization and Polar Codes
Consider the communication scenario described in Figure 1.1 over a binary discrete
memoryless channel (B-DMC) W with binary input alphabet X, output alphabet Y,
and transition probabilities P (y | x) where x ∈ X and y ∈ Y. Given the binary
data sequence Un

1 = U1 . . . Un, the encoder generates the binary input sequence
E(Un

1 ) = Xn
1 = X1 . . . Xn applying a one-to-one transformation G : {0, 1}n →

{0, 1}n and transmits this sequence over W . The decoder receives the channel
output sequence Y n

1 = Y1 . . . Yn, and produces an estimate Û1 . . . Ûn = D(Y n
1 ) of

the initial data. Further, assume that the input data sequence is i.i.d from a binary
uniform distribution. Consequently, the channel input sequence is also i.i.d with
binary uniform distribution, and (X1, Y1), . . . , (Xn, Yn) are i.i.d pairs of random
variables.

- - - -
U1 . . . Un X1 . . . Xn Y1 . . . Yn Û1 . . . ÛnEncoder

E
B-DMC
W

Decoder
D

Figure 1.1: Communication over a B-DMC W .

We want to design the channel encoder and decoder such that information can be
reliably transmitted over the channel. For that purpose, we are interested in the
mutual information between the input data and output sequence. In the case of
a perfect channel, i.e., I(X;Y ) = 1, we would not have to worry about reliable
transmission, and would not need to design a channel encoder and decoder since no
information loss occurs. In the case of a completely noisy channel, i.e., I(X;Y ) =
0, we again would not have to worry since all the information would be lost during
transmission and any design would be to no end. In fact, as we will explain in more
detail, channel polarization refers to these two extreme situations.
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If we assume we make n independent channel uses to transmit information, we
know that

I(Un
1 ;Y n

1 ) = I(Xn
1 ;Y n

1 ) =
n∑
i=1

I(Xi;Yi) = nI(W ) (1.1)

where the symmetric capacity of the channel I(W ) is defined as

I(W ) =
∑
x,y

1

2
P (y | x) log

P (y | x)
1
2P (y | 0) + 1

2P (y | 1)

If we apply the chain rule, we obtain

I(Un
1 ;Y n

1 ) =
n∑
i=1

I(Ui;Y
n

1 | U i−1
1 ) =

n∑
i=1

I(Ui;Y
n

1 U
i−1
1 ) (1.2)

Therefore instead of the n independent channel uses of W , we can consider from
the chain rule perspective n successive uses of the channels W (1,n) . . .W (n,n) given
by the transition probabilities P1(yn1 | u1), . . . , Pn(yn1u

n−1
1 | un), respectively.

Following this observation, channel polarization is defined as the case when each of
the channels W (i,n) for i = 1, . . . , n converges either to a perfect channel or com-
pletely noisy channel. Under this event, we expect the empirical distributions of the
mutual information terms in summation (1.2) to satisfy

1

n
#{i : I(Ui;Y

n
1 U

i−1
1 ) ∈ [1− γ, 1)} −−−→

n→∞
I(W )

1

n
#{i : I(Ui;Y

n
1 U

i−1
1 ) ∈ (0, γ]} −−−→

n→∞
1− I(W )

(1.3)

for any γ ∈ (0, 1).

In [1], Arıkan discovers a recursive process under which the communication chan-
nelsW (i,n) exhibit polarization. The idea is exploited to propose a new coding tech-
nique, called polar codes, which achieves the symmetric capacity of any B-DMC
using a low complexity encoder and decoder. We briefly summarize the process and
the structure of the proposed encoder and decoder for polar codes.

To carry the discussion forward, we first need to introduce another channel pa-
rameter in addition to the symmetric capacity I(W ). The Bhattacharyya parameter
of a channel, denoted as Z(W ), is defined as

Z(W ) =
∑
y∈Y

√
P (y | 0)P (y | 1)

This parameter gives an upper bound to maximum likelihood decoding error prob-
ability of a single use of the channel W . Therefore when treated separately, while
I(W ) stands as a measure of communication rate of the channel, Z(W ) stands as a
measure of reliability. On the other hand, as we will see shortly, these two parame-
ters are used jointly to prove that channel polarization occurs.
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Consider the transformation matrix given as

G =

[
1 0
1 1

]
(1.4)

The corresponding channel configuration is drawn in Figure 1.2 by combining two
independent copies of W .

-
⊕

- -

- -

6

U1

X1
Y1

U2

X2
Y2

W

W

Figure 1.2: Basic channel transformations.

The two successive channels W (1,2) and W (2,2) are characterized by the transforma-
tions W− : X → Y2 and W+ : X → Y2 × X, respectively. Referred as the basic
channel transformations, W− and W+ can be defined by the following transition
probabilities

PW−(y1y2 | u1) =
∑
u2∈X

1

2
P (y1 | u1 ⊕ u2)P (y2 | u2) (1.5)

PW+(y1y2u1 | u2) =
1

2
P (y1 | u1 ⊕ u2)P (y2 | u2) (1.6)

The following properties related to the above transformations are derived in [1]:

1. The mutual information is preserved:

I(W−) + I(W+) = 2I(W )

2. The overall reliability is improved:

Z(W−) + Z(W+) ≤ Z(W )

3. While the channel W+ is improved, the channel W− is worsened:

I(W−) ≤ I(W ) ≤ I(W+)

Z(W−) ≥ Z(W ) ≥ Z(W+)

4. The evolution of Z(W) satisfies

Z(W−) ≤ 2Z(W )− Z(W )2

Z(W+) = Z(W )2

where equality holds in the first line when W is a binary erasure channel.
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5. The following bounds can be derived:

I(W ) + Z(W ) ≥ 1

I(W )2 + Z(W )2 ≤ 1

where equality holds in the first inequality when W is a binary erasure chan-
nel.

6. Given a binary erasure channel WBEC, the channels W−
BEC and W+

BEC are also
binary erasure channels.

The third property confirms that we are in the right way to polarization. The idea
now is to apply the same basic channel transformations to the channels W− and
W+. As a result, four channels W−−, W−+, W+−, and W++ are obtained. How-
ever in general, we are no longer able to compare the parameters of these four chan-
nels in terms of rate and reliability, except the knowledge that the channel W++ is
the best one and the channel W−− is the worst one. Nevertheless, recall that we re-
quire in equations (1.3) convergence to polarized channels with the sequence length.
Hence, we keep applying the transformations to the obtained ± channels. To ana-
lyze the convergence properties of this recursion, the polarization process is defined.

Let (Ω,F, P ) be a probability space. The random sequence B1, . . . , B` is drawn
i.i.d according to a Bernoulli distribution with probabilities equal to 1

2 . Let F` be
the σ-algebra generated by this Bernoulli sequence. Given a channelW , the random
sequence of channels {W`} is defined for ` ≥ 0 as

W` =


W if ` = 0
W−
`−1 if B` = 0

W+
`−1 if B` = 1

In the sequel, the random processes I` = I(W`) and Z` = Z(W`) are defined and
the next properties are proved in [1]:

7. By definition, the properties 1-6 hold for I` and Z` at each `.

8. The process {I`,F`} is a bounded martingale on the interval [0, 1], i.e.,

E[I` | I1, . . . , I`−1] = I(W−
`−1) P

[
I` = I(W−

`−1)
]

+ I(W+
`−1) P

[
I` = I(W+

`−1)
]

= I`

9. The process {Z`,F`} is a bounded supermartingale on the interval [0, 1], i.e.,

E[Z` | Z1, . . . , Z`−1] = Z(W−
`−1) P

[
Z` = Z(W−

`−1)
]

+ Z(W+
`−1) P

[
Z` = Z(W+

`−1)
]

≤ Z`

10. The process {Z`,F`} converges a.s. to a {0, 1} valued random variable Z∞
since

E[|Z`+1 − Z`|] −−−→
`→∞

0 & P
[
Z`+1 = Z2

`

]
=

1

2

⇒ E[|Z`+1 − Z`|] ≥
1

2
E[|Z` (1− Z`)|] −−−→

`→∞
0

9



11. The process {I`,F`} converges a.s. to a random variable I∞ such that

E[|I∞|] = I0

where I∞ takes values a.s in {0, 1} since

I` + Z` ≥ 1 & I2
` + Z2

` ≤ 1 & Z∞ ∈ {0, 1}
⇒ I∞ + Z∞ = 1

The last property proves that the recursive application of the basic channel transfor-
mations lead to channel polarization. The next theorem states this result.

Theorem 1.1. [1] For any B-DMC W , the sequence of channels {W`} polarizes
such that

1

2`
#{i : I(W (i,2`)) ∈ [1− γ, 1)} −−−→

`→∞
I(W )

1

2`
#{i : I(W (i,2`)) ∈ (0, γ]} −−−→

`→∞
1− I(W )

for fixed γ ∈ (0, 1) and i = 1, . . . , 2`.

Using the idea of channel polarization, polar codes are proposed as a new coding
technique. Namely, a polar code (N , R) of block length N and rate R commu-
nicates information only on the bNRc good channels whose mutual information
values are close to 1 among all the synthesized W (i,N) channels with i = 1, . . . , N ,
and simply transmits randomly fixed bits known to both the encoder and decoder
over the other bad channels. We explain the details on how polar codes can be con-
structed in the next section. Below, we first summarize the structure of the proposed
channel encoder and decoder and the expected code performance [1].

Encoder:

12. The recursion can be applied through the channel transformation matrix

GN = G⊗N

where ⊗ denotes the Kronecker product and G is defined in (1.4). Given the
data sequence uN1 , the input sequence xN1 is computed from

xN1 = uN1 BNGN

where BN is a permutation matrix known as bit-reversal.

13. Depending on the direction of polarization of the channels, the data sequence
u1 . . . uN indexes are split into two sets before transmission. The first one
includes the indexes of the data to be transmitted on the good channels, and
is referred as the information set AN . The remaining one is the set Ac

N of the
indexes corresponding to the frozen bits to be transmitted on the bad channels.
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14. For symmetric channels the frozen bits can be selected in a deterministic way
as they don’t affect the code performance.

15. The above encoder can be implemented in Θ(N logN) complexity.

Decoder:

16. We want to decode the output of the N channels defined by the transition
probabilities P1(yN1 | u1), . . . , PN(yN1 u

n−1
1 | uN). Therefore, we can see that

to estimate the channel input ûi in this chain we need the correct estimates
û1, . . . , ûi−1 of the previous channel inputs. This form suggests the use of a
successive cancellation decoder.

17. Arıkan proposes a similar decision rule to maximum likelihood decoder for
the non-frozen bits

D(yN1 , u
i−1
1 ) =

 0 if Pi(y
N
1 u

i−1
1 | 0)

Pi(y
N
1 u

i−1
1 | 1)

≥ 1

1 otherwise

For the frozen bits, the decoder can directly set them since their values are
already available.

18. The successive cancellation decoder using the above decision rule can be im-
plemented in Θ(N logN) complexity.

Code Performance:

19. Let Pe(N,R) denotes the best achievable block error probability under suc-
cessive cancellation decoding over the ensemble of all possible choices of the
set Ac

N . Then,
Pe(N,R) ≤

∑
i∈AN

Z(W (i,N)) (1.7)

1.2 Project Motivation

Although channel polarization does occur and polar codes achieving the symmetric
capacity of any B-DMC can be implemented using low complexity encoders and
decoders, the rate of polarization is crucial to make polar codes part of any real
application. We need to ensure that channel polarization takes place fast enough as,
in practice, the performance of polar codes with finite block lengths are important.
We first state the best result known on the rate of channel polarization.

Theorem 1.2. [4] Given any rate R ≥ 0 such that R ≤ I(W ) and a constant
β ≤ 1

2 , consider the polar code (N , R) of block length N . Then,

Pe(N,R) = Θ(2−N
β

) (1.8)
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A closely tied problem to the rate of channel polarization is the polar code construc-
tion problem. In property 13, we defined the information set AN . In fact, polar code
construction is nothing but the choice of the indexes in this set. For a fixed block
length N , Arıkan suggests to construct polar codes such that the error probability
expression in (1.7) is minimized for a given threshold η ∈ (0, 1). More precisely,

AN(W, η) = {i : Z(W (i,N)) ≤ η} (1.9)

We know how to compute the Z(W (i,N)) efficiently only when we have a binary
erasure channel. However, by the equality condition mentioned in property 4, we
see that the binary erasure channel gives an upper bound to the Bhattacharyya pa-
rameters obtained after applying one level of the recursion for a fixed value of the
Bhattacharyya parameter. Moreover, from to the statement of property 6, we know
that a binary erasure channel remains so after any level of the recursion. Hence, we
deduce that the binary erasure channel WBEC represents an extremal channel among
all B-DMC’s. Given Z(W ) = Z(WBEC), the parameters Z(W (i,N)) can be upper
bounded as

Z(W (i,N)) ≤ Z(W
(i,N)
BEC ) ∀ i = 1, . . . , N

and consequently,
AN(WBEC, η) ⊆ AN(W, η)

Similarly, one can show that the binary symmetric channel WBSC gives a lower
bound to the Bhattacharyya parameters of the channels after applying one level of
the recursion. When Z(W ) = Z(WBSC), we have

Z(W
(i,2)
BSC ) ≤ Z(W (i,2)) for i = 1, 2

Given a binary symmetric channel WBSC, while the channel W−
BSC is a binary sym-

metric channel, the channel W+
BSC is not. Hence at this point, we don’t reach an

extremality result as strong as the binary erasure channel’s one.

