

Simultaneous or incremental identification of reaction systems?

4th EuCheMS Chemistry Congress 26 – 30 August 2012, Prague – Czech Republic

Julien Billeter, Sriniketh Srinivasan and Dominique Bonvin

Ecole Polytechnique Fédérale de Lausanne
Laboratoire d'Automatique
Switzerland

Kinetic investigation From measurements to rate expressions

Experiments, measurements

Library of

rate laws

- 1) Simultaneous approach
- 2 Incremental approach (rate-based)
- (3) Incremental approach (extent-based)

Differential mole balance equations

Gas phase

 S_g species, p_m mass transfers, p_g inlets and 1 outlet

$$\dot{\mathbf{n}}_{g}(t) = -\mathbf{W}_{\text{m,g}} \boldsymbol{\zeta}(t) + \mathbf{W}_{\text{in,g}} \mathbf{u}_{\text{in,g}}(t) - \frac{u_{\text{out,g}}(t)}{m_{g}(t)} \mathbf{n}_{g}(t), \quad \mathbf{n}_{g}(0) = \mathbf{n}_{g0}$$

Liquid phase

 S_l species, R reactions, p_m mass transfers, p_l inlets and 1 outlet

$$\dot{\mathbf{n}}_{l}(t) = \mathbf{N}^{\mathrm{T}} V_{l}(t) \mathbf{r}(t) + \mathbf{W}_{\mathrm{m},l} \boldsymbol{\zeta}(t) + \mathbf{W}_{\mathrm{in},l} \mathbf{u}_{\mathrm{in},l}(t) - \frac{u_{\mathrm{out},l}(t)}{m_{l}(t)} \mathbf{n}_{l}(t),$$

$$(S_{l} \times 1) \quad (R \times S_{l}) \quad (R \times 1) \quad (S_{l} \times p_{\mathrm{m}})(p_{\mathrm{m}} \times 1) \quad (S_{l} \times p_{l})(p_{l} \times 1)$$

Assumptions: G and L phases are homogeneous, reactions take place in the L phase only, mass transfers occur with no accumulation in the film, mass transfer rates are positive from G to L phase.

Remark: For a subset of measured concentrations, $S_l = S_{l,a} + S_{l,u}$, dimensions are adapted...

 $(S_i \times 1)$

Simultaneous model identification

The simultaneous model identification proceeds in **one step**:

Model identification

A kinetic model comprising **all reaction and mass transfer** rate laws is postulated and a **coupled** regression problem is solved using the **integral method** of parameters estimation:

$$\min_{\boldsymbol{\theta}_{m}} \|\mathbf{n}_{l,a}(t) - \hat{\mathbf{n}}_{l,a}(t, \boldsymbol{\theta}_{rm})\|^{2}$$
s.t.
$$\hat{\mathbf{n}}_{l}(t, \boldsymbol{\theta}_{rm}) = \mathbf{N}^{T}V_{l}(t)\mathbf{r}(t, \boldsymbol{\theta}_{r}) + \mathbf{W}_{m,l}\boldsymbol{\zeta}(t, \boldsymbol{\theta}_{m}) + \mathbf{W}_{in,l}\mathbf{u}_{in,l}(t) - \frac{u_{\text{out},l}(t)}{m_{l}(t)}\hat{\mathbf{n}}_{l}(t), \qquad \hat{\mathbf{n}}_{l}(0) = \mathbf{n}_{l0}$$

$$\boldsymbol{\theta}_{r}^{L} \leq \boldsymbol{\theta}_{r} \leq \boldsymbol{\theta}_{r}^{U}$$

$$\boldsymbol{\theta}_{m}^{L} \leq \boldsymbol{\theta}_{m} \leq \boldsymbol{\theta}_{m}^{U}$$

Incremental model identification

The kinetic problem is decomposed into sub-problems of lower complexity.

