000176450 001__ 176450
000176450 005__ 20190316235349.0
000176450 022__ $$a0022-4049
000176450 02470 $$2ISI$$a000302105500012
000176450 0247_ $$2doi$$a10.1016/j.jpaa.2011.12.012
000176450 037__ $$aARTICLE
000176450 245__ $$aMultiplicative structure in equivariant cohomology
000176450 269__ $$a2012
000176450 260__ $$bElsevier$$c2012
000176450 336__ $$aJournal Articles
000176450 520__ $$aWe introduce the notion of a strongly homotopy-comultiplicative resolution of a module coalgebra over a chain Hopf algebra, which we apply to proving a comultiplicative enrichment of a well-known theorem of Moore concerning the homology of quotient spaces of group actions. The importance of our enriched version of Moore's theorem lies in its application to the construction of useful cochain algebra models for computing multiplicative structure in equivariant cohomology.
000176450 6531_ $$aAlgebraic Model
000176450 6531_ $$aHomology
000176450 700__ $$g105396$$aHess, Kathryn$$0240499
000176450 773__ $$j216$$tJournal Of Pure And Applied Algebra$$q1680-1699
000176450 8564_ $$uhttps://infoscience.epfl.ch/record/176450/files/HtpyOrb_published.pdf$$zPostprint$$s349732$$yPostprint
000176450 909C0 $$xU10968$$0252139$$pUPHESS
000176450 909CO $$ooai:infoscience.tind.io:176450$$qGLOBAL_SET$$pSV$$particle
000176450 917Z8 $$x105396
000176450 937__ $$aEPFL-ARTICLE-176450
000176450 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000176450 980__ $$aARTICLE