To sum up, these attribute special importance to the binary erasure channel and
the binary symmetric channel in the design of polar codes. For instance in [5],
Arıkan carries a performance comparison with Reed-Muller codes by using polar
codes over binary erasure channels.

On the other hand, we know that I(W ) and Z(W ) can be used interchangeably
to state arguments about polar codes. By intuition, we suspect other channel pa-
rameters might be helpful to better understand polar codes. For that reason, the
function E0(ρ,W ) defined by Gallager [2] as a part of the random coding exponent
draw our attention. Both the random coding exponent and E0(ρ,W ) can be viewed
as more general channel parameters. Actually, I(W ) and Z(W ) can be derived as
special cases of E0(ρ,W ):

• I(W ) is the slope of the function E0(ρ,W ) evaluated at ρ = 0.

• E0(ρ,W )|ρ=1 = log 2
1 + Z(W )

12



Following all these observations, the main motivation behind this project is to study
the behavior of E0(ρ,W ) and the random coding exponent from the aspect of po-
larization and polar codes. For that purpose, we analyze their properties and we
inquire how E0(ρ,W ) is affected by the basic channel transformations. In Theo-
rem 4.5 and Theorem 4.6, we show that the binary erasure channel and the binary
symmetric channel are also extremal in the evolution of E0(ρ,W ) under the basic
channel transformations.

To further motivate this work with an application, we provide a discussion related
to the compound capacity of polar codes. A recent work [6] on this subject for-
malize upper and lower bounds on this capacity. The lower bound is based on the
same idea that among all polarization processes Zn with a given initial value of the
Bhattacharyya parameter, the process corresponding to the binary erasure channel
is extremal and constitutes an upper bound to all other processes. This applica-
tion is introduced as an evidence on the importance of the extremal property related
to the Bhattacharyya parameter. As in this application, we believe the extremality
relations we derive for E0(ρ,W ) might be used to arrive at new results on polar
codes.

1.3 Thesis Outline
In Chapter 2, we give a formal definition of the random coding exponent and the
functionE0(ρ,W ). Then, we summarize their properties and mention an alternative
description of the functionE0(ρ,W ) in terms of Rényi’s entropy functions. We also
provide two applications in information theory.

In Chapter 3, we discuss the compound capacity of symmetric channels. We pro-
vide a similar proof to the Shannon’s proof of the random coding theorem, and
based on this proof, we show that linear codes achieving this compound capacity
exist. Subsequently, we explain existing upper and lower bounds on the compound
capacity of polar codes.

In Chapter 4, we present the main results. We explore the evolution ofE0(ρ,W ) un-
der the basic channel transformations in detail. We show that for a given E0(ρ,W ),
the binary erasure channel and the binary symmetric channel are extremal with re-
spect toE0(ρ,W−), andE0(ρ,W+). Then, we describeE0(ρ,W−) andE0(ρ,W+)
in terms of Rényi’s entropy functions. Based on this representation, we conjecture
an inequality between E0(ρ,W ), E0(ρ,W−), and E0(ρ,W+). Lastly in Section
4.4, independent of channel polarization, we search for more cases where the bi-
nary erasure channel and the binary symmetric channel are extremal.

Finally, we conclude the thesis with some ideas about future work on this topic.

13



Chapter 2

Random Coding Exponent and E0

In this chapter, we discuss the random coding exponent, denoted as Er(R), and
the function E0 which is essential in its characterization. We start with the mathe-
matical definition. Then, we summarize the properties and identify the connections
with channel polarization and polar codes. We introduce a result by Arıkan and
Telatar [3], which reveals that the binary erasure channel and the binary symmetric
channel are Er(R) extremal. We also provide an alternative description of E0 that
uses Rényi’s entropy functions. These constitute an important basis for the work we
present in Chapter 4. Finally, we conclude this chapter by two applications where
Er(R) and E0 appear. The first one, due to Gallager [2], is in the upper bound to
block error probability used to prove the well-known channel coding theorem. The
second one, due to Arıkan [7], is in the lower bound to computational complexity
of sequential decoding.

2.1 Definition and Properties
Definition 2.1. [2] Let a discrete memoryless channel W with input random vari-
able X ∼ Q(x) and output random variable Y have input alphabet X, output alpha-
bet Y, and transition probabilities P (y | x) where x ∈ X and y ∈ Y. Consider the
function Er(R,Q) defined as

Er(R,Q) = max
ρ∈[0,1]

{E0(ρ,Q)− ρR}

where

E0(ρ,Q) = − log
∑
y∈Y

[∑
x∈X

Q(x)P (y | x)
1

1+ρ

]1+ρ

(2.1)

Then, the random coding exponent is defined as

Er(R) = max
Q

Er(R,Q) (2.2)

From the above construction, we see that the function E0(ρ,Q) is central in the be-
havior of the random coding exponent. Before we introduce the properties, we first
restrict the analysis to inputs with binary uniform distribution to be consistent with
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the basic channel transformations we defined in (1.5) and (1.6). This is reflected
in the above notations by replacing Q → W to emphasize the dependence on the
channel. Therefore we are no longer interested in the maximization in (2.2), and the
equation in (2.1) becomes

E0(ρ,W ) = − log
∑
y∈Y

[
1

2
P (y | 0)

1
1+ρ +

1

2
P (y | 1)

1
1+ρ

]1+ρ

(2.3)

Figure 2.1 shows the E0(ρ,W ) versus ρ curves of a binary erasure channel (BEC)
and a binary symmetric channel (BSC).

1
Ρ

EoHΡ, WL

BSC

BEC

Figure 2.1: E0(ρ,W ) vs ρ plot for BEC and BSC with I(W ) = 0.5.

Theorem 5.6.3 in [2] summarizes the properties of E0(ρ,W ) with respect to the
variable ρ. For ρ ≥ 0, E0(ρ,W ) is a positive, concave increasing function in ρ.
Moreover, one can easily derive the following relationships which show how the
parameters I(W ) and Z(W ) are related to E0(ρ,W ):

• E0(ρ,W )
∣∣∣
ρ=0

= 0

• E0(ρ,W )
∣∣∣
ρ=1

= log 2
1 + Z(W )

⇒ Z(W ) = 2× 2
−E0(ρ,W )

ρ

∣∣∣
ρ=1 − 1

• ∂
∂ρ
E0(ρ,W )

∣∣∣
ρ=0

= I(W ) ⇒ E0(ρ,W )

ρ

∣∣∣
ρ=0

= I(W )

By the concavity of the function E0(ρ,W ), for R in the range

∂E0(ρ,W )

∂ρ

∣∣∣
ρ=1
≤ R ≤ ∂E0(ρ,W )

∂ρ

∣∣∣
ρ=0

the maximization of Er(R,W ) over ρ ∈ [0, 1] can be described in terms of the
following parametric equations

R(ρ,W ) =
∂

∂ρ
E0(ρ,W )

Er(ρ,W ) = E0(ρ,W )− ρ ∂
∂ρ
E0(ρ,W )

(2.4)
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Theorem 5.6.4 in [2] formalizes the properties of Er(R,W ) and provides a graph-
ical interpretation of the Er(R,W ) versus R(ρ,W ) curve. For each value of ρ ∈
[0, 1], R = R(ρ,W ) is a constant and the Er(R,W ) versus R plot is a line with
slope−ρwhich intersects theEr(R,W ) axis atE0(ρ,W ). Therefore, theEr(R,W )
curve can be generated as the lowest upper bound to all the lines plotted at each
ρ ∈ [0, 1]. As a result, Er(R,W ) is a positive, convex decreasing function in R for
any given B-DMC W .

On the other hand, another interesting property of both E0(ρ,W ) and Er(ρ,W )
with respect to the channelW is pointed in [3]. The authors show that given a chan-
nel W , a binary erasure channel WBEC, and a binary symmetric channel WBSC with
the same rate, i.e., such that the equality

R(ρ,W ) = R(ρ,WBEC) = R(ρ,WBSC)

holds for a fixed value of ρ ∈ [0, 1], then

E0(ρ,WBEC) ≤ E0(ρ,W ) ≤ E0(ρ,WBSC)

Er(ρ,WBEC) ≤ Er(ρ,W ) ≤ Er(ρ,WBSC)

The proof follows from the fact that, for a fixed ρ value, one can write R(ρ,W )
and exp{E0(ρ,W )} as the expected value of functions of a random variable taking
values in [0, 1]. In fact, the binary erasure channel whose variable takes only the
extremal values {0, 1} and the binary symmetric channel whose variable takes a
constant value are special cases of this random variable. Then, a convexity analysis
combined with the Jensen’s inequalities lead to the final result.

Figures 2.2 and 2.3 show theE0(ρ,W ) versusR(ρ,W ) andEr(R,W ) versusR(ρ,W )
curves, respectively, of a binary erasure channel and a binary symmetric channel
parametrized in terms of their channel parameters for a fixed value of ρ.

2.2 E0 Description by Rényi’s Entropy Functions
The previous section revealed that the symmetric capacity I(W ) and the Bhat-
tacharyya parameter Z(W ) can be derived from the function E0(ρ,W )/ρ evaluated
on the limit ρ → 0 and at ρ = 1, respectively. In this section, we provide an alter-
native description of E0(ρ,W )/ρ using the concept of Rényi’s entropy functions.
The importance lies in the fact that this gives an interpretation to E0(ρ,W )/ρ as a
general measure of information.

Rényi’s entropy function of order α of a discrete random variable X ∼ P (x) is
defined in [8] as

Hα(X) =
α

1− α
log

(∑
x

P (x)α

) 1
α
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Figure 2.2: Parametric E0(ρ,W ) vs R(ρ,W ) curve for BEC and BSC with fixed ρ

1
RHΡ, WL

ErHΡ, WL

BSC

BEC

Figure 2.3: Parametric Er(ρ,W ) vs R(ρ,W ) curve for BEC and BSC with fixed ρ

Now, we seek for a possible extension of the above definition to define a quantity
similar to the conditional entropy function. In this effort, we note that different def-
initions exist in the literature. As one suitable for the study of channel polarization,
we use the Rényi’s conditional entropy function of order α of a discrete random
variable X given Y with joint distribution P (x, y) defined in [9] as

Hα(X | Y ) =
α

1− α
log
∑
y

(∑
x

P (x, y)α

) 1
α

= Hα(X) +
α

1− α
log
∑
y

(∑
x

Q(x)P (y | x)α

) 1
α

where Q(x) =
P (x)α∑
x

P (x)α
is a probability distribution.
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If we assume uniform input distribution and let α = 1
1 + ρ , we get

H 1
1+ρ

(X) =
1

ρ
log

(∑
x

P (x)
1

1+ρ

) 1
1+ρ

(2.5)

H 1
1+ρ

(X | Y ) = H 1
1+ρ

(X) +
1

ρ
log
∑
y

(∑
x

P (x)P (y | x)
1

1+ρ

)1+ρ

(2.6)

From the definition of E0(ρ,W ) in (2.3), we deduce

E0(ρ,W )

ρ
= H 1

1+ρ
(X)−H 1

1+ρ
(X | Y ) (2.7)

The quantity in the RHS of (2.7) is called as the mutual information of order 1
1 + ρ

in [9]. Moreover, the following properties are proved

• lim
α→1

Hα(X) = H(X | Y )

• Hα(X | Y ) ≤ Hα(X), i.e “conditioning reduces entropy“ is valid for Rényi’s
entropy function, as it is in the Shannon entropy case.

• E0(ρ,W )
ρ is a decreasing function in ρ.

2.3 Applications
We close this chapter with two applications where Er(R) and E0 play a critical
role. We should mention that the purpose of this section is only to give the main
idea about how these were used in information theoretic problems. Hence, we avoid
digressing into different topics.

2.3.1 Upper Bound to Block Error Probability
Reliable transmission of information from one point to another point is the ulti-
mate goal of communication systems. To achieve this objective, channel encoders
use appropriate coding schemes to construct redundant messages, such that upon
reception, the corresponding channel decoders can overcome the effects of noise
introduced during transmission. In the analysis of this problem, different criteria
and trade-offs in-between are considered. The rate of transmission, the decoding
error probability, the encoders and decoders complexities are among the most im-
portant ones.

To prove fundamental results, channel block codes, simpler to treat, are used as
a mean. The block decoding error probability, denoted as Pe, is a criteria used to
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assess performance of block codes. Furthermore, in the analysis of Pe, random en-
sembles of block codes received particular attention. If the average block decoding
error probability, denoted as Pe,avg, is expected to satisfy desirable properties over
the ensemble, then we can find a specific realization that will do at least as good as
the average. In chapter 5 of [2], the attempts to upper bound Pe,avg resulted in the
Channel Coding Theorem (5.6.2), and the definition of the random coding expo-
nent. Broadly speaking, this theorem states that for a DMC, and a fixed rate R > 0,
the average block decoding error probability of an ensemble of block codes with
codewords of length N , can be upper bounded as

Pe,avg ≤ exp {−NEr(R)} (2.8)

In fact, for any ρ ∈ [0, 1], we have the following more general bound

Pe,avg ≤ exp {−N (E0(ρ,W )− ρR)} (2.9)

The bound in (2.8) follows by taking the ρ value that gives the tightest bound in
(2.9).

Therefore, Er(R) establishes the compromise between Pe,avg, the block length N ,
and the communication rateR. Obviously, ifEr(R) > 0, then Pe,avg vanishes expo-
nentially with increasing block lengths. We have already mentioned the properties
of Er(R). These properties were used to prove the Noisy Channel Coding The-
orem [2] fundamental in the interpretation of the existing trade-off. The theorem
states that Er(R) > 0 for fixed rates below channel capacity, i.e. R ≤ C. Hence by
increasing the code block length, we can make the block decoding error probability
arbitrarily small.