The incremental model identification proceeds in **two steps**:

1. Transformation

Computation of the contribution of each reaction and each mass transfer as *rates* or *extents* (+ *state reconstruction* if necessary)

2. Model identification

Individual identification of each reaction rate law and each mass-transfer rate expression from *rates* or *extents*

Rate-based incremental identification

1. Transformation

Computation of rates via <u>differentiation</u> of the measured concentrations

$$\begin{bmatrix} V_{l}(t)\mathbf{r}(t) & \boldsymbol{\zeta}(t) \end{bmatrix}^{T} = \begin{bmatrix} \mathbf{N}_{a}^{T} & \mathbf{W}_{m,l,a} \end{bmatrix}^{+} \left(\frac{d}{dt} \begin{bmatrix} \mathbf{n}_{l,a} \end{bmatrix}(t) - \mathbf{W}_{\text{in},l,a}\mathbf{u}_{\text{in},l,a}(t) + \frac{u_{\text{out},l}(t)}{m_{l}(t)}\mathbf{n}_{l,a}(t) \right)$$

$$rank = R + p_{m}$$

State reconstruction (by integration):

$$\dot{\mathbf{n}}_{l,u}(t) = \mathbf{N}_{u}^{\mathrm{T}} V_{l}(t) \mathbf{r}(t) + \mathbf{W}_{\mathrm{m},l,u} \boldsymbol{\zeta}(t) + \mathbf{W}_{\mathrm{in},l,u} \mathbf{u}_{\mathrm{in},l}(t) - \frac{u_{\mathrm{out},l}(t)}{m_{l}(t)} \mathbf{n}_{l,u}(t), \qquad \mathbf{n}_{l,u}(0) = \mathbf{n}_{l0,\mathrm{u}}$$

2. Model identification

A rate law for **each rate of reaction** and **each rate of mass transfer** is postulated and $R+p_m$ regression problems are solved **individually**:

$$\min_{\boldsymbol{\theta}_{r,i}} \| \boldsymbol{r}_{i}(t) - \hat{\boldsymbol{r}}_{i}(t, \boldsymbol{\theta}_{r,i}) \|^{2} \qquad \boldsymbol{\theta}_{r,i}^{L} \leq \boldsymbol{\theta}_{r,i} \leq \boldsymbol{\theta}_{r,i}^{U} \qquad \min_{\boldsymbol{\theta}_{m,j}} \| \boldsymbol{\zeta}_{j}(t) - \hat{\boldsymbol{\zeta}}_{j}(t, \boldsymbol{\theta}_{m,j}) \|^{2} \qquad \boldsymbol{\theta}_{m,j}^{L} \leq \boldsymbol{\theta}_{m,j} \leq \boldsymbol{\theta}_{m,j}^{U} \\
i = 1, \dots, R \qquad \qquad j = 1, \dots, p_{m}$$

Extent-based incremental identification (Transformation)

1. Transformation

1a: Computation of $R+p_m+p_l+1$ extents

$$\begin{bmatrix} \mathbf{x}_{r}(t) \\ \mathbf{x}_{m,l}(t) \\ \mathbf{x}_{in,l}(t) \\ \lambda_{l}(t) \end{bmatrix} = \mathcal{L}_{a} \mathbf{n}_{l,a}(t)$$

$$\operatorname{rank}\left(\left[\begin{array}{cc} \mathbf{N}_{a}^{\mathrm{T}} & \mathbf{W}_{\mathrm{m},l,a} & \mathbf{W}_{\mathrm{in},l,a} & \mathbf{n}_{l0,a} \end{array}\right]\right) = R + p_{\mathrm{m}} + p_{l} + 1$$

$$\begin{cases} \dot{\mathbf{x}}_{r}(t) = V_{l}(t)\mathbf{r}(t) - \tau_{\text{out},l}^{-1}(t)\mathbf{x}_{r}(t), & \mathbf{x}_{r}(0) = \mathbf{0}_{R} \\ \dot{\mathbf{x}}_{\text{m},l}(t) = \boldsymbol{\zeta}(t) - \boldsymbol{\tau}_{\text{out},l}^{-1}(t)\mathbf{x}_{\text{m},l}(t), & \mathbf{x}_{\text{m},l}(0) = \mathbf{0}_{p_{\text{m}}} \\ \dot{\mathbf{x}}_{\text{in},l}(t) = \mathbf{u}_{\text{in},l}(t) - \boldsymbol{\tau}_{\text{out},l}^{-1}(t)\mathbf{x}_{\text{in},l}(t), & \mathbf{x}_{\text{in},l}(0) = \mathbf{0}_{p_{l}} \\ \dot{\lambda}_{l}(t) = -\boldsymbol{\tau}_{\text{out},l}^{-1}(t)\lambda_{l}(t), & \lambda_{l}(0) = 1 \end{cases}$$
with $\boldsymbol{\tau}_{\text{out},l}^{-1}(t) = \boldsymbol{u}_{\text{out},l}(t)\boldsymbol{m}_{l}^{-1}(t)$

