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Abstract We show that smooth, radially symmetric wave maps U from R
2+1 to a compact

target manifold N , where ∂r U and ∂tU have compact support for any fixed time, scatter. The
result will follow from the work of Christodoulou and Tahvildar-Zadeh, and Struwe, upon
proving that for λ′ ∈ (0, 1), energy does not concentrate in the set

K λ′
5
8 T, 7

8 T
= {(x, t) ∈ R

2+1| |x | ≤ λ′t, t ∈ [(5/8)T, (7/8)T ]}.

Mathematics Subject Classification (2000) 58J45 · 35L05

1 Introduction

In this work we consider the initial value problem for wave maps from R
2+1 to a compact

target manifold (N , 〈·, ·〉),
{

∂α∂αU = B(U )(∂αU, ∂αU ),

U (x, 0) = U0(x), ∂tU (x, 0) = U1(x), x ∈ R
2,

(1.1)

where B is the second fundamental form of (N , 〈·, ·〉) ↪→ R
d . Much is known about this

system; we refer readers to [3,7], and references therein.
Concerning radially symmetric wave maps, Christodoulou and Tahvildar-Zadeh in [2]

proved global well-posedness for smooth wave maps to targets that satisfied certain bounds
on the second fundamental form of geodesic spheres, in addition to being either compact or
having bounded structure functions. These results were obtained by showing that energy does
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428 J. Nahas

not concentrate at the origin, along with pointwise estimates on the fundamental solution to
the linear problem.

Struwe in [4] extended this result to radially symmetric wave maps from R
2+1to spheres

Sk, and later in [6] to general targets, by showing with energy estimates and rescaling, that
energy cannot concentrate at the origin. Concerning asymptotic behavior for radially symmet-
ric wave maps, Christodoulou and Tahvildar-Zadeh in [1] proved pointwise estimates which
imply scattering for smooth wave maps that differ from a constant map within a compact set
to targets satisfying the same conditions as in [2].

Let

cos(t
√−�) f (x) + sin(t

√−�)√−�
g(x)

denote the solution at time t to the linear wave equation{
∂α∂αU = 0,

U (x, 0) = f (x), ∂tU (x, 0) = g(x), x ∈ R
2.

We will use similar methods as in [1,4–6] to prove our main result.

Theorem 1.1 For a smooth, radially symmetric wave map U (x, t) to a compact target man-
ifold (N , 〈·, ·〉) ↪→ R

d that for eacht differs from a constant map within a compact set, there
exists functions U+,0, U+,1 : R

2 → R
d such that

lim
t→∞

∥∥∥∥∥U (x, t) − cos(t
√−�)U+,0(x) − sin(t

√−�)√−�
U+,1(x)

∥∥∥∥∥
Ḣ1

= 0.

In Sect. 2, we review the work done on radially symmetric wave maps, with emphasis on
results which we will use to prove Theorem 1.1, in Sect. 3. We use the following notation.
Let

K λ
S,T = {(x, t) ∈ R

2+1| |x | ≤ λt, t ∈ [S, T ]}.
Energy will be denoted by

E(U (x, t), S) =
∫
S

〈∂αU, ∂αU 〉 dx .

With r = |x |, we will denote light cone coordinates as u = t − r, v = t + r. The statement
′a � b′ will mean the quantity a is less than b multiplied by a fixed constant.

2 A brief review of radially symmetric wave maps

We will prove our main result by showing that energy does not concentrate in the set K λ′
5
8 T, 7

8 T
.

Scattering will then follow by the work of Struwe in [6], and Christodoulou and Tahvildar-
Zadeh in [1]. We briefly describe these results here.