We last want to mention, without going into details, an important step in the above
derivations. The error probability can be computed by taking the union of the prob-
abilities of all the events which cause the decoder to make an error. Let us define
these error events as Ei with i = 1, . . . ,M . Then, as a consequence of the union
bound,

P

(⋃
i

Ei

)
≤

[∑
i

P (Ei)

]ρ
holds for any ρ ∈ [0, 1]. Therefore, the variable ρ is introduced to improve the bound
when the summation of the probabilities are larger than 1 at the cost of providing
less tight bounds otherwise.

2.3.2 Lower Bound to Computational Complexity of Sequential
Decoding

Assume an input sequence X is transmitted through a channel W , and the output
sequence Y is received. A sequential decoder can be described as a device which,
based on the received value, keeps guessing which particular input was transmit-
ted until the correct decision is made. The number of guesses made during this
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procedure, and the number of computations performed by the decoder are parallel
quantities. They both depend on the order in which guesses are made. This order,
in turn, is determined by a function G(x | y) called a guessing function. Therefore,
the computational complexity of sequential decoding can be expressed in terms of
the random variable G(X | Y ).

In [10], Massey considers the guessing problem standalone, and defines the form
of an optimal guessing function. According to the paper, the average number of
guesses is minimized by guessing the value of the random variable X given Y in
decreasing order of conditional probabilities. In [7], Arıkan considers sequential
decoders which have arbitrary guessing functions. The following lower bound to
the moments of computational complexity of sequential decoding is given

E[G(X | Y )ρ] ≥ (1 +NR)−ρ exp{N (ρR− E0(ρ,W ))}

for ρ > 0. Note the difference between the above exponent and Er(R), which in-
volved a maximization over ρ ∈ [0, 1] in the parametric equations (2.4).

As in the previous application, a trade-off between the rate, the block length and this
time the computational complexity is discovered. The critical value E0(ρ,W )/ρ,
called the cut-off rate, imposes a limit on the rate R. Above this limit, as the block
length N is increased, infinitely many computations need to be performed by the
sequential decoder. Hence, complexity is unbounded.

Finally, let us consider the two applications within the same framework. On one
side, the random channel coding theorem tells that one can communicate at rates up
to channel capacity with arbitrarily small error probabilities. On the other hand, the
particular choice of the decoder as a sequential decoder restricts the communication
rate to the cut-off rate of the channel, since we know that E0(ρ,W )/ρ ≤ I(W ) for
ρ > 0 from the previous section.
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Chapter 3

Compound Capacity of Symmetric
Channels

In the previous chapters, all the arguments were based on the assumption that we
are given a specific channel over which we want to communicate. However in some
cases, only a partial knowledge on the communication channel is available. For
instance, we might just know the possible range of values the mutual information
between the input and output of the channel takes. In other cases, we might want
to design codes that perform well not only in a particular channel but also in other
channels . Both of these situations justify the need to analyze performance of codes
constrained to broader type of channels. We first introduce the notion of compound
capacity which extends the definition of capacity for a single channel to a class of
channels.

The compound capacity of a class of channels is given by [11]

C(W) = max
Q(x)

inf
W∈W

I(Q,W )

where W represents the class of channels,Q(x) is the input distribution, and I(Q,W )
is the corresponding mutual information between the input and output of the chan-
nel.

In general, C(W) is smaller than the infimum of any I(Q,W ) in W. However,
we can restrict the analysis to binary memoryless symmetric (BMS) channels and
define a symmetric compound capacity by the formula

I(W) = min
W∈W

I(W ) (3.1)

since the uniform input distribution corresponds to the maximizing input distribu-
tion. Conforming to our previous notation, I(W ) equals the symmetric capacity of
the channel.

In the rest of this chapter, we start by proving that linear codes that achieve the sym-
metric compound capacity given in (3.1) exist. Then, we discuss existing results for
polar codes. We should mention that linear codes are not chosen at random. Both
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linear codes and polar codes can be constructed with an encoder that transforms the
input un1 to a codeword xn1 = un1Gn with a generator matrix Gn. The difference is
on the structure of the generator matrix, i.e., on how the elements of Gn are chosen.
For linear codes, the elements are selected arbitrarily from a finite field, such as
GF(2) when the input is binary. Recall that for polar codes, the rows are selected in
concordance with channel polarization phenomenon.

3.1 Linear Codes

Definition 3.1. Given a field (X,+, .), we say that a code C ⊂ Xn is linear if it is a
vector space. Therefore,

∀a, b ∈ X, ∀x̄, ȳ ∈ C ⇒ ax̄+ bȳ ∈ C

The channel coding theorem for linear codes states that capacity achieving linear
codes exist. The proof simply relies on the Shannon’s proof of the random cod-
ing theorem. Here, we follow a similar approach. We first note the I(W) can be
achieved by a random coding argument similar to the single channel case.

Theorem 3.2. Let W be a set of symmetric channels with input alphabet X, output
alphabet Y, uniform input distribution and transition probabilities Pw(y | x) where
x ∈ X and y ∈ Y for each W ∈ W. Then, there exists a block code of block length
n and rate R ≥ 0 such that R ≤ min

W∈W
I(X;Y ) and for any ε > 0 the average block

decoding error probability Pe,avg < ε with ε→ 0 as n→∞.

Before we start proving the theorem, we introduce the concept of strong typicality
we use in the proof.

Definition 3.3. The strongly typical set Tn,εPz(z)
of sequences z1 . . . zn ∈ Zn with

respect to the distribution Pz(z) can be defined as

Tn,εPz(z)
=


(z1 . . . zn) ∈ Zn :

∀ζ ∈ Z, 1
n
# {i : zi = ζ} =

{
0 if Pz(ζ) = 0
Pz(ζ)± ε otherwise


Lemma 3.4. Let Z1 . . . Zn be a sequence of random variables drawn identically
independently according to the distribution Pz(z1, . . . , zn) =

∏
i

Pz(zi). Given the

distribution Qz(z1, . . . , zn), we have

P
(

(z1 . . . zn) ∈ Tn,εQz(z)

)
= 2−n(D(Q||P )±ε)

where D(Q || P ) =
∑
z

Qz(z) log
Qz(z)

Pz(z)
is the Kullback-Leibler divergence be-

tween Qz(z) and Pz(z).
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Proof of Lemma 3.4. We define z̄ = (z1 . . . zn). Then

P
(
z̄ ∈ Tn,εQz(z)

)
=
∑
z̄∈Tn,εQ

Pz(z1) . . . Pz(zn)

=
∑
z̄∈Tn,εQ

∏
z∈Z

Pz(z)nQz(z)

=
∑
z̄∈Tn,εQ

2n
∑
z∈ZQz(z) logPz(z)

(1)
= 2n(HQ(Z)±ε) 2n

∑
z∈ZQz(z) logPz(z)

= 2−n(D(Q||P )±ε)

where (1) follows by the strong asymptotic equipartition property.

Proof of Theorem 3.2. We assume that for each message m = 1, . . . ,M the en-
coder generates the codewords using the function Enc : {1, . . . ,M} → Xn

Enc(m) = x̄m = {x1 . . . xn}m
Given the output sequence ȳ = y1 . . . yn i.i.d from pwo(y), the decoder makes a
decision using the function Dec : Yn → {1, . . . ,M} ∪ 0

Dec(ȳ) =

 m if m is the unique message such that(Enc(m), ȳ) ∈
⋃
W

Tn,εPx(x)Pw(y|x)

0 otherwise

Let the block decoding error probability of a message m be Pe,m. We note that

E[Pe,avg] =
∑
m

1

M
E[Pe,m] = E[Pe,m]

since by symmetry E[Pe,1] = · · · = E[Pe,M ].

The decoder makes an error if and only if

• (x̄m, ȳ) /∈ Tn,εPx(x)Pwo (y|x)

• For any m′ 6= m, (x̄m′ , ȳ) ∈
⋃
W

Tn,εPx(x)Pw(y|x)

Hence,

E[Pe,m] ≤ P
(

(x̄m, ȳ) /∈ Tn,εPx(x)Pwo (y|x)

)
+
∑
m′ 6=m

P

(
(x̄m′ , ȳ) ∈

⋃
W

Tn,εPx(x)Pw(y|x)

)

Moreover, we can deduce that Px,y(x̄m′ , ȳ) = Px(x̄m′)
∏
i

Pwo(yi) for any m′ 6= m,

since the codewords generated by the encoder are independent. Therefore,

P
(

(x̄m′ , ȳ) ∈ Tn,εPx(x)Pw(y|x)

)
= 2−nD(Px(x)Pw(y|x)||Px(x)Pwo (y))

= 2
−n
∑
x,y Px(x)Pw(y|x) log

Pw(y|x)
Pw(y)

+
∑
y Pw(y) log

Pw(y)
Pwo (y)

≤ 2−nI(W ) (3.2)
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Due to the strong law of large numbers, P
(

(x̄m, ȳ) /∈ Tn,εPx(x)Pwo (y|x)

)
→ 0. Hence,

E[Pe,avg] ≤
∑
m′ 6=m

P

(
(x̄m′ , ȳ) ∈

⋃
W

Tn,εPx(x)Pw(y|x)

)
≤
∑
m′ 6=m

∑
W

P
(

(x̄m′ , ȳ) ∈ Tn,εPx(x)Pw(y|x)

)
≤| W | 2

−n
(
min
w
I(W )−R

)

where we assumed M = d2nRe.

Let I`(W) denote the compound capacity of linear codes. The next theorem shows
that linear codes achieves the compound capacity of symmetric channels given in
(3.1).

Theorem 3.5. Let W be a set of symmetric channels with input alphabet X, output
alphabet Y, uniform input distribution and transition probabilities Pw(y | x) for
each W ∈ W. Then, for any rate R ≥ 0 such that R ≤ min

W∈W
I(X;Y ) and any

ε > 0 there exists a linear code with block decoding error probability Pe < ε. As a
result,

I`(W) = min
W∈W

I(W )

Proof of Theorem 3.5. From Chapter 6 of [2], we know that the codewords of an
affine code, i.e., x = uG + v where v is an arbitrarily fixed sequence in Xn are
pairwise independent. Based on this knowledge, we notice the proof of Theorem
3.2 can be applied to random affine codes. In addition, we recognize that the same
performance as an affine code can be obtained with a communication system using
a linear code with codewords x = uG. Hence, we also expect random linear codes
to achieve the symmetric compound capacity I(W). Moreover, since the average
error probability can be made arbitrarily small, we know there exists at least one
linear code which will have an error probability smaller than or equal to the average
error probability.

3.2 Polar Codes
The compound capacity of polar codes under successive cancellation decoding is
analyzed in [6]. The paper provides upper and lower bounds to show that, in gen-
eral, this capacity does not achieve (3.1). We first explain these existing bounds and
the essential idea behind.

We now give a definition of degraded channels in the framework of polar codes.

Definition 3.6. [12]Given two B-DMC W1 and W2, assume we apply ` recursions
of the polarization transformations in (1.5) and (1.6). IfW1 is degraded with respect
to W2, then the Bhattacharyya parameters of all channels satisfy

Z(W
(i,2`)
1 ) ≤ Z(W

(i,2`)
2 ) ∀i = 1, . . . 2`
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Let W be a set of BMS channels and Ip(W) denotes the compound capacity of
polar codes under successive cancellation decoding. Then, we can upper bound this
capacity as

Ip(W) ≤ min
W∈W

I(W )

Although the upper bound is trivial from (3.1), we explain why in general we do
not expect to have an equality for polar codes. The main reason is related to the
construction of polar codes. We know that individual polar codes for each channel
W in the set W can communicate at rates up to I(W ) by signaling on the good
channel indexes. However, we do not know the intersection of these indexes among
different channels in the set, except the particular case in which the channels in the
set form a degraded family. Hence, even if each of the individual polar codes can
all achieve at least a particular rate R, there might be indexes good for one code
that are not good for the others. As a result, none of the codes guarantee to achieve
R for all the set of channels. This also emphasizes a link between the compound
channel problem and the problem to find universal polarization codes.

Furthermore, we can give as lower bound

Ip(W) ≥ min
W∈W

1− Z(W ) (3.3)

The lower bound is not surprising. In fact, the RHS is simply the capacity of the
binary erasure channel having Bhattacharyya parameter equals to the smallest one
among channels in W. The idea to find an equivalent binary erasure channel WBEC

through the equality Z(WBEC) = Z(W ) is a direct consequence of the basic channel
transformations

Z(W−) ≤ Z(W−
BEC)

Z(W+) = Z(W+
BEC)

and the fact that a binary erasure channel remains a binary erasure channel after the
basic channel transformations. Let us introduce the following notation to denote
this equivalence

{W}bec = WBEC such that Z(WBEC) = Z(W )

Consequently, the channel W is degraded with respect to the equivalent binary era-
sure channel WBEC, and both channels W and WBEC are degraded with respect to
any other binary erasure channel WBEC′ such that Z(WBEC) ≤ Z(WBEC′). More-
over, this lower bound suggests an explicit code construction method for compound
channels: design the code to work with the binary erasure channel WBEC such that

WBEC = {W}bec

where
W ∈W : Z(W ) = max

W ′∈W
Z(W ′)
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This code will guarantee the same performance in all the channels in W.