1b: Computation of $R+p_{\rm m}$ extents (rank $< R+p_{\rm m}+p_l+1$)

$$\begin{bmatrix} \mathbf{X}_{r}(t) \\ \mathbf{X}_{m,l}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{N}_{a}^{T} & \mathbf{W}_{m,l,a} \end{bmatrix}^{+} (\mathbf{n}_{l,a}(t) - \mathbf{W}_{in,l,a} \mathbf{X}_{in,l}(t) - \mathbf{n}_{l0,a} \lambda_{l}(t))$$

$$rank = R + p_{m}$$

State reconstruction: $\mathbf{n}_{l,u}(t) = \mathbf{N}_{u}^{\mathrm{T}} \mathbf{x}_{\mathrm{r}}(t) + \mathbf{W}_{\mathrm{m},l,u} \mathbf{x}_{\mathrm{m},l}(t) + \mathbf{W}_{\mathrm{in},l,u} \mathbf{x}_{\mathrm{in},l}(t) + \mathbf{n}_{l0,u} \lambda_{l}(t)$ (no integration)

Extent-based incremental identification (Identification)

2. Model identification

A rate law for **each extent of reaction** and **each extent of mass transfer** is postulated and $R+p_{\rm m}$ regression problems are solved <u>individually</u> using the <u>integral method</u> of parameters estimation:

$$\min_{\boldsymbol{\theta}_{r,i}} \| \mathbf{x}_{r,i}(t) - \hat{\mathbf{x}}_{r,i}(t,\boldsymbol{\theta}_{r,i}) \|^{2} \qquad i = 1,...,R$$
s.t.
$$\hat{x}_{r,i}(t,\boldsymbol{\theta}_{r,i}) = V_{l}(t) r_{i}(t,\boldsymbol{\theta}_{r,i}) - u_{\text{out},l}(t) m_{l}^{-1}(t) \hat{x}_{r,i}(t), \qquad \hat{x}_{r,i}(0) = 0$$

$$\boldsymbol{\theta}_{r,i}^{L} \leq \boldsymbol{\theta}_{r,i} \leq \boldsymbol{\theta}_{r,i}^{U}$$

$$\min_{\boldsymbol{\theta}_{m,j}} \| \mathbf{x}_{m,l,j}(t) - \hat{\mathbf{x}}_{m,l,j}(t,\boldsymbol{\theta}_{m,j}) \|^{2} \qquad j = 1,...,p_{m}$$
s.t.
$$\hat{x}_{m,l,j}(t,\boldsymbol{\theta}_{m,j}) = \boldsymbol{\zeta}_{j}(t,\boldsymbol{\theta}_{m,j}) - u_{\text{out},l}(t) m_{l}^{-1}(t) \hat{x}_{m,l,j}(t), \qquad \hat{x}_{m,l,j}(0) = 0$$

$$\boldsymbol{\theta}_{m,j}^{L} \leq \boldsymbol{\theta}_{m,j} \leq \boldsymbol{\theta}_{m,j}^{U}$$

Case study Acetoacetylation of pyrrole

The acetoacetylation of pyrrole (A) with diketene (B) in toluene (T) is a **homogeneous** reaction system catalyzed by pyridine (G).

This reaction system involves $S_1 = 8$ species (including the solvent) and R = 4 reactions.

The main reaction (**R1**) between pyrrole and diketene produces 2-acetoacetyl pyrrole (C). The side reactions include the dimerization (**R2**) of diketene to dehydroacetic acid (D), the oligomerization (**R3**) of diketene to oligomers (E) and the reaction (**R4**) of diketene and acetoacetyl pyrrole to py-product (F).