In [1], the authors prove a series of energy estimates, which are then used in a bootstrap
argument. We mention two in particular that will be used later. For 0 < λ′ < λ′′ < 1 (see p.
37 of [1]),

lim
t→∞ E(U (x, t), Bλ′′t (0) \ Bλ′t (0)) = 0, (2.1)

and (see p. 39 of [1])
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lim
T →∞

1

T

∫ ∫

K λ′
T/2,T

|Ut |2 = 0. (2.2)

Their bootstrap argument hinges on the Bondi energy decaying for large u,

E(u) ≡
∞∫

u

r |∂vU |2 dv → 0 as u → ∞. (2.3)

In order to control E(u), define (see [1, p. 34])

Eλ′(u) ≡
∞∫

((1+λ′)/(1−λ′))u

2r |∂vU |2 dv, (2.4)

which will approach 0 as u → ∞, and observe that for u = (1 − λ′)t (ibid, p. 43),

1

T

7
8 T∫

5
8 T

E(u) dt = 1

T

7
8 T∫

5
8 T

[Eλ′(u) + E(U (x, t), Bλ′t (0))] dt.

By using assumptions on the second fundamental form of geodesic spheres of N , along with
energy estimates, the authors show (ibid, p. 42)

lim
T →∞

1

T

7
8 T∫

5
8 T

E(U (x, t), Bλ′t (0)) dt = 0, (2.5)

which implies the necessary decay on E(u).
This is the only place where the bounds on the second fundamental form come into play.

The rest of the paper is a bootstrap argument that proves the main result,

Theorem 2.1 Let C+
u (resp. C−

u ) be the interior of the future (resp. past) light cone with
vertex at (t = u, r = 0) in M = R

2,1. For a smooth, radially symmetric wave map U that
satisfies (2.5), there holds for u > 0 and some c > 0,

diam(U (C+
u )) ≤ c√

u
.

along with the two following estimates that we require.

Lemma 2.1 For a smooth, radially symmetric wave map U that satisfies (2.5), and has
derivatives ∂tU and ∂r U at t = 0 with compact support, there exists u0 > 0, and c >

0 so that for u > u0,

|∂vU | ≤ c

v
3
2

, |∂uU | ≤ c

v
1
2 u

.

Lemma 2.2 Let U be a smooth, radially symmetric wave map that satisfies (2.5), and has
derivatives ∂tU and ∂r U at t = 0 with compact support in a ball of radius R centered at
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430 J. Nahas

the origin. Let (t0, r0) be a fixed point, r0 > R. Then there exists a continuous, increasing
function c(u) such that

sup
r≥r0

r3/2|∂vU (u + r, r)| ≤ c(u),

sup
r≥r0

r1/2|∂uU (u + r, r)| ≤ c(u).

We can combine the estimates in Lemmas 2.1 and 2.2 to obtain estimates on the derivatives
of U for all r, and t ≥ 0. For fixed u0 > 0, and large enough r with t − r ≤ u0, we have

r2 ± 2r t + t2 + 1 ≤ r2 + 4r2 + 4r2 + r2,

which implies

1

r
�

1√
(t ± r)2+1

. (2.6)

We can use the estimates in Lemma 2.1 when t − r > u0, then use Lemma 2.2 combined
with (2.6) when t −r ≤ u0 and r ≥ r0. The only region when t ≥ 0 that is not covered in this
dichotomy is bounded in time, which can be handled with the local existence theory. With
this, we have the following theorem.

Theorem 2.2 For a smooth, radially symmetric wave map U that satisfies (2.5), and has
derivatives ∂tU and ∂r U at t = 0 with compact support, there is a c such that for t ≥ 0,

|∂vU | ≤ c

(v2+1)
3
4

, and |∂uU | ≤ c

(v2+1)
1
4
√

u2+1
.