These two bounds were significantly improved in [6] to give

Ip(W) ≤ 1

2`

∑
i

min
W∈W

I(W (i))

Ip(W) ≥ 1

2`

∑
i

min
W∈W
{1− I(W (i))}

where i = 1, . . . , 2` and both bounds are monotone in ` ∈ N.
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Chapter 4

Main Results

In this chapter, we generalize results on the extremality of the binary erasure chan-
nel and the binary symmetric channel with respect to the parameters I(W ) and
Z(W ) to E0(ρ,W ), when the basic channel polarization transformations are ap-
plied. Then, as special cases, we derive expressions for the binary erasure channel
and the binary symmetric channel. Then, we describe E0(ρ,W−) and E0(ρ,W+)
in terms of Rényi’s entropy functions. Based on this representation, we conjecture
an inequality between E0(ρ,W ), E0(ρ,W−), and E0(ρ,W+). Finally, we conclude
this chapter by the section “More Extremalities”, where we examine whether the
result obtained in [3] can be extended. The authors show that the binary erasure
channel and the binary symmetric channel are extremal with respect to R(ρ,W )
and E0(ρ,W ). Following the idea, an interesting question we raise is: Can we de-
rive similar extremal properties for E0(ρ1,W ) and R(ρ2,W ), i.e for the cases we
operate at different ρ values?

4.1 Extremality of the Basic Channel Transformations
We start with a lemma proved in [3]. Then using the same technique, we show that
similar results exist for E0(ρ,W−) and E0(ρ,W+) in Lemma 4.3 and Lemma 4.4,
respectively.

Lemma 4.1. Given a channel W and ρ ∈ [0, 1], there exist a random variable Z
taking values in the [0, 1] interval such that

E0(ρ,W ) = − logE [g(ρ, Z)] (4.1)

where

g(ρ, z) =

(
1

2
(1 + z)

1
1+ρ +

1

2
(1− z)

1
1+ρ

)1+ρ

Proof of Lemma 4.1.

E0(ρ,W ) = − log
∑
y

[
1

2
P (y | 0)

1
1+ρ +

1

2
P (y | 1)

1
1+ρ

]1+ρ
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We define,

q(y) =
P (y | 0) + P (y | 1)

2
∆(y) =

P (y | 0)− P (y | 1)

P (y | 0) + P (y | 1)
(4.2)

⇒ P (y | 0)

q(y)
= 1 + ∆(y)

p(y | 1)

q(y)
= 1−∆(y)

Then, one can define a random variable Z = |∆(Y )| ∈ [0, 1] where Y has the
probability distribution q(y), and obtain (4.1) by simple manipulations.

Lemma 4.2. Given a channel W and ρ ∈ [0, 1], there exist independent random
variables Z1 and Z2 taking values in the [0, 1] interval such that

E0(ρ,W−) = − logE [g(ρ, Z1Z2)] (4.3)

where g(ρ, z) is given by (4.2).

Proof of Lemma 4.2. From the definition of channel W− in (1.5), we can write

E0(ρ,W−) = − log
∑
y1,y2

[
1

2
PW−(y1, y2 | 0)

1
1+ρ +

1

2
PW−(y1, y2 | 1)

1
1+ρ

]1+ρ

= − log
∑
y1,y2

[
1

2

(
1

2
P (y1 | 0)P (y2 | 0) +

1

2
P (y1 | 1)P (y2 | 1)

) 1
1+ρ

+
1

2

(
1

2
P (y1 | 1)P (y2 | 0) +

1

2
P (y1 | 0)P (y2 | 1)

) 1
1+ρ
]1+ρ

= − log
∑
y1y2

[
1

2

(
1

2

) 1
1+ρ

q (y1)
1

1+ρ q (y2)
1

1+ρ

((1 + ∆ (y1)) (1 + ∆ (y2)) + (1−∆ (y1)) (1−∆ (y2)))
1

1+ρ

+ ((1−∆ (y1)) (1 + ∆ (y2)) + (1 + ∆ (y1)) (1−∆ (y2)))
1

1+ρ

]1+ρ

= − log
∑
y1y2

q(y1) q(y2)

[
1

2
(1 + ∆(y1)∆(y2))

1
1+ρ +

1

2
(1−∆(y1)∆(y2))

1
1+ρ

]1+ρ

where we used (4.2). We can now define two independent random variables Z1 =
|∆(Y1)| and Z2 = |∆(Y2)| where Y1 ∼ q(y1) and Y2 ∼ q(y2). Moreover, we
note that by definition both Z1 and Z2 takes values in the [0, 1] interval. From this
construction, the lemma follows.

Lemma 4.3. Given a channel W and ρ ∈ [0, 1], there exist independent random
variables Z1 and Z2 taking values in the [0, 1] interval such that

E0(ρ,W+) = − logE
[

1

2
(1 + Z1Z2) g(ρ,

Z1 + Z2

1 + Z1Z2

) +
1

2
(1− Z1Z2) g(ρ,

Z1 − Z2

1− Z1Z2

)

]
(4.4)

where g(ρ, z) is given by (4.2).
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Proof of Lemma 4.3. From the definition of channel W+ in (1.6), we can write

E0(ρ,W+)

= − log
∑
y1,y2,u

[
1

2
PW+(y1, y2, u | 0)

1
1+ρ +

1

2
PW+(y1, y2, u | 1)

1
1+ρ

]1+ρ

= − log
∑
y1,y2,u

[
1

2

(
1

2
P (y1 | u)P (y2 | 0)

) 1
1+ρ

+
1

2

(
1

2
P (y1 | u⊕ 1)P (y2 | 1)

) 1
1+ρ
]1+ρ

= − log
∑
y1,y2

( [
1

2

(
1

2
P (y1 | 0)P (y2 | 0)

) 1
1+ρ

+
1

2

(
1

2
P (y1 | 1)P (y2 | 1)

) 1
1+ρ

]1+ρ

+

[
1

2

(
1

2
P (y1 | 1)p(y2 | 0)

) 1
1+ρ

+
1

2

(
1

2
P (y1 | 0)p(y2 | 1)

) 1
1+ρ

]1+ρ
)

Using (4.2), we have

E0(ρ,W+)

=− log
∑
y1y2

1

2
q(y1) q(y2)( [
((1 + ∆(y1)) (1 + ∆(y2)))

1
1+ρ + ((1−∆(y1)) (1−∆(y2)))

1
1+ρ

]1+ρ

+

[
((1−∆(y1)) (1 + ∆(y2)))

1
1+ρ + ((1−∆(y1)) (1 + ∆(y2)))

1
1+ρ

]1+ρ
)

=− log

( ∑
y1y2

1

2
q(y1) q(y2) (1 + ∆(y1)∆(y2))

[
1

2

(
1 +

∆(y1) + ∆(y2)

1 + ∆(y1)∆(y2)

) 1
1+ρ

+
1

2

(
1− ∆(y1) + ∆(y2)

1 + ∆(y1)∆(y2)

) 1
1+ρ
]1+ρ

+
∑
y1y2

1

2
q(y1) q(y2) (1−∆(y1)∆(y2))

[
1

2

(
1 +

∆(y1)−∆(y2)

1−∆(y1)∆(y2)

) 1
1+ρ

+
1

2

(
1− ∆(y1)−∆(y2)

1−∆(y1)∆(y2)

) 1
1+ρ
]1+ρ

)

= − log

( ∑
y1y2

1

2
q(y1) q(y2) (1 + ∆(y1)∆(y2)) g

(
ρ,

∆(y1) + ∆(y2)

1 + ∆(y1)∆(y2)

)
+
∑
y1y2

1

2
q(y1) q(y2) (1−∆(y1)∆(y2)) g

(
ρ,

∆(y1)−∆(y2)

1−∆(y1)∆(y2)

))
where g(ρ, z) is defined in (4.2).

Similar to the E0(ρ,W−) case, we want to define two independent random vari-
ables Z1 = |∆(Y1)| and Z2 = |∆(Y2)| where Y1 ∼ q(y1) and Y2 ∼ q(y2) and both
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Z1 and Z2 takes values in the [0, 1] interval. However, we should first check whether
this construction is equivalent to the above equation. We note that ∆(y) ∈ [−1, 1].
When both ∆(y1) and ∆(y2) are positive, i.e ∈ [0, 1], we can easily see that

(1 + ∆(y1)∆(y2)) g(ρ,
∆(y1) + ∆(y2)

1 + ∆(y1)∆(y2)
) = (1 + Z1Z2) g(ρ,

Z1 + Z2

1 + Z1Z2

)

(1−∆(y1)∆(y2)) g(ρ,
∆(y1)−∆(y2)

1−∆(y1)∆(y2)
) = (1− Z1Z2) g(ρ,

Z1 − Z2

1− Z1Z2

)

When ∆(y1) ∈ [0, 1] and ∆(y2) ∈ [−1, 0), we note that

(1 + ∆(y1)∆(y2)) g(ρ,
∆(y1) + ∆(y2)

1 + ∆(y1)∆(y2)
) = (1− Z1Z2) g(ρ,

Z1 − Z2

1− Z1Z2

)

(1−∆(y1)∆(y2)) g(ρ,
∆(y1)−∆(y2)

1−∆(y1)∆(y2)
) = (1 + Z1Z2) g(ρ,

Z1 + Z2

1 + Z1Z2

)

Since we are interested in the sum of the above two parts, we can see that the
construction we propose is still equivalent. Finally, for the other possible cases of
∆(y1) and ∆(y2) values, similar results hold since the function g(ρ, z) is symmetric
with respect to z = 0. This concludes the proof.

Before the extremality analysis, we make an important remark.

Remark 4.4. The random variable ZBEC of a binary erasure channel is {0, 1} valued.
The random variable ZBSC of a binary symmetric channel is constant zBSC.

Theorem 4.5. Given a fixed ρ ∈ (0, 1) and a channel W , a binary erasure channel
WBEC, and a binary symmetric channel WBSC such that the following inequality
holds

E0(ρ,WBEC) = E0(ρ,WBSC) = E0(ρ,W )

Then,
E0(ρ,W−

BEC) ≤ E0(ρ,W−) ≤ E0(ρ,W−
BSC) (4.5)

Proof of Theorem 4.5. By lemmas 4.2 and 4.3, we have

exp{−E0(ρ,W )} = E [g(ρ, Z)] and exp{−E0(ρ,W )} = E[g(ρ, Z1Z2)]

where Z1 and Z2 are independent random variables. Moreover by Remark 4.4, we
know ZBSC = zBSC and ZBEC ∈ {0, 1}. Hence,

exp{−E0(ρ,W−
BSC)} = g(ρ, zBSCzBSC)

and

exp{−E0(ρ,W−
BEC)}

= P (ZBEC = 0)2g(ρ, 0) + 2P (ZBEC = 0)P (ZBEC = 1)g(ρ, 0) + P (ZBEC = 1)2g(ρ, 1)

= P (ZBEC = 0)2 + 2P (ZBEC = 0) (1− P (ZBEC = 0)) +
(
1− P (ZBEC = 0)2

)
2−ρ

=
[
2P (ZBEC = 0)− P (ZBEC = 0)2

]
(1− 2−ρ) + 2−ρ
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We define the function Fz,ρ(t) : [2−ρ, 1]→ [g(ρ, z1), g(ρ, 0)] as

Fz,ρ(t) = g(ρ, zg−1(ρ, t)) (4.6)

We prove in Appendix B that for fixed values of ρ and z, Fz,ρ(t) is convex with
respect to t.

Given E0(ρ,W ) = E0(ρ,WBSC), we know

E [g(ρ, Z)] = g(ρ, zBSC)

Then, using Jensen’s inequality we obtain

exp{−E0(ρ,W−)} = EZ1 [EZ2 [Fz1,ρ (g(ρ, Z2)) | Z1 = z1]]

≥ EZ1 [FZ1,ρ (EZ2 [g(ρ, Z2)])]

= EZ1 [FZ1,ρ (g(ρ, zBSC))]

(1)
= EZ1 [FzBSC,ρ (g(ρ, Z1))]

≥ FzBSC,ρ (EZ1 [g(ρ, Z1)])

= FzBSC,ρ (g(ρ, zBSC))

= exp{−E0(ρ,W−
BSC)}

where (1) follows by symmetry of the variables z1 and z2. Similarly, givenE0(ρ,W ) =
E0(ρ,WBEC), we have

E [g(ρ, Z)] = E [g(ρ, ZBEC)] = P (ZBEC = 0)g(ρ, 0) + P (ZBEC = 1)g(ρ, 1)

= P (ZBEC = 0)(1− 2−ρ) + 2−ρ

Due to convexity, we also have

Fz,ρ(t) ≤ g(ρ, 0) +
g(ρ, z1)− g(ρ, 0)

2−ρ − 1
(t− 1) = 1 +

g(ρ, z1)− 1

2−ρ − 1
(t− 1)

Therefore,

exp{−E0(ρ,W−)} =EZ1 [EZ2 [Fz1,ρ (g(ρ, Z2)) | Z1 = z1]]

≤ EZ1

[
1 +

g(ρ, z1)− 1

2−ρ − 1
(EZ2 [g(ρ, Z2)]− 1)

]
= 1 +

EZ1 [g(ρ, z1)]− 1

2−ρ − 1
(EZ2 [g(ρ, Z2)]− 1)

=
2−ρ − 1 + (P (ZBEC = 0)(1− 2−ρ) + 2−ρ − 1)

2

2−ρ − 1

=
(2−ρ − 1)

(
1 + (1− P (ZBEC = 0))2 (2−ρ − 1)

)
2−ρ − 1

=
[
2P (ZBEC = 0)− P (ZBEC = 0)2

]
(1− 2−ρ) + 2−ρ

= exp{−E0(ρ,W−
BEC)}
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In Theorem 4.5, we showed that among all B-DMC’s W of fixed E0(ρ,W ), the bi-
nary erasure channelW− transformation results in a lower bound to anyE0(ρ,W−)
and the binary symmetric channel’s one in an upper bound to any E0(ρ,W−). In
the next theorem, we state a similar result for the W+ transformation, except the
difference that the binary erasure channel W+ transformation provides an upper
bound and the binary symmetric channel’s one a lower bound to any E0(ρ,W+) in
this case.