R1:
$$A + B \xrightarrow{G} C$$
 $r_1 = k_1 c_{l,A} c_{l,B} c_{l,G}$
R2: $B + B \xrightarrow{G} D$ $r_2 = k_2 c_{l,B}^2 c_{l,G}$
R3: $B \xrightarrow{G} E$ $r_3 = k_3 c_{l,B}$
R4: $C + B \xrightarrow{G} F$ $r_4 = k_4 c_{l,C} c_{l,B} c_{l,G}$

Case study Experimental conditions

The experiment is performed in a CSTR, assuming a constant density, with an inlet of pure diketene B ($p_l = 1$) and one outlet. All the terms of mass transfer vanish...

$$\mathbf{u}_{\text{in},l} = u_{\text{out},l} = 151.34 \text{ g min}^{-1}$$
 $V_l = 1 \text{ L}, \text{ m}_l = 1.022 \text{ kg}$
 $M_{w,B} = 84.08 \text{ g mol}^{-1}, w_{\text{in,B}} = 1$

	Scenario 1 Base case	Scenario 2 High noise	Scenario 3 Fewer meas. conc.	Scenario 4 Fewer time points
Noise level	1%	10%	1%	1%
Measured species concentrations	A-F	A - F	B-F	A-F
Measured time points over 30 min	150 (0.2 min)	150 (0.2 min)	150 (0.2 min)	20 (1.5 min)

Case study

Transformation into rates / extents

1)
$$\mathbf{r}(t) = V_l^{-1}(t) \mathbf{N}_a^{\mathrm{T+}} \left(\frac{d}{dt} \left[\mathbf{n}_{l,a} \right](t) - \mathbf{W}_{\mathrm{in},l,a} \mathbf{u}_{\mathrm{in},l,a}(t) + \frac{u_{\mathrm{out},l}(t)}{m_l(t)} \mathbf{n}_{l,a}(t) \right)$$

Measurements

$$\operatorname{rank}\left(\left[\begin{array}{cc} \mathbf{N}_{a}^{\mathrm{T}} & \mathbf{W}_{\operatorname{in},l,a} & \mathbf{n}_{l0,a} \end{array}\right]\right) = R + p_{l} + 1 = 0$$

Case study Model identification

	Rate constant 1)	Simulated value	Rate-bas Estimate	sed method [95% C.I.]	Extent-b Estimate	ased method [95% C.I.]	Simultar Estimate	eous method [95% C.I.] ²⁾
1 – Base case	k_1	0.0530	0.0501	[0.0446, 0.0556]	0.0533	[0.0528, 0.0538]	0.0526	[0.0519, 0.0533]
	k_2	0.1280	0.1281	[0.1267, 0.1295]	0.1280	[0.1280, 0.1280]	0.1281	[0.1280, 0.1283]
	k_3	0.0280	0.0279	[0.0275, 0.0283]	0.0280	[0.0280, 0.0280]	0.0280	[0.0279, 0.0281]
2 – High noise	k_1	0.0530	0.0723	[0.0328, 0.1118]	0.0461	[0.0418, 0.0504]	0.0553	[0.0479, 0.0626]
	k_2	0.1280	0.1273	[0.1232, 0.1314]	0.1283	[0.1279, 0.1283]	0.1288	[0.1275, 0.1301]
	k_3	0.0280	0.0279	[0.0265, 0.0293]	0.0285	[0.0281, 0.0289]	0.0278	[0.0275, 0.0281]
3 – Fewer measured concentrations	k_1	0.0530	0.0455	[0.0329, 0.0581]	0.0489	[0.0479, 0.0499]	0.0514	[0.0479, 0.0549]
	k_2	0.1280	0.1269	[0.1248, 0.1290]	0.1283	[0.1279, 0.1286]	0.1280	[0.1277, 0.1287]
	k_3	0.0280	0.0272	[0.0263, 0.0281]	0.0280	[0.0279, 0.0280]	0.0280	[0.0278, 0.0281]
4 – Fewer time points	k_1	0.0530	0.0457	[0.0247, 0.0667]	0.0495	[0.0438, 0.0553]	0.0460	[0.0395, 0.0525]
	k_2	0.1280	0.1278	[0.1260, 0.1297]	0.1281	[0.1257, 0.1305]	0.1279	[0.1273, 0.1285]
	k_3	0.0280	0.0275	[0.0270, 0.0280]	0.0282	[0.0278, 0.0285]	0.0280	[0.0275, 0.0285]