In [6], it is shown that energy does not concentrate at the origin at some time T, since this
is the only obstacle to global well-posedness by [2]. By finite speed of propagation, we may
assume ∂tU and ∂r U have compact support. Arguing by contradiction, for ε1 small enough,
one finds a radius R(t) such that

ε1 ≤ E(U (x, t), B6R(t)(0)) ≤ 2ε1 < lim inf
t→T

E(U (x, t), BT −t (0)),

from which it follows that for |τ | ≤ 5R(t),

E(U (x, t + τ), BR(t)(0)) ≤ 2ε1, (2.7)

and

ε1 ≤ E(U (x, t + τ), B11R(t)(0)). (2.8)

It can also be shown that

lim
t→T

R(t)/(T − t) = 0. (2.9)

Using estimates on the kinetic energy, one can find a sequence of intervals {(tl − R(tl), tl +
R(tl))} with tl → T so that

lim
l→∞

1

R(tl)

∫
(tl−R(tl ),tl+R(tl ))

⎛
⎜⎝

∫
BT −t (0)

|Ut |2 dx

⎞
⎟⎠ dt = 0.
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By rescaling with Ul(t, x) ≡ U (tl + R(tl)t, R(tl)x), one obtains a sequence of wave maps
{Ul} with

lim
l→∞

∫
(−1,1)

⎛
⎜⎝

∫
Dl(t)

|∂tUl |2 dx

⎞
⎟⎠ dt = 0, (2.10)

where Dl(t) = {x | R(tl)|x | ≤ tl + R(tl)(T − t)}.
With these estimates, it can be shown that Ul converges to a harmonic map U . Specifically,

(2.10) shows that U satisfies a harmonic map equation, that U has finite energy implies that
U must have finite energy, and (2.9) shows that U is a map from all of R

2 toN . Since N is
compact, U must be constant. With (2.7) and some geometric estimates, one can then show
that locally, the energy of Ul tends to 0 as l → ∞, contradicting the lower bound in (2.8). In
particular, Struwe proved the following result in [6].

Theorem 2.3 Let {Ul} be a sequence of radially symmetric wave maps from R
2+1 to a com-

pact manifold N with total energy uniformly bounded. Let Dl(t) be a family of subsets of R
2

that obeys lim supl→∞ Dl(t) = R
2 and, together with {Ul}, satisfies (2.10). Then for ε small

enough, and if for t ∈ [−1, 1],
E(Ul(x, t), B1(0)) < ε,

the energy of Ul on any compact set approaches 0 as l → ∞.

3 Proof of main result

With the results from the previous section, we prove Theorem 1.1. Using Theorem 2.3, we
will show (2.5), then use this fact to apply Theorem 2.2.

We argue the decay of energy by contradiction. Suppose that for all λ′ ∈ (0, 1), it is not
true that

lim
T →∞

1

T

7
8 T∫

5
8 T

E(U (x, t), Bλ′t (0)) dt = 0.

Since energy is positive and bounded, there is some λ′ ∈ (0, 1) so that

lim sup
T →∞

1

T

7
8 T∫

5
8 T

E(U (x, t), Bλ′t (0)) dt = η, (3.1)

where 0 < η < ∞. Pick {Tn}n∈Nsuch thatTn → ∞, and

lim
n→∞

1

Tn

7
8 Tn∫

5
8 Tn

E(U (x, t), Bλ′t (0)) dt = η. (3.2)

In order to produce the sequence Ul in Theorem 2.3, we require the lower bound in (2.8),
which we now prove. By energy conservation (for t < t ′ and R > 0),

E(U (x, t), BR(0)) ≤ E(U (x, t ′), BR+(t ′−t)(0)), (3.3)
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432 J. Nahas

any energy that enters or leaves K λ′
5
8 T, 7

8 T
must pass through the surrounding region. By (2.1),

energy just outside K λ′
5
8 T, 7

8 T
must decay with time. This keeps energy from rapidly fluctuating

in K λ′
5
8 T, 7

8 T
, so after sufficient time, the energy at a fixed time in K λ′

5
8 T, 7

8 T
must stay away

from 0. This argument is formalized in the following lemma.

Lemma 3.1 Fix λ′′ ∈ (λ′, 1). There is an α = α(λ′, λ′′) ∈ (0, 1) such that for large enough

n, t ∈
[

5
8 Tn, 7

8 Tn

]
, it follows that

αη < E(U (x, t), Bλ′t (0)).