Theorem 4.6. Given a fixed ρ ∈ (0, 1) and a channel W , a binary erasure channel
WBEC, and a binary symmetric channel WBSC such that the following inequality
holds

E0(ρ,WBEC) = E0(ρ,WBSC) = E0(ρ,W )

Then,
E0(ρ,W+

BSC) ≤ E0(ρ,W+) ≤ E0(ρ,W+
BEC) (4.7)

Proof of Theorem 4.6. By Lemmas 4.2 and 4.3, we can write

exp{−E0(ρ,W )} = E [g(ρ, Z)]

exp{−E0(ρ,W+)} = E
[

1

2
(1 + Z1Z2) g(ρ,

Z1 + Z2

1 + Z1Z2

) +
1

2
(1− Z1Z2) g(ρ,

Z1 − Z2

1− Z1Z2

)

]
where Z1 and Z2 are independent random variables. Moreover by Remark 4.4, we
know ZBSC = zBSC and ZBEC ∈ {0, 1}. Hence,

exp{−E0(ρ,W+
BSC)} =

1

2
(1 + z2

BSC) g(ρ,
2zBSC

1 + z2
BSC

) +
1

2
(1− z2

BSC)

and

exp{−E0(ρ,W+
BEC)}

= P (ZBEC = 0)2g(ρ, 0) + 2P (ZBEC = 0)P (ZBEC = 1)g(ρ, 1) + P (ZBEC = 1)2g(ρ, 1)

= (1− P (ZBEC = 1))2 + 2(1− P (ZBEC = 1))P (ZBEC = 1)2−ρ + P (ZBEC = 1)22−ρ

= (1− P (ZBEC = 1))2 (1− 2−ρ
)

+ 2−ρ

Although a similar analysis to W− case can be carried, it becomes quite difficult
to handle the convexity analysis analytically. Instead, we use the properties of the
function g(ρ, z). We know from Appendix A that g(ρ, z) is a concave decreasing
function in z.

We define

t3(z1, z2) =
1

2
(1 + z1z2) g(ρ,

z1 + z2

1 + z1z2

) +
1

2
(1− z1z2) g(ρ,

z1 − z2

1− z1z2

) (4.8)

We show in Appendix C that t3(z1, z2) is a concave function in both z1 and z2

separately. Therefore, given E0(ρ,W ) = E0(ρ,WBSC), we have

E [g(ρ, Z)] = g(ρ, zBSC) ≤ g(ρ,E [Z]) ⇒ zBSC ≥ E [Z]
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and

exp{−E0(ρ,W+)} = EZ1,Z2 [t3(Z1, Z2)]

≤ t3 (EZ1 [Z1] ,EZ2 [Z2]) = t3 (E [Z] ,E [Z])

Then, we have

t3 (E [Z] ,E [Z])

=
1

2
(1 + E [Z]E [Z]) g(ρ,

2E [Z]

1 + E [Z]2
) +

1

2
(1− E [Z]E [Z]) g(ρ, 0)

=
1

2

(
1

2
(1 + E [Z])

2
1+ρ +

1

2
(1− E [Z])

2
1+ρ

)1+ρ

+
1

2
(1− E [Z]2)

≤ t3 (zBSC, zBSC)

= exp{−E0(ρ,W+
BSC)}

The inequality holds because the function t3 (E [Z] ,E [Z]) is increasing in E [Z]
and zBSC ≥ E [Z]. To see this claim, let us define x = E [Z]. Taking the first
derivative with respect to x, we obtain

∂

∂x

(
1

2
(1 + x)

2
1+ρ +

1

2
(1− x)

2
1+ρ

)
=

(
(1 + x)

1−ρ
1+ρ − (1− x)

1−ρ
1+ρ

)
1 + ρ

≥ 0

and(
1

2
(1 + x)

2
1+ρ +

1

2
(1− x)

2
1+ρ

)1+ρ

=
1

2
(1 + x)2 +

1

2
(1− x)2 + {+ terms increasing in x}

=
(
1 + x2

)
+ {+ terms increasing in x}

⇒ ∂

∂x

(
1

2

(
1

2
(1 + x)

2
1+ρ +

1

2
(1− x)

2
1+ρ

)1+ρ

+
1

2
(1− x2)

)
≥ 0

Similarly, given E0(ρ,W ) = E0(ρ,WBEC), we have

E [g(ρ, Z)] = E [g(ρ, ZBEC)] = P (ZBEC = 0)g(ρ, 0) + P (ZBEC = 1)g(ρ, 1)

= 1− P (ZBEC = 1)(1− 2−ρ)

since the concavity of the function g(ρ, t) : [0, 1] → [2−ρ, 1] in t when ρ is fixed
implies that

g(ρ, z) ≥ 1− (1− 2−ρ)z

we deduce

1− P (ZBEC = 1)(1− 2−ρ) ≥ 1− (1− 2−ρ)E [Z] ⇒ P (ZBEC = 1) ≤ E [Z]

Moreover, for fixed z1, the concavity of the function t3(z1, t) : [0, 1]→ [2−ρ, g(ρ, z1)]
in t implies that

t3(z1, t) ≥ 2−ρ − (g(ρ, z1)− 2−ρ)(t− 1)
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Therefore

exp{−E0(ρ,W+)} = EZ1 [EZ2 [t3(z1, Z2) | Z1 = z1]]

≥ EZ1

[
2−ρ −

(
g(ρ, Z1)− 2−ρ

)
(EZ2 [Z2]− 1)

]
≥ 2−ρ −

(
E[g(ρ, ZBEC)]− 2−ρ

)
(P (ZBEC = 1)− 1)

= 2−ρ +
(
1− P (ZBEC = 1)(1− 2−ρ)− 2−ρ

)
(1− P (ZBEC = 1))

= 2−ρ + (1− P (ZBEC = 1))2 (1− 2−ρ
)

= exp{−E0(ρ,W+
BEC)}

Theorem 4.5 and Theorem 4.6 show that the binary erasure and binary symmetric
channels appear on reversed sides of the inequalities forE0(ρ,W−) andE0(ρ,W+).
On the other hand, recall that the idea behind the lower bound in (3.3) for the
compound capacity of polar codes relies on finding an equivalent binary erasure
channels as an upper bound to the process Z`. For that reason, we re-arrange the
inequalities in Proposition 4.7 such that the quantities for the binary erasure channel
and the binary symmetric channel shift sides at the cost of having less tight bounds.

Proposition 4.7. Given a fixed ρ ∈ (0, 1) and a channel W , a binary erasure chan-
nel WBEC, and a binary symmetric channel WBSC such that the following inequality
holds

E0(ρ,WBEC) = E0(ρ,WBSC) = E0(ρ,W )

Then, W+
BEC and W+

BSC correspond to extreme values of W+ transformation with

ρE0(ρ,W+
BEC) ≤ E0(ρ,W+) ≤ 1

ρ
E0(ρ,W+

BSC) (4.9)

Proof of Proposition 4.7. To prove the left inequality in (4.9), we show that the
following inequality holds

ρE0(ρ,W+
BEC) ≤ E0(ρ,W+

BSC) (4.10)

Let’s first note that when E0(ρ,WBEC) = E0(ρ,WBSC)

ρE0(ρ,W+
BEC)

∣∣∣
ρ=1

= E0(ρ,W+
BSC)

∣∣∣
ρ=1

ρE0(ρ,W+
BEC)

∣∣∣
ρ=0

= E0(ρ,W+
BSC)

∣∣∣
ρ=0

We already know that E0 is a concave increasing function in ρ. In addition, we
next show that ρE0(ρ,W+

BEC) is a convex function in ρ. Let εbec ∈ [0, 1] denotes the
channel parameter of WBEC, then

∂2

∂ρ2
ρE0(ρ,W+

BEC) =
(1− ε2bec) (2− ε2bec (−2 (2ρ − 1) + 2ρρ log 2))

(1 + (2ρ − 1) ε2bec)
2 ≥ 0

since

∂

∂ρ
(−2 (2ρ − 1) + 2ρρ log 2) = −2ρ log 2 (1− g log 2) ≤ 0

⇒ (−2 (2ρ − 1) + 2ρρ log 2) ≤ 0

34



As a result, we conclude (4.10) holds.

On the other hand, we already mentioned that E0(ρ,W )/ρ is a decreasing func-
tion in ρ in Chapter 2. Moreover, we note that

E0(ρ,W+
BEC)

∣∣∣
ρ=1

=
1

ρ
E0(ρ,W+

BSC)
∣∣∣
ρ=1

Therefore,

E0(ρ,W+
BEC) ≤ 1

ρ
E0(ρ,W+

BSC)

which proves the right inequality in (4.9).

4.2 Analysis of Special Cases: BEC and BSC
In the previous section, we showed that the basic channel transformations satisfy
extremal properties by the binary erasure channel and the binary symmetric chan-
nel. For that reason, we provide the expressions for these channels in terms of their
channel parameters. We also approve the fact that, for a binary erasure channel,
the channels we get after applying the basic channel transformations are also binary
erasure channels. On the other hand, for a binary symmetric channel, while the
channel we get after the W− transformation is a binary symmetric channel, the one
we have after the W+ transformation is not. Since the derivations are quite simple,
we provide directly the results.

Let WBSC be a binary symmetric channel with crossover probability εbsc. Then,

E0(ρ,WBSC) = − log 2−ρ
(

(1− εbsc)
1

1+ρ + (εbsc)
1

1+ρ

)1+ρ

E0(ρ,W−
BSC) = − log 2−ρ

((
1− ε−bsc

) 1
1+ρ +

(
ε−bsc
) 1

1+ρ

)1+ρ

with ε−bsc = 2εbsc − 2ε2bsc

E0(ρ,W+
BSC) = − log

(
2−ρ

(
(1− εbsc)

2
1+ρ + (εbsc)

2
1+ρ

)1+ρ

+ 2εbsc (1− εbsc)
)

Let WBEC be a binary erasure channel with erasure probability εbec. Then,

E0(ρ,WBEC) = − log
(
2−ρ (1− εbec) + εbec

)
E0(ρ,W−

BEC) = − log
(
2−ρ

(
1− ε−bec

)
+ ε−bec

)
with ε−bec = 2εbec − ε2bec

E0(ρ,W+
BEC) = − log

(
2−ρ

(
1− ε+bec

)
+ ε+bec

)
with ε+bec = ε2bec

From E0(ρ,WBEC) expression, we have

εbec =
2ρ2−E0(ρ,WBEC) − 1

2ρ − 1
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Moreover, we know that the Bhattacharyya parameter of a binary erasure channel
satisfies Z(WBEC) = εbec. This parameter provides tighter bounds than E0(1,W )
in [1], and is used in the subsequent analysis. This gives the idea to define a similar
quantity to Z(W ), referred as Z(ρ,W ), which reflects the dependence on the value
of ρ.

Z(ρ,W ) =
2ρ2−E0(ρ,W ) − 1

2ρ − 1

Using the results we derived in the previous section, we now investigate howZ(ρ,W )
is affected by the basic channel transformations.

Proposition 4.8. Given a channelW , a binary erasure channelWBEC, and a binary
symmetric channel WBSC, such that the following inequality holds

Z(ρ,W ) = Z(ρ,WBEC) = Z(ρ,WBSC)

Then, we have

Z(ρ,W−
BSC) ≤ Z(ρ,W−) ≤ Z(ρ,W−

BEC) = 2Z(ρ,WBEC)− Z(ρ,WBEC)2

Z(ρ,WBEC)2 = Z(ρ,W+
BEC) ≤ Z(ρ,W+) ≤ Z(ρ,W+

BSC)

Proof of Proposition 4.8. The above inequalities are direct consequences of Theo-
rem 4.5 and Theorem 4.6, respectively.
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4.3 The Basic Channel Transformations and Rényi’s
Entropy Description

In Section 2.2 of Chapter 1, the function E0(ρ,W )/ρ is defined in terms of Rényi’s
entropy functions. Similarly, we can characterize E0(ρ,W−)/ρ and E0(ρ,W+)/ρ
in terms of Rényi’s entropy functions. Based on these definitions, we conjecture
an inequality between E0(ρ,W ), E0(ρ,W−), and E0(ρ,W+). Given a DMC W
with uniform input distribution, consider the W− and W+ transformations defined
in (1.5) and (1.6), respectively. We showed the resulting channel configuration in
Figure 1.2. Using (2.7), E0(ρ,W−) and E0(ρ,W+) can be defined as follows

E0(ρ,W−)

ρ
= H 1

1+ρ
(U1)−H 1

1+ρ
(U1 | Y1Y2)

E0(ρ,W+)

ρ
= H 1

1+ρ
(U2)−H 1

1+ρ
(U2 | Y1Y2U1)

In addition, as we use two independent copies of W , we can write

2
E0(ρ,W )

ρ
= −1

ρ
log

∑
y1

(∑
x1

p(x1)p(y1 | x1)
1

1+ρ

)1+ρ∑
y2

(∑
x2

p(x2)p(y2 | x2)
1

1+ρ

)1+ρ


= log

∑
y1y2

(∑
x1x2

p(x1)p(x2)p(y1 | x1)
1

1+ρp(y2 | x2)
1

1+ρ

)1+ρ


= log

∑
y1y2

(∑
x1x2

p(x1, x2)p(y1y2 | x1x2)
1

1+ρ

)1+ρ


= H 1
1+ρ

(X1X2)−H 1
1+ρ

(X1X2 | Y1Y2)

Since the mapping between (x1, x2)→ (u1, u2) is one-to-one, this is equivalent to

2
E0(ρ,W )

ρ
= H 1

1+ρ
(U1U2)−H 1

1+ρ
(U1U2 | Y1Y2)

We now inquire whether a particular relation can be derived between E0(ρ,W ),
E0(ρ,W−), and E0(ρ,W+) using the above definitions. For that purpose, we ob-
serve that such a relation, if it exists, would be an implication of a relation between
H 1

1+ρ
(U1 | Y1Y2), H 1

1+ρ
(U2 | Y1Y2U1), and H 1

1+ρ
(U1U2 | Y1Y2). We next conjecture

our observation regarding to this relation. Although we could not end up with a
proof, neither we found a counter example.