¹⁾ The 4th reaction is excluded from the analysis due to lack of structural identifiability

²⁾ $Corr(k_1, k_2) = -0.03$, $Corr(k_1, k_3) = -0.07$, $Corr(k_2, k_3) = -0.04$

Case study Model discrimination power

	Right rate law 1)	Wrong rate law 1)	Rate-based method T-criterion ²⁾	Extent-based method T-criterion ²⁾	Simultaneous method T-criterion ²⁾
1 – Base case	1a	1b	29	35	1 476
	2a	2b	210	1 595	16 400
	3a	3b	123	2 568	7 569
2 – High noise	1a	1b	9	8	1 221
	2a	2b	412	1 589	15 010
	3a	3b	76	458	2 876
3 – Fewer measured concentrations	1a	1b	15	26	1 252
	2a	2b	214	1 442	15 690
	3a	3b	342	348	3 784
4 – Fewer time	1a	1b	0.9	1.2	1.4
points	2a	2b	0.3	1.8	13
	3a	3b	2	48	63

^{1) (1}a) $r_1 = k_1 c_{l,A} c_{l,B} c_{l,G}$ (1b) $r_1 = k_1 c_{l,A} c_{l,B}^2 c_{l,G}$ (2a) $r_2 = k_2 c_{l,B}^2 c_{l,G}$ (2b) $r_2 = k_2 c_{l,B}^3 c_{l,G}$ (3a) $r_3 = k_3 c_{l,B}$ (3b) $r_3 = k_3 c_{l,B}^2 c_{l,G}$

2)
$$T = \frac{(\hat{\mathbf{c}}_{ib} - \hat{\mathbf{c}}_{ia})^{\mathrm{T}}(\hat{\mathbf{c}}_{ib} - \hat{\mathbf{c}}_{ia})}{2\sigma^{2} + \sigma_{ib}^{2} + \sigma_{ia}^{2}}$$
 according to G. Buzzi-Ferraris and P. Forzatti, *Chem. Eng. Sci.* 38 (**1983**), 225

Case study Computational time

	Rate-bas Without MT	eed method ¹⁾ ²⁾ With MT ²⁾		ased method 1) 2 With MT 2)	Simultaneous method 1)
1 – Base case	3.1	3.6	6.2	6.7	16.2
2 – High noise	3.4	4.2	6.7	7.5	17.0
3 – Fewer measured concentrations	4.6	5.2	8.3	8.9	19.2
4 – Fewer time points	1.2	1.3	3.6	3.7	10.3

¹⁾ Computational time in minutes using a PC with 2.2 GHz Intel Core 2 Duo processor, 2 GB RAM

²⁾ MT = Model Tuning by simultaneous method

Conclusion

It is advisable to combine the **extent-based** incremental method with a final adjustment of the rate parameters using the **simultaneous** method of identification...

Thank you for your attention

References

- J. Billeter, S. Srinivasan, D. Bonvin Extent-based kinetic identification using spectroscopic measurements and multivariate calibration *Anal. Chim. Acta.*, submitted (2012)
- N. Bhatt, N. Kerimoglu, M. Amrhein, W. Marquardt, D. Bonvin Incremental identification of reaction systems A comparison between rate-based and extent-based approaches *Chem. Eng. Sci.*, in press (2012)
- N. Bhatt, M. Amrhein and D. Bonvin
 Incremental identification of reaction and mass-transfer kinetics using the concept of extents
 Ind. Eng. Chem. Res. 50 (2011), 12960
- C. Michalik, M. Brendel, W. Marquardt Incremental identification of fluid multi-phase reaction systems *AIChE J.* 55 (**2009**), 1009
- M. Brendel, D. Bonvin, W. Marquardt
 Incremental identification of kinetic models for homogeneous reaction systems
 Chem. Eng. Sci. 61 (2006), 5404
- A. Bardow, W. Marquardt Incremental and simultaneous identification of reaction kinetics: methods and comparison *Chem. Eng. Sci.* 59 (**2004**), 2673