Proof From (2.1), we can pick n big enough so that

E(U (x, t), Bλ′′t (0) \ Bλ′t (0)) < βη,

for β = β(λ′, λ′′) to be chosen later and t ≥ 5
8

1−λ′′
1−λ′ Tn . For perhaps even larger n, we can

have that ∣∣∣∣∣∣∣∣
1

Tn

7
8 Tn∫

5
8 Tn

E(U (x, t), Bλ′t (0)) dt − η

∣∣∣∣∣∣∣∣
< γη, (3.4)

for γ = γ (λ′, λ′′) ∈ (0, 1) which we will specify below.

Suppose for some τn ∈
[

5
8 Tn, 7

8 Tn

]
, E(U (x, τn), Bλ′τn (0)) ≤ αη. We will show that

1

Tn

7
8 Tn∫

5
8 Tn

E(U (x, t), Bλ′t (0)) dt

= 1

Tn

τn∫
5
8 Tn

E(U (x, t), Bλ′t (0)) dt + 1

Tn

7
8 Tn∫

τn

E(U (x, t), Bλ′t (0)) dt < (1 − γ )η, (3.5)

which would contradict our assumption (3.4). We separately estimate the two integrals in the
middle of (3.5).

Let {tl}l∈Z be defined by t0 = τn, tl = ( 1+λ′′
1+λ′ )l t0 for l > 0, and tl = ( 1−λ′′

1−λ′ )−l t0for l < 0

(see Fig. 1). Let N+ = N+(λ′, λ′′) be the smallest number with tN+ ≥ 7
8 Tn, and N− =

N−(λ′, λ′′) the smallest number with t−N− ≤ 5
8 Tn . Let q+ = 1+λ′′

1+λ′ and q− = 1−λ′′
1−λ′ .

We first estimate the integral over [τn, 7
8 Tn]. By (3.3),

sup
tl≤t≤tl+1

E(U (x, t), Bλ′t (0)) ≤ E(U (x, tl), Bλ′tl (0))

+E(U (x, tl), Bλ′′tl (0) \ Bλ′tl (0)).

From this, our bounds on E(U (x, tl), Bλ′′tl (0) \ Bλ′tl (0)), and our assumption on t0 = τn,

sup
tl≤t≤tl+1

E(U (x, t), Bλ′t (0)) ≤ E(U (x, t0), Bλ′t0(0))

+l sup
t0≤t≤tl

E(U (x, t), Bλ′′t (0) \ Bλ′t (0))

≤ αη + lβη.
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Fig. 1 Construction for the
sequence {tl }. Dashed lines either
have slope 1 or −1

Integrating over [tl , tl+1],
tl+1∫
tl

E(U (x, s), Bλ′s(0)) ds ≤ (q+ − 1)ql+τnαη + l(q+ − 1)ql+τnβη. (3.6)

With (3.6) and an elementary summation formula,

7
8 Tn∫

τn

E(U (x, s), Bλ′s(0)) ds ≤
N+−1∑
l=0

tl+1∫
tl

E(U (x, s), Bλ′s(0)) ds

=
(

q N++ − 1
)

τnαη

+
[(

N+ + q+
1 − q+

)
q N++ − q+

1 − q+

]
τnβη

≤
(

q N++ − 1
) 7

8
Tnαη

+
[(

N+ − q+
1 − q+

)
q N++ + q+

1 − q+

]
7

8
Tnβη.

For the integral over
[

5
8 Tn, τn

]
in (3.5), we use a similar argument,

τn∫
5
8 Tn

E(U (x, s), Bλ′s(0)) ds ≤
−N−+1∑

l=0

((q−1)q
−l− τn(αη − l(q−1)q

−l− τnβη))
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434 J. Nahas

=
(

q N−+ − 1
)