Conjecture 4.9. The channels W , W−, and W+ satisfy the following relationship

1

2

(
E0(ρ,W−) + E0(ρ,W+)

)
≥ E0(ρ,W )

37



4.4 More Extremalities

In chapter 2, we mentioned that the binary erasure channel and the binary symmet-
ric channel are extremal with respect to R(ρ,W ) and E0(ρ,W ). In this section, we
ask whether we can derive similar extremal properties forE0(ρ1,W ) andR(ρ2,W ),
i.e., for the cases we operate at different ρ values. To have an idea about the answer,
we first carried a numerical experiment.

4.4.1 Numerical Experiment Results

We briefly explain the experiment and discuss results. We generated binary input
channels for different size of the output alphabet, and calculated the E0(ρ1,W ) and
R(ρ2,W ) values for those channels for fixed ρ1 ∈ [0, 1] and ρ2 ∈ [0, 1]. Then,
assuming R(ρ2,W ) = R(ρ2,WBEC) = R(ρ2,WBSC), we found the correspond-
ing binary erasure channel and binary symmetric channel parameters. Finally,
we checked whether any non-extremal (ρ1, ρ2) pairs for the binary erasure chan-
nel and the binary symmetric channel exist from the comparisons of the computed
E0(ρ1,W ), E0(ρ1,WBEC), and E0(ρ1,WBSC).

Figure 4.1 displays the results of the experiment for minimum output alphabet size
of 2 and maximum output alphabet size of 10. The non extremal (ρ1, ρ2) pairs are
plotted in the ρ1 versus ρ2 plane.

Figure 4.1: Numerical Experiment: Non extremal (ρ1, ρ2) pairs

At this point, we have to mention some possible drawbacks in the experiment.
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Clearly, the output alphabet size is restricted. Results are valid only for the cho-
sen maximum size of the output alphabet. Similarly, there might be some channels
that we never generate and check. Finally, no analytic expressions exist to find
the binary symmetric channel parameter. Hence, we use a version of the midpoint
method that works within a specified precision error.

Despite some weaknesses, the numerical experiment results suggest that the ex-
tremal region in the ρ1 versus ρ2 plane can be extended beyond the case ρ1 = ρ2 =
ρ.

Indeed, the theoretical result stated in the next theorem partially agree with the
numerical experiment results. We give the proof in Appendix D.

Proposition 4.10. Given a channel W , a binary symmetric channel WBSC, and a
binary erasure channel WBEC such that

E0(ρ1,W ) = E0(ρ1,WBEC) = E0(ρ1,WBSC)

holds for any fixed value of ρ1 ∈ [0, 1]. Then, for ρ2 ∈ [0, 1], we have

R(ρ2,WBSC) ≤ R(ρ2,W ) ≤ R(ρ2,WBEC) if ρ2 ≥ ρ1 (4.11)
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Chapter 5

Conclusions and Future Work

In this thesis, we studied channel polarization and polar codes, proposed by Arıkan
in [1], as a recent subject in communication theory. Based on the properties we
summarized in the introduction, two major characteristics of channel polarization
and polar codes shaped this project.

First, the symmetric capacity of a communication channel is a fundamental quantity
as a limit on the achievable rate of a communication system. On the other hand, we
saw that the Bhattacharyya parameter is brought up as an auxiliary quantity to de-
rive the main results on channel polarization and polar codes. Indeed, the proof of
the fact that channel polarization arises from the recursive application of the basic
channel transformations is easily carried by the combined analysis of the random
processes corresponding to these two parameters. As a result, polar codes are shown
to achieve the symmetric capacity of any B-DMC. Moreover, many properties about
polar codes can be interchangeably stated using either one of the two parameters.
Fortunately, these two parameters are not arbitrary. They turn out to be special cases
of a more general channel parameter E0(ρ,W ) we discussed in detail.

Second, we noted that the binary erasure channel and the binary symmetric chan-
nel represents extremal channels with respect to the Bhattacharyya parameters ob-
tained after applying the basic channel transformations with a given initial value of
the Bhattacharyya parameter. Furthermore, we observed that extremal polarization
processes are used to derive results on both the rate of channel polarization [4], and
the compound capacity of polar codes under successive cancellation decoding [6].

These observations lead us to study the function E0(ρ,W ) and the random coding
exponent Er(R), both defined by Gallager in [2], as more general channel param-
eters in the view of channel polarization. In particular, we showed that among all
B-DMCs the binary erasure channel and the binary symmetric channel are extremal
in the evolution of E0(ρ,W ) under the basic channel transformations. In addition,
we extended the extremality result in [3] using the parametric representation of the
random coding exponent.
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A future work on this topic would be to prove or disprove the relation we propose
in the Conjecture 4.9. Another possible continuation would be to extend the ex-
tremality region characterized in Proposition 4.10. Ultimately, we would seek for
possible applications of our derivations to polar codes, such as the possibility to im-
prove the existing compound capacity bounds on polar codes or the rate of channel
polarization.
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A

Appendix A

We derive some useful properties of the function g(ρ, u) defined in (4.2) as

g(ρ, u) =

(
1

2
(1 + u)

1
1+ρ +

1

2
(1− u)

1
1+ρ

)1+ρ

Taking derivatives with respect to variable u, we have

∂g(ρ, u)

∂u
=

∂

∂u
exp{(1 + ρ) log

(
1

2
(1 + u)

1
1+ρ +

1

2
(1− u)

1
1+ρ

)
}

=

(
1

2
(1 + u)

1
1+ρ +

1

2
(1− u)

1
1+ρ

)1+ρ

(1 + ρ)

1

2

1

1 + ρ
(1 + u)

1
1+ρ − 1

2

1

1 + ρ
(1− u)

1
1+ρ

1

2
(1 + u)

1
1+ρ +

1

2
(1− u)

1
1+ρ


=

(
1

2

)1+ρ
(

1 +

(
1− u
1 + u

) 1
1+ρ

)ρ

︸ ︷︷ ︸
≥0

(
1−

(
1− u
1 + u

) −ρ
1+ρ

)
︸ ︷︷ ︸

≤0

≤ 0

and

∂2g(ρ, u)

∂u2
= − ρ

1 + ρ

(
1− u2

) 1
1+ρ
−2
(

1

2
(1 + u)

1
1+ρ +

1

2
(1− u)

1
1+ρ

)−1+ρ

≤ 0

Hence, g(ρ, u) is a concave decreasing function in u. To simplify notation, we
define

f(u) =
1− u
1 + u

(A.1)

α(ρ, u) = (1 + f(u)
1

1+ρ )ρ ≥ 0 (A.2)

β(ρ, u) = (1− f(u)
−ρ
1+ρ ) ≤ 0 (A.3)

Then
∂g(ρ, u)

∂u
=

1

2

1+ρ

α(ρ, u)β(ρ, u)
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Similarly, if we have a function h(z, u) instead of u, we can get the following results

∂g(ρ, h(z, u))

∂u
= g′(ρ, h(z, u))h′(z, u)

=

(
1

2

)1+ρ

α(ρ, h(z, u))β(ρ, h(z, u))h′(z, u)

We next derive some expressions that we make use later in Appendix B.

∂α(ρ, h(z, u))

∂u
=

ρ

1 + ρ
h′(z, u)f ′(h(z, u))f(h(z, u))

−ρ
1+ρ (1 + f(h(z, u))

1
1+ρ )ρ−1

∂β(ρ, h(z, u))

∂u
=

ρ

1 + ρ
h′(z, u)f ′(h(z, u))f(h(z, u))

−ρ
1+ρ
−1

where
f ′(u) =

−2

(1 + u)2

Fz,ρ1,ρ2(t) = g(ρ2, h(z, g−1(ρ1, t))) (A.4)

Assume we are interested with the convexity of Fz,ρ1,ρ2(t) with respect to variable
t. Taking the first derivative we obtain

∂Fz,ρ1,ρ2(t)

∂t
= g(ρ2, h(z, g−1(ρ1, t)))

=
g′(ρ2, h(z, g−1(ρ1, t)))

g′(ρ1, g−1(ρ1))
h′(z, g−1(ρ1, t))

We define u = g−1(ρ1, t). Since g(ρ, u) is a decreasing function in u, so is g−1(ρ1, t)
in t. Hence we can check the convexity of Fz,ρ1,ρ2(t) with respect to variable t, from
the monotonicity with respect to u of the following expression

h′(z, u)
g′(ρ2, h(z, u))

g′(ρ1, u)
= 2ρ1−ρ2h′(z, u)

α(ρ2, h(z, u))β(ρ2, h(z, u))

α(ρ1, u)β(ρ1, u)
(A.5)
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B

Appendix B

In this appendix, we show that the function Fz,ρ(t) defined in (4.6) is convex with
respect to variable t for fixed ρ ∈ [0, 1] and z ∈ [0, 1] values. From Appendix A, we
can see that we are interested in the convexity of Fz,ρ1,ρ2(t) = g(ρ2, h(z, g−1(ρ1, t)))
defined in (A.4) in the particular case where ρ1 = ρ2 = ρ and h(z, u) = zu. By
(A.5), we check the monotonicity of the following expression in in u

h′(z, u)
g′(ρ2, h(z, u))

g′(ρ1, u)
= 2ρ1−ρ2h′(z, u)

α(ρ2, h(z, u))β(ρ2, h(z, u))

α(ρ1, u)β(ρ1, u)

= z
α(ρ, h(z, u))β(ρ, h(z, u))

α(ρ, u)β(ρ, u)
(B.1)

where the functions α(ρ, u) and β(ρ, u) are defined in (A.2) and (A.3), respectively.
Now taking the derivative of (B.1) with respect to u, we get

∂

∂u
z
α(ρ, h(z, u))β(ρ, h(z, u))

α(ρ, u)β(ρ, u)

=z
α(ρ, h(z, u))β(ρ, h(z, u))

α(ρ, u)β(ρ, u)︸ ︷︷ ︸
≥0(

∂α(ρ, h(z, u))/∂u

α(ρ, h(z, u))
+
∂β(ρ, h(z, u))/∂u

β(ρ, h(z, u))
− ∂α(ρ, u))/∂u

α(ρ, u))
− ∂β(ρ, u)/∂u

β(ρ, u)

)
(B.2)

We can see that the sign of the expression inside the parenthesis in (B.2) will deter-
mine whether the expression in (B.1) is increasing or decreasing in u. At this point,
we note that

∂α(ρ, u)/∂u

α(ρ, u)
+
∂β(ρ, u)/∂u

β(ρ, u)
=

(
∂α(ρ, h(z, u))/∂u

α(ρ, h(z, u))
+
∂β(ρ, h(z, u))/∂u

β(ρ, h(z, u))

)
z=1
(B.3)

Moreover, we claim that the RHS of (B.3) is increasing in z. As a consequence,
Fz,ρ(t) is a concave function in u = g−1(ρ, t). Since u is decreasing in t, we have

∂Fz,ρ(t)

∂u

∂u

∂t
≥ 0
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and we conclude that Fz,ρ(t) is a convex function with respect to variable t.

In the rest of the appendix, we prove our claim.

∂α(ρ, h(z, u))/∂u

α(ρ, h(z, u))
+
∂β(ρ, h(z, u))/∂u

β(ρ, h(z, u))

=
ρ

1 + ρ
f(zu)

−ρ
1+ρ
−1zf ′(zu)

(
f(zu)

1 + f(zu)
1

1+ρ

+
1

1− f(zu)
−ρ
1+ρ

)

=
ρ

1 + ρ
f(zu)

−ρ
1+ρ
−1zf ′(zu)

(
f(zu)− f(zu)

1
1+ρ + 1 + f(zu)

1
1+ρ

(1 + f(zu)
1

1+ρ )(1− f(zu)
−ρ
1+ρ )

)
=

ρ

1 + ρ
f(zu)

−ρ
1+ρ
−1zf ′(zu)(1 + f(zu))(1 + f(zu)

1
1+ρ )−1(1− f(zu)

−ρ
1+ρ )−1

=
ρ

1 + ρ
zf ′(zu)(1 + f(zu)−1)(1 + f(zu)

1
1+ρ )−1(f(zu)

ρ
1+ρ − 1)−1

=
ρ

1 + ρ

−4z

(1 + zu)2(1− zu)

(
1 +

(
1− zu
1 + zu

) 1
1+ρ

)−1(
−1 +

(
1− zu
1 + zu

) ρ
1+ρ

)−1

=
4ρ

1 + ρ

1− z2u2

z

(
(1 + zu)

ρ
1+ρ − (1− zu)

ρ
1+ρ

)
︸ ︷︷ ︸

Part 2

(
(1 + zu)

1
1+ρ + (1− zu)

1
1+ρ

)
︸ ︷︷ ︸

Part 1


−1

We consider the expressions labeled as Part 1 and Part 2 separately. Note that both
are positive valued. In addition, as we next show, both are decreasing in z. As a
result, we deduce

∂

∂z

(
(1− z2u2)

z

(
(1 + zu)

1
1+ρ + (1− zu)

1
1+ρ

)(
(1 + uz)

ρ
1+ρ − (1− uz)

ρ
1+ρ

))
≤ 0

∂

∂z

(
(1− z2u2)

z

(
(1 + zu)

1
1+ρ + (1− zu)

1
1+ρ

)(
(1 + uz)

ρ
1+ρ − (1− uz)

ρ
1+ρ

))−1

≥ 0

which is indeed the claim we want to prove.

For Part 1, we get

∂

∂z

(
(1 + zu)

1
1+ρ + (1− zu)

1
1+ρ

)
=
u
(

(1 + uz)
−ρ
1+ρ − (1− uz)

−ρ
1+ρ

)
1 + ρ

≤ 0
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For Part 2, we have

∂

∂z

(
(1− u2z2)

z

(
(1 + uz)

ρ
1+ρ − (1− uz)

ρ
1+ρ

))

=
1

z2

ρuz (1− u2z2)
(

(1 + uz)
ρ

1+ρ
−1 + (1− uz)

ρ
1+ρ
−1
)

1 + ρ

+
1

z2

(
1 + u2z2

) (
− (1 + uz)

ρ
1+ρ + (1− uz)

ρ
1+ρ

)
=

1

z2

(
(1 + uz)

ρ
1+ρ

(
ρ

1 + ρ
uz (1− uz)− (1 + u2z2)

)
+ (1− uz)

ρ
1+ρ

(
ρ

1 + ρ
uz (1 + uz) + (1 + u2z2)

))
=− (1 + x)k

(
(k + 1)x2 − kx+ 1

)
+ (1− x)k

(
(k + 1)x2 + kx+ 1

)
=− f1(x, k) + f2(x, k) (B.4)

where k = ρ
1+ρ
∈ (0, 1

2
) and x = uz ∈ (0, 1) and

f1(x, k) = (1 + x)k
(
(k + 1)x2 − kx+ 1

)
(B.5)

f2(x, k) = (1− x)k
(
(k + 1)x2 + kx+ 1

)
(B.6)

We immediately observe that f1(x, k) = f2(x, k) when k = 0. We now show that
−f1(x, k) + f2(x, k) ≤ 0 for all x and k. Taking the derivatives of f1(x, k) and
f2(x, k) with respect to k, we obtain

∂f1(x, k)

∂k
=

∂

∂k
(1 + x)k

(
(k + 1)x2 − kx+ 1

)
= (1 + x)k log (1 + x)

(
(k + 1)x2 − kx+ 1

)
+ (1 + x)k (x2 − x)

= (1 + x)k
(
log (1 + x)

(
(k + 1)x2 − kx+ 1

)
+ x2 − x

)
= (1 + x)k

(
∞∑
n=1

(−1)n+1 x
n

n

(
(k + 1)x2 − kx+ 1

)
+ x2 − x

)

= (1 + x)k
(
∞∑
m=3

(−1)m+1 xm
(

1 + k

m− 2
+

k

m− 1
+

1

m

)
+ x2

(
1

2
− k
))

and

∂f2(x, k)

∂k
=

∂

∂k
(1− x)k

(
(k + 1)x2 + kx+ 1

)
= (1− x)k log (1− x)

(
(k + 1)x2 + kx+ 1

)
+ (1− x)k (x2 + x)

= (1− x)k
(
−
∞∑
n=1

xn

n

(
(k + 1)x2 + kx+ 1

)
+ x2 + x

)

= (1− x)k
(
−
∞∑
m=3

xm
(

1 + k

m− 2
+

k

m− 1
+

1

m

)
+ x2

(
1

2
− k
))
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where we used the Taylor series expansions of log (1 + x) and log (1− x). More-
over, we have

(1 + x)k ≥ (1− x)k ≥ 0
∞∑
m=3

(−1)m+1 xm
(

1 + k

m− 2
+

k

m− 1
+

1

m

)
≥ −

∞∑
m=3

xm
(

1 + k

m− 2
+

k

m− 1
+

1

m

)
x2

(
1

2
− k
)
≥ 0

These imply that
∂f1(x, k)

∂k
≥ ∂f2(x, k)

∂k
(B.7)

Hence, the relation in (B.7) together with the fact that f1(x, k) = f2(x, k) when
k = 0, proves that −f1(x, k) + f2(x, k) ≤ 0 for all x and k. Consequently,

∂

∂z

(
(1− u2z2)

z

(
(1 + uz)

ρ
1+ρ − (1− uz)

ρ
1+ρ

))
≤ 0

and our claim that the RHS of (B.3) is increasing in z follows.
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C

Appendix C

We show that the function t3(z1, z2) given in (4.8) is a concave function in both z1

and z2 separately. For simplicity, we first define

g(ρ, u) = g(u)

t1(z1, z2) = (1 + z1z2) g(
z1 + z2

1 + z1z2

)

t2(z1, z2) = (1− z1z2) g(
z1 − z2

1− z1z2

)

Hence, we get

t3(z1, z2) =
1

2
t1(z1, z2) +

1

2
t2(z1, z2)

Let g′z and g′′z denote the first and second derivatives with respect to variable z.
Then, taking derivatives of t1(z1, z2) with respect to z1, we get

∂

∂z1

t1(z1, z2) = z2 g(
z1 + z2

1 + z1z2

) +
1− z2

2

1 + z1z2

g′z1(
z1 + z2

1 + z1z2

)

∂2

∂z1
2
t1(z1, z2) = z2 g′z1(

z1 + z2

1 + z1z2

)
1− z2

2

(1 + z1z2)2
− z2

1− z2
2

(1 + z1z2)2
g′z1(

z1 + z2

1 + z1z2

)

+
1− z2

2

1 + z1z2

g′′z1(
z1 + z2

1 + z1z2

)
1− z2

2

(1 + z1z2)2

=
(1− z2

2)2

(1 + z1z2)3
g′′z1(

z1 + z2

1 + z1z2

)

By symmetry, we deduce the following derivatives of t1(z1, z2) with respect to z2

∂

∂z2

t1(z1, z2) = z1 g(
z1 + z2

1 + z1z2

) +
1− z1

2

1 + z1z2

g′z2(
z1 + z2

1 + z1z2

)

∂2

∂z1
2
t1(z1, z2) =

(1− z1
2)2

(1 + z1z2)3
g′′z2(

z1 + z2

1 + z1z2

)

Similarly, we can obtain the derivatives of t2(z1, z2) with respect to z1 as

∂

∂z1

t2(z1, z2) = −z2 g(
z1 − z2

1− z1z2

) +
1− z2

2

1− z1z2

g′z1(
z1 − z2

1− z1z2

)

∂2

∂z1
2
t2(z1, z2) =

(1− z2
2)2

(1− z1z2)3
g′′z1(

z1 − z2

1− z1z2

)
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and with respect to z2 as

∂

∂z2

t2(z1, z2) = −z1 g(
z1 − z2

1− z1z2

)− 1− z1
2

1− z1z2

g′z2(
z1 − z2

1− z1z2

)

∂2

∂z1
2
t1(z1, z2) =

(1− z1
2)2

(1− z1z2)3
g′′z2(

z1 − z2

1− z1z2

)

Hence, the concavity of t3(z1, z2) can be easily deduced from

∂2

∂z1
2
t3(z1, z2) =

(1− z2
2)2

(1 + z1z2)3
g′′z1(

z1 + z2

1 + z1z2

) +
(1− z2

2)2

(1− z1z2)3
g′′z1(

z1 − z2

1− z1z2

) ≤ 0

∂2

∂z2
2
t3(z1, z2) =

(1− z1
2)2

(1 + z1z2)3
g′′z2(

z1 + z2

1 + z1z2

) +
(1− z1

2)2

(1− z1z2)3
g′′z2(

z1 − z2

1− z1z2

) ≤ 0

since we already showed in Appendix A that the function g(u) is a concave function
with respect to variable u ∈ [0, 1].
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Appendix D

Given a channel W with E0(ρ1,W ) for 0 ≤ ρ1 ≤ 1, we want to know when
the binary erasure channel WBEC and the binary symmetric channel WBSC defined
through the equality

E0(ρ1,W ) = E0(ρ1,WBEC) = E0(ρ1,WBSC)

are extremal for the value of R(ρ2,W ) where 0 ≤ ρ2 ≤ 1. By the definition in (2.4)
and Lemma 4.1, we have

R(ρ2,W ) =
∂E0(ρ2,W )

∂ρ2

=
E[−∂g(ρ2, Z)/∂ρ2]

E[g(ρ2, Z)]

We want to check convexity of the function ∂g(ρ2, g
−1(ρ1, t))/∂ρ2 with respect to

variable t for fixed values of ρ1 and ρ2. This corresponds to checking the convexity
of the function

∂F1,ρ1,ρ2(t)

∂ρ2

=
∂

∂ρ2

g(ρ2, h(z, g−1(ρ1, t))) (D.1)

where h(z, u) = u for fixed values of ρ1 and ρ2. From Appendix A, we know we
can equivalently check the monotonicity of the following expression

∂

∂ρ2

h′(1, u)
g′(ρ2, h(1, u))

g′(ρ1, u)

=
∂

∂ρ2

2ρ1−ρ2h′(1, u)
α(ρ2, h(1, u))β(ρ2, h(1, u))

α(ρ1, u)β(ρ1, u)

=
∂

∂ρ2

2−ρ2α(ρ2, h(1, u))β(ρ2, h(1, u))

2−ρ1α(ρ1, u)β(ρ1, u)

=
2−ρ2α(ρ2, h(1, u))β(ρ2, h(1, u))

2−ρ1α(ρ1, u)β(ρ1, u)

(
∂2−ρ2α(ρ2, h(1, u))/∂ρ2

2−ρ2α(ρ2, h(1, u))
+
∂β(ρ2, h(1, u))/∂ρ2

β(ρ2, h(1, u))

)
=Φ(u, ρ1, ρ2)Ψ(u, ρ2) (D.2)

where

Φ(u, ρ1, ρ2) =
2−ρ2α(ρ2, h(1, u))β(ρ2, h(1, u))

2−ρ1α(ρ1, u)β(ρ1, u)
≥ 0

Ψ(u, ρ2) =

(
∂2−ρ2α(ρ2, h(1, u))/∂ρ2

2−ρ2α(ρ2, h(1, u))
+
∂β(ρ2, h(1, u))/∂ρ2

β(ρ2, h(1, u))

)
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∂

∂ρ2

2−ρ2α(ρ2, h(1, u)) =
∂

∂ρ2

(
1

2
+

1

2
f(u)

1
1+ρ2

)ρ2
=

(
1

2
+

1

2
f(u)

1
1+ρ2

)ρ2
log

(
1

2
+

1

2
f(u)

1
1+ρ2

)
+ ρ2

1
2
f(t)

1
1+ρ2

−1
(1+ρ2)2

log f(t)

1
2

+ 1
2
f(u)

1
1+ρ2


= 2−ρ2α(ρ2, h(1, u))log

(
1

2
+

1

2
f(u)

1
1+ρ2

)
− ρ2f(t)

1
1+ρ2

(1 + ρ2)
(

1 + f(t)
1

1+ρ2

) log f(t)


∂

ρ2

β(ρ2, h(1, u)) =
∂

ρ2

(
1− f(u)

−ρ2
1+ρ2

)
=

1

(1 + ρ2)2
f(u)

−ρ2
1+ρ2 log f(u)

Hence

Φ(u, ρ1, ρ2) =

(
1
2

+ 1
2
f(u)

1
1+ρ2

)ρ2 (
1− f(u)

−ρ2
1+ρ2

)
(

1
2

+ 1
2
f(u)

1
1+ρ1

)ρ1 (
1− f(u)

−ρ1
1+ρ1

) (D.3)

and

Ψ(u, ρ2) = log

(
1

2
+

1

2
f(u)

1
1+ρ2

)
+

1

(1 + ρ2)2
log f(u)

(
−ρ2

f(u)
1

1+ρ2

1 + f(u)
1

1+ρ2

+
1

f(u)
ρ2

1+ρ2 − 1

) (D.4)

To simplify derivations we define k = f(u). Taking derivative with respect to k

∂

∂k
Φ(k, ρ1, ρ2)Ψ(k, ρ2) = Φ′(k, ρ1, ρ2)Ψ(k, ρ2) + Φ(k, ρ1, ρ2)Ψ′(k, ρ2)

= Φ(k, ρ1, ρ2)Ψ(k, ρ2)

(
∂ log Φ(k, ρ1, ρ2)

∂k
+

Ψ′(k, ρ2)

Ψ(k, ρ2)

)
where we abuse notation to redefine functions as

Φ(k, ρ1, ρ2) =

(
1
2

+ 1
2
k

1
1+ρ2

)ρ2 (
1− k

−ρ2
1+ρ2

)
(

1
2

+ 1
2
k

1
1+ρ1

)ρ1 (
1− k

−ρ1
1+ρ1

)
Ψ(k, ρ2) = log

(
1

2
+

1

2
k

1
1+ρ2

)
+

1

(1 + ρ2)2

1 + k
1

1+ρ2 − ρ2

(
k − k

1
1+ρ2

)
(

1 + k
1

1+ρ2

)(
k

ρ2
1+ρ2 − 1

)
 log k

= log

(
1

2
+

1

2
k

1
1+ρ2

)
+

(
1 + k

1
1+ρ2 − ρ2

(
k − k

1
1+ρ2

))
log k

(1 + ρ2)2 γ(k, ρ2)
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where

γ(k, ρ2) =
(

1 + k
1

1+ρ2

)(
k

ρ2
1+ρ2 − 1

)
≤ 0 (D.5)