τnαη

+
[(

N− + q−
1 − q−

)
q N−− − q−

1 − q−

]
τnβη

≤
(

q N−− − 1
) 7

8
Tnαη

+
[(

N− − q−
1 − q−

)
q N−− + q−

1 − q−

]
7

8
Tnβη.

Combining these,

1

Tn

τn∫
5
8 Tn

E(U (x, s), Bλ′s(0)) ds + 1

Tn

7
8 Tn∫

τn

E(U (x, s), Bλ′s(0)) ds ≤ 7

8

(
q N−− + q N++ − 2

)
αη

+
[(

N+ − q+
1 − q+

)
q N++ + q+

1 − q+

]
7

8
βη

+
[(

N− − q−
1 − q−

)
q N−− + q−

1 − q−

]
7

8
βη.

Choosing α, β, and γ appropriately, we have that

7
8

(
q N−− + q N++ − 2

)
αη +

[(
N+ − q+

1−q+

)
q N++ + q+

1−q+

]
7
8βη

+
[(

N− − q−
1−q−

)
q N−− + q−

1−q−

]
7
8βη < (1 − γ )η,

from which (3.5) follows, which contradicts (3.4).

With this lemma, along with Theorems 2.2 and 2.3, we now prove Theorem 1.1.

Proof of Theorem 1.1 To begin with, we reproduce with only slight modification the argu-
ment of Struwe in [5] on p. 819. Let T = ∪n[ 5

8 Tn, 7
8 Tn], λ′ be as in (3.1), and pick R(t) so

that for some sufficiently small η0,

η0 < E(U (x, t), B6R(t)(0)) < 2η0 < inf
t∈T

E(Bλ′t (0), t), (3.7)

for t ∈ T . That it is possible to pick such an R(t) for small enough η0 follows from Lemma 3.1.
With (3.7) it can be shown that for |τ | < 5R(t),

η0 ≤ E(U (x, t + τ), B11R(t)(0)), (3.8)

and

E(U (x, t + τ), BR(t)(0)) ≤ 2η0. (3.9)

Since the intervals �l ≡ (t − R(t), t + R(t)) cover T , by Vitali’s theorem we may select a
countable, disjoint family {(tl − R(tl), tl + R(tl))}l∈N = {�l}l∈N such that

T ⊂
⋃
l∈N

(tl − 5R(tl), tl + 5R(tl)).

Let R(tl) = Rl and {(tl − 5Rl , tl + 5Rl)}l∈N = {�∗
l }l∈N. By possibly taking a subsequence

and reordering, we may further assume that tl → ∞ and tl < tl+1. Since limt→∞ E(U (x, t),
Bλ′′t (0) \ Bλ′t (0)) = 0 for all 0 < λ′ < λ′′ < 1, we have
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lim
l→∞

Rl

tl
= 0. (3.10)

In order to show that there is a subsequence {tlm } of {tl} with

lim
m→∞

1

Rlm

∫
�lm

∫
Bt (0)

|Ut |2 dx dt = 0, (3.11)

we’ll assume to the contrary that there is a δ > 0 and l0 such that∫
�l

∫
Bt (0)

|Ut |2 dx dt ≥ δRl , (3.12)

for l ≥ l0. For large enough n so that sup
⋃

l<l0 �∗
l < 5

8 Tn, let

l1 = max
k

⎧⎨
⎩k|[5

8
Tn,

7

8
Tn] ⊂

⋃
l≥k

�∗
l

⎫⎬
⎭ ≥ l0,

and l2 = min
k

⎧⎨
⎩k|[5

8
Tn,

7

8
Tn] ⊂

⋃
l1≤k

�∗
l

⎫⎬
⎭ .

By taking l0 large enough, we may assume from (3.10) that Rl < 1
35 tl for l ≥ l0.