We now derive the expressions in the above equation

log Φ(k, ρ1, ρ2) = ρ2 log

(
1

2
+

1

2
k

1
1+ρ2

)
+ log

(
1− k

−ρ2
1+ρ2

)
− ρ1 log

(
1

2
+

1

2
k

1
1+ρ1

)
− log

(
1− k

−ρ1
1+ρ1

)
⇒ ∂ log Φ(k, ρ1, ρ2)

∂k
=

ρ2

1 + ρ2

k
−ρ2
1+ρ2

1 + k
1

1+ρ2

+
ρ2

1 + ρ2

k
−ρ2
1+ρ2

−1

1− k
−ρ2
1+ρ2

− ρ1

1 + ρ1

k
−ρ1
1+ρ1

1 + k
1

1+ρ1

− ρ1

1 + ρ1

k
−ρ1
1+ρ1

−1

1− k
−ρ1
1+ρ1

=
ρ2

1 + ρ2

1 + k

k
(

1 + k
1

1+ρ2

)(
k

ρ2
1+ρ2 − 1

) − ρ1

1 + ρ1

1 + k

k
(

1 + k
1

1+ρ1

)(
k

ρ1
1+ρ1 − 1

)
= F (k, ρ2)− F (k, ρ1)

where

F (k, ρ) =
ρ

1 + ρ

1 + k

k

1

γ(k, ρ)
(D.6)

and

Ψ′(k, ρ2) =
1

1 + ρ2

k
− ρ2

1+ρ2

1 + k
1

1+ρ2

+
1

(1 + ρ2)2

1

k

(
−ρ2

k
1

1+ρ2

1 + k
1

1+ρ2

+
1

k
ρ2

1+ρ2 − 1

)

+
1

(1 + ρ2)2 log k

 −ρ2

1 + ρ2

k
− ρ2

1+ρ2(
1 + k

1
1+ρ2

)2 −
ρ2

1 + ρ2

k
−1

1+ρ2(
k

ρ2
1+ρ2 − 1

)2


=

1− k
−ρ2
1+ρ2

(1 + ρ2) γ(k, ρ2)
+

(
1 + k

1
1+ρ2 − ρ2

(
k − k

1
1+ρ2

))
(1 + ρ2)2 k γ(k, ρ2)

−
ρ2 (k + 1)

(
k

ρ2
1+ρ2 + k

1
1+ρ2

)
log k

(1 + ρ2)3 k γ2(k, ρ2)

=
k + 1

(1 + ρ2)2 k γ(k, ρ2)
−
ρ2 (k + 1)

(
k

ρ2
1+ρ2 + k

1
1+ρ2

)
log k

(1 + ρ2)3 k γ2(k, ρ2)

=
1

ρ2(1 + ρ2)
F (k, ρ2)

1−
ρ2

(
k

ρ2
1+ρ2 + k

1
1+ρ2

)
log k

(1 + ρ2)
(

1 + k
1

1+ρ2

)(
k

ρ2
1+ρ2 − 1

)


(D.7)

52



Now, we show that Ψ′(k, ρ2) ≤ 0. Since F (k, ρ2) ≤ 0, it is sufficient to show that
the term inside the paranthesis is positive, i.e.,

ρ2

(
k

ρ2
1+ρ2 + k

1
1+ρ2

)
log k

(1 + ρ2)
(

1 + k
1

1+ρ2

)(
k

ρ2
1+ρ2 − 1

) ≤ 1.

Note that the factor
k

ρ2
1+ρ2 + k

1
1+ρ2

1 + k
1

1+ρ2

≤ 1.

In the other hand, using log k ≤ k − 1, we get for the remaining factor

ρ2 log k

(1 + ρ2)
(
k

ρ2
1+ρ2 − 1

) ≤ ρ2(1− k)

(1 + ρ2)
(

1− k
ρ2

1+ρ2

) =
s(1− k)

(1− ks)
, µ(k, s).

where we defined s =
ρ2

1 + ρ2

∈ [0, 1/2]. Next, we prove that µ(k, s) ≤ 1.

∂

∂s
µ(k, s) =

(1− k)(1− ks + ks log k)

(−1 + ks)2
.

We will show that
∂

∂s
µ(k, s) ≥ 0. Since for s = 1/2,

µ(k, s) =
1 +
√
k

2
≤ 1 for ∀k ∈ [0, 1]

it follows that µ(k, s) ≤ 1 as required.
Let t = s log k ∈ [1/2 log k, 0]. Then,

1− ks + ks log k = 1− et + tet , `(t).

Note that,
∂

∂t
`(t) = tet ≤ 0.

Moreover at t = 0, `(t) = 0. Hence, `(t) ≥ 0 for t ∈ [1/2 log k, 0]. This proves

that
∂

∂s
µ(k, s) ≥ 0 holds.

Recall that we are interested in the sign of the following expression

∂

∂k
Φ(k, ρ1, ρ2)Ψ(k, ρ2) = Φ(k, ρ1, ρ2)Ψ(k, ρ2)

(
Ψ′(k, ρ2)

Ψ(k, ρ2)
+ F (k, ρ2)− F (k, ρ1)

)
(D.8)

We also have

Ψ′(k, ρ) ≤ 0

⇒Ψ(k, ρ) ≥ lim
k→1

Ψ(1, ρ) =
2

(1 + ρ)2 lim
k→1

log k

γ(k, ρ)
=

1

ρ (1 + ρ)
≥ 0

(D.9)
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since

lim
k→1

log k

γ(k, ρ)
=

0

0
= lim

k→1

∂ log k/∂k

∂γ(k, ρ)/∂k
= lim

k→1

k + ρk

k
(
k + ρk − k

1
1+ρ + gk

ρ
1+ρ

) =
1 + ρ

2ρ

We conclude that the function defined in (D.1) is concave with respect to t when
ρ1 = ρ2 since

Φ(k, ρ1, ρ2)︸ ︷︷ ︸
≥0

Ψ(k, ρ2)

(
Ψ′(k, ρ2)

Ψ(k, ρ2)
+ F (k, ρ2)− F (k, ρ1)ρ1=ρ2

)
≤ 0

holds. Therefore, we have
Ψ′(k, ρ2)

Ψ(k, ρ2)
+ F (k, ρ2) ≤ F (k, ρ1)ρ1=ρ2 . (D.10)

We observe that if the function F (k, ρ) is monotonic in ρ, we can easily deduce a
relation between ρ1 and ρ2 6= ρ1 where equation (D.10) still holds and the expres-
sion in (D.8) is still negative. We prove in Appendix E, that the function F (k, ρ) is
decreasing in ρ ∈ [0, 1]. Consequently, this proves that the expression in (D.1) is
concave when ρ1 ≤ ρ2.

On the other hand, the results of the numerical experiment shown in Figure 4.1
suggests some (ρ1, ρ2) pairs such that ρ2 ≤ ρ1 might also be extremal. In the se-
quel, we disprove that the expression in (D.1) is concave when ρ1 > ρ2 providing
a counter example. Hence, the extremality in the case ρ1 > ρ2 is not based on the
concavity of (D.1).

Let us try to analyze the limiting case when k = 1.

lim
k→1

Φ(k, ρ1, ρ2) =
(1 + ρ1) ρ2

ρ1 (1 + ρ2)

lim
k→1

Ψ(k, ρ2) =
1

ρ2 (1 + ρ2)

lim
k→1

Ψ′(k, ρ2)

Ψ(k, ρ2)
= lim

k→1

(1 + ρ2)
ρ2

−

(
k

ρ2
1+ρ2 + k

1
1+ρ2

)
log k

γ(k, ρ2)

(1 + ρ2)2 log
(

1
2

+ 1
2
k

1
1+ρ2

)
+

(
1 + k

1
1+ρ2 − ρ2

(
k − k

1
1+ρ2

))
log k

γ(k, ρ2)

= 0

lim
k→1

F (k, ρ2)− F (k, ρ1) =
ρ2

(1 + ρ2)
(
k

ρ2
1+ρ2 − 1

) − ρ1

(1 + ρ1)
(
k

ρ1
1+ρ1 − 1

) =∞−∞

To simplify notation we define s1 = ρ1
1+ρ1

and s2 = ρ2
1+ρ2

.

lim
k→1

s2

ks2 − 1
− s1

ks1 − 1
= lim

k→1

s2 (ks1 − 1)− s1 (ks2 − 1)

(ks1 − 1) (ks1 − 1)
=

0

0

lim
k→1

s1s2 (ks1 − ks2)
s2ks2 (ks1 − 1) + s1ks1 (ks2 − 1)

=
0

0

lim
k→1

s1s2 (s1k
s1 − s2k

s2)

ks1+s2 (s1 + s2)2 − s2
1k

s1 − s2
2k

s2
=
s1 − s2

2
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Therefore using the product rule of limits, we conclude that

lim
k→1

Φ(k, ρ1, ρ2)Ψ(k, ρ2)

(
Ψ′(k, ρ2)

Ψ(k, ρ2)
+ F (k, ρ2)− F (k, ρ1)

)
=2−1 (1 + ρ1)

ρ1 (1 + ρ2)2

(
ρ1

1 + ρ1

− ρ2

1 + ρ2

)
The fact that ρ/(1 + ρ) is increasing in ρ implies that the next inequalities hold

lim
k→1

Φ(k, ρ1, ρ2)Ψ(k, ρ2)

(
Ψ′(k, ρ2)

Ψ(k, ρ2)
+ F (k, ρ2)− F (k, ρ1)

)
≥ 0 for ρ1 > ρ2

lim
k→1

Φ(k, ρ1, ρ2)Ψ(k, ρ2)

(
Ψ′(k, ρ2)

Ψ(k, ρ2)
+ F (k, ρ2)− F (k, ρ1)

)
≤ 0 for ρ1 ≤ ρ2

As a consequence, we know that when k → 1 the expression in (D.8) is always
positive for ρ1 > ρ2. This in turn implies that the concavity region of (D.1) is
limited to ρ1 ≤ ρ2 values.
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E

Appendix E

In this appendix, we prove that the function F (k, ρ) defined in (D.6) is a decreasing
function in ρ ∈ [0, 1].

For convenience, we define the function H(k, ρ) = −F (k, ρ) as

H(k, ρ) =
ρ

1 + ρ

1(
1 + k

1
1+ρ

)(
1− k

ρ
1+ρ

) ≥ 0 (E.1)

where k ∈ [0, 1]. We note that instead of F (k, ρ), we can also check the monotonic-
ity of H(k, ρ) with respect to ρ.

We now follow a series of transformations. Let

t =
ρ

1 + ρ
for t ∈ [0,

1

2
]

Then, (E.1) reduces to

H(k,
t

1− t
) =

t

(1− kt) (1 + k1−t)

In addition, let

s = −t ln k for t ∈ [0,
1

2
ln

1

k
]

Then,

H(k,
−s

log k + s
) =

1

log 1
k

s

1− e−s
1

1 + kes
(E.2)

We note that the first fraction in (E.2) can be treated as a constant and we ignore it.
We define the variable a = 1

k
≥ 1. For simplicity, we consider the function

1

H(k, −s
log k+s

)
= ln

1

k︸︷︷︸
constant

1− e−s

s
(a+ es)
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We first show that ln
(

1− e−s
s (a+ es)

)
is a convex function for all s ≥ 0. Taking

the first derivative with respect to s, we obtain

∂

∂s

(
− ln s+ ln

(
1

1− e−s

)
+ ln

(
es

a+ es

))
= −1

s
+

es

a+ es
+

1

es − 1
(E.3)

Taking the second derivative in s, we get

∂2

∂s2

(
− ln s+ ln

(
1

1− e−s

)
+ ln

(
es

a+ es

))
=

1

s2
+

aes

(a+ es)2
− es

(es − 1)2

≥ 1

s2
− es

(es − 1)2

=
1

s2
−
(

1

e
s
2 + e

−s
2

)2

=
1

s2
− 1(

2 sinh s2

)2

≥ 0

where the last inequality follows from sinhx Taylor expansion

sinhx =
∞∑
n=0

x2n+1

(2n+ 1)!
= x+

x3

3!
+
x5

5!
≥ x

We proved that ln
(

1− e−s
s (a+ es)

)
is a convex function for all s ≥ 0. There-

fore the function has only one minimum, and to decide whether the expression is
decreasing in s ∈ [0, 1

2
ln a], it is sufficient to evaluate (E.3) at s = 1

2
ln a.

∂

∂s

(
− ln s+ ln

(
1

1− e−s

)
+ ln

(
es

a+ es

))∣∣∣
s= 1

2
ln a

=− 1

ln
√
a

+

√
a

a+
√
a

+
1√
a− 1

=− 1

ln
√
a

+
2
√
a

a− 1

≤ 0

since for b =
√
a ≥ 1, we can show that

b2 − 1

2b
− ln b ≥ 0 (E.4)

Taking the first derivative of (E.4) with respect to b, we get

∂

∂b

b2 − 1

2b
− ln b =

1

2
+

1

2b2
− 1

b
=

(b− 1)2

2b2
≥ 0

57



Therefore, we proved that for each k ∈ [0, 1] the function 1
H(k, −s

log k+s
)

is decreasing

in s. By definition, the variable t is increasing in ρ, and −t ln k is also increasing in
s for a given k. As a consequence, the function F (k, ρ) = −H(k, ρ) is decreasing
in ρ.
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