From the maximality of l1, minimality of l2, and our assumptions on Rl ,

5

8
Tn ≤ tl1 + 5Rl1 ≤ 8

7 tl1 ,

and
6

7
tl2 ≤ tl2 − 5Rl2 ≤ 7

8 Tn . (3.13)

Because {tl} is increasing, and (3.13), we infer that tl − 5Rl ≥ 77
192 Tn and 21

20 Tn ≥ tl +
5Rl when l1 ≤ l ≤ l2. It then follows that

⋃
l1≤l≤l2

�l ⊂
[

77

192
Tn,

21

20
Tn

]
.

With this, the fact that [ 5
8 Tn, 7

8 Tn] ⊂ ⋃
l1≤l≤l2 �∗

l , and (3.12), we have that

δ

4
Tn ≤ δ

∑
l1≤l≤l2

diam�∗
l = 10δ

∑
l1≤l≤l2

Rl ≤ 10
∑

l1≤l≤l2

∫
�l

∫
Bt (0)

|Ut |2 dx dt

= 10
∫

⋃
l1≤l≤l2

�l

∫
Bt (0)

|Ut |2 dx dt ≤ 10
∫

K
21
20 Tn
77

192 Tn

∫
Bt (0)

|Ut |2 dx dt.

For big enough Tn, this contradicts (2.2), thereby proving (3.11). For notational convenience,
we refer to the subsequence satisfying (3.11) as {tl}.

Rescale with Ul(t, x) = U (tl + Rl t, Rl x) so that

1∫
−1

∫
Dl (t)

|∂tUl |2 dx dt → 0, (3.14)
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with

Dl(t) = {x | Rl |x | ≤ λ′(tl + Rl t)}.

From (3.9), (3.14), and (3.10), Theorem 2.3 applies, so that locally the energy of
Ul decays as l → ∞, which contradicts (3.8). Therefore

lim
T →∞

1

T

7
8 T∫

5
8 T

E(U (x, t), Bλ′t (0)) dt = 0. (3.15)

With (3.15), we can now apply Theorem 2.2 to show that U scatters. From an integral for-
mulation of (1.1),

U (x, t) = cos(t
√−�)U0(x) + sin(t

√−�)√−�
U1(x)

−
t∫

0

sin((t − τ)
√−�)√−�

B(U )(∂αU, ∂αU ) dτ,

it is easy to see that when U scatters,

U+,0(x) = U0(x) +
∞∫

0

sin(τ
√−�)√−�

B(U )(∂αU, ∂αU ) dτ,

and

U+,1(x) = U1(x) −
∞∫

0

cos(τ
√−�)B(U )(∂αU, ∂αU ) dτ.

Therefore to prove scattering, it will suffice to show by energy estimates that

∥∥∥∥∥∥
∞∫

0

sin(τ
√−�)√−�

B(U )(∂αU, ∂αU ) dτ

∥∥∥∥∥∥
Ḣ1

� ‖|B(U )(∂αU, ∂αU )|‖L1
t L2

x

is finite. Since N is compact and B is bilinear and symmetric, we may assume that there is a
b ∈ R

+ so that

|B(U )(∂αU, ∂αU )| = 2|B(U )(∂uU, ∂vU )| ≤ b|∂uU ||∂vU |.

Using Theorem 2.2, and the fact that for positive randt,

1

(r + t)2 + 1
≤ min

{
1

r2 + 1
,

1

t2 + 1

}
,
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we have that

‖|B(U )(∂αU, ∂αU )|‖L1
t L2

x
≤ b

∞∫
0

⎛
⎝

∞∫
0

|∂uU |2|∂vU |2r dr

⎞
⎠

1
2

dt

≤ bc

∞∫
0

⎛
⎝

∞∫
0

r

((r + t)2 + 1)2((r − t)2 + 1)
dr

⎞
⎠

1
2

dt

≤ bc

∞∫
0

(t2 + 1)−3/4

⎛
⎝

∞∫
0

r√
r2 + 1((r − t)2 + 1)

dr

⎞
⎠

1
2

dt < ∞. (3.16)

By (3.16), it follows that U scatters.
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