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Intertwining of Zeeman and Coulomb interactions on excitons in highly
symmetric semiconductor quantum dots
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We present an experimental study and develop a group theoretical analysis of the Zeeman effect on excitons
in pyramidal semiconductor quantum dots possessing the symmetries of the C3v point group. The magnetic field
dependence of the emission pattern originating from neutral exciton states is investigated in both the Faraday
and Voigt configurations. The Zeeman doublet splitting of the “bright” exciton states varies linearly with the
magnetic field strength in each configuration while the intensity of the “dark” exciton transitions exhibit a
nonlinear dependence. We demonstrate that these observations originate from the intertwining of the Zeeman and
Coulomb interactions, which provides clear spectral signatures of this effect for highly symmetric quantum dots.
We uncover a large anisotropy of the Zeeman doublet splittings for longitudinal and transverse magnetic fields,
revealing the ubiquitous role of a symmetry elevation in our pyramidal quantum dots. These results suggest that
the common description of the Zeeman effect based on effective g factors for electrons and holes must be revised
when dealing with exciton complexes.
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I. INTRODUCTION

The discovery of the electron spin has long been associated
with the “anomalous” Zeeman effect in the atomic spectra of
hydrogen1,2 and with the deflection of an atomic beam of silver
atoms in the Stern-Gerlach experiment.3 In semiconductors the
Zeeman effect has been first studied on the optical spectra of
acceptor impurities in bulk germanium and, subsequently, on
the optical spectra of excitons in bulk and in semiconductor
heterostructures. In an applied magnetic field, the optical
spectra of the elementary excitations associated with the
substitutional impurities or with the excitons have a rich
multiplet structure, which reveals the splitting of degenerate
levels into sublevels and depends on the symmetry of the
crystal field for an impurity or of the confinement potential
for an exciton confined in a heterostructure. The quantum
states of an exciton in a semiconductor are determined by
the Coulomb interaction between the electron and the hole
composing this quasiparticle. While in a bulk semiconductor
the degeneracy of the exciton states is solely dependent on the
symmetry of the band edges of the crystalline structure, in a
semiconductor quantum dot (QD), it is particularly sensitive
to the nanostructure’s shape, size, and composition, and to the
presence of strain, electric, or magnetic field.

A general theoretical description of the interplay between
the Coulomb and the Zeeman interaction has so far treated
the applied magnetic field as a perturbation acting on the
individual Bloch states of either the electrons or the holes
at the band edges of the semiconductor. This general approach
was initially developed by Kohn and Luttinger in order to
describe the cyclotron resonances of holes in a germanium or a
silicium crystal.4,5 The magneto-optical properties of excitons
in GaAs/AlxGa1−xAs quantum wells have been extensively
studied both experimentally6–9 and theoretically,10–12 thereby
highlighting the importance of valence-band mixing and
the paramagnetic and diamagnetic contributions to both the
Zeeman splitting energy and the diamagnetic shift of the
excitons. Despite these results on magnetoexcitons in quantum

wells, the interplay between the Coulomb and the Zeeman
interactions has largely eluded the observation in magne-
tophotoluminescence studies of the fine-structure splitting of
excitons in single semiconductor QDs.13–15 In these studies
the Zeeman interaction of a hole (or an electron) with an
applied magnetic field is commonly described at the level of
the single-particle eigenstates at the valence- (conduction-)
band edge of the semiconductor using the valence-band
parameters (q,κ) introduced by Luttinger for cubic crystalline
structures.5 Most experimental studies of excitons confined
in QDs were performed on self-assembled quantum dots
(SAQDs) grown on {100} surfaces and were concerned with
polarization anisotropy,16–18 in-plane anisotropy of carrier
effective g factors,19,20 fine-structure splitting of neutral and
charged exciton complexes,21–24 which were induced by the
shape asymmetry, and the existence of anisotropic strain
and piezoelectric fields in these dots. Only recently, highly
symmetric pyramidal QDs grown on {111} surfaces have
emerged as interesting quantum structures in which zero
fine-structure splitting of the neutral exciton was predicted25,26

and eventually observed,27–30 and for which the entanglement
of polarized photon pairs was demonstrated.31

It is our purpose in this paper to develop a general theoretical
model of the Zeeman effects on the quantum states of excitons
in highly symmetric QDs and to compare its predictions to
experimental studies performed on magnetoexcitons confined
in pyramidal QDs grown on (111)B GaAs substrates.32,33

The underlying idea is to account for the interplay between
Coulomb and Zeeman interactions by implementing an ef-
fective Hamiltonian formalism in the basis of the exciton
states that is solely based on symmetry arguments. In Sec. II,
we present the group theoretical derivation of the Zeeman
Hamiltonian for the two different configurations of the applied
magnetic field (Voigt and Faraday geometries) in the case
of excitons confined in pyramidal QDs possessing C3v point
group symmetry. We derive explicit expressions of the Zeeman
doublet splittings for neutral exciton states and identify spec-
tral features resulting from the interplay between Coulomb
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and Zeeman interactions. In Sec. III, we report on a magneto-
optical study of excitons in single pyramidal quantum dots and
analyze the Zeeman doublet splittings and the diamagnetic
shifts measured in a transverse (Voigt configuration) and in
a longitudinal (Faraday configuration) magnetic field. All the
experimental results are analyzed and discussed within the
framework of the effective Zeeman Hamiltonian developed in
Sec. II to which is added the electron-hole exchange terms
resulting from the actual symmetry of the pyramidal QD.
Sec. IV brings concluding remarks on the Zeeman effects
in QDs in relation with their intrinsic symmetry and the
diamagnetic and paramagnetic contributions to the Zeeman
splittings.

II. THEORY

A. Formulation of Zeeman Hamiltonian

The application of a magnetic field to a quantum dot
modifies the optical spectrum of excitonic complexes and
allows the study of their quantum states and their degeneracies
for a given symmetry of the structure. To each excitonic
complex, we associate an effective Zeeman Hamiltonian HZ ,
which is defined in the subspace spanned by the quantum states
of the excitonic complex under consideration. The point group
of the nanostructure is determined by the common symmetry
operations mapping the crystalline structure and the quantum
dot to themselves. In this paper, the pyramidal quantum dots
are assumed to have symmetries of the C3v point group as
we consider semiconductor QDs made of III-V compounds
with a zinc-blende crystalline structure. The electrons and the
holes states are assumed to be associated, respectively, with
the �6 and �8 points of the Brillouin zone (symmetry Td ). The
description of an exciton confined to a QD will thus necessitate
a basis of four vector states in order to account for the orbital
and spinorial degrees of freedom of one electron and one
hole. We assume that the electron and hole states are strongly
confined into the QD and that the electron (hole) ground states
correspond to irrep E1/2 (iE3/2).34 The other case of interest
corresponds to hole excited states transforming according to
the irrep E1/2 (the results are given in the Appendix). For
the point group (PG) C3v , the exciton ground states transform
according to the two-dimensional irreducible representation
(irrep) E when the electron and hole states transform according
to irrep E1/2 and iE3/2, respectively.28 We recall that the
irrep E is obtained from the direct product of the electron
and hole irreps, E = E1/2 ⊗ iE3/2. The exciton basis (also
called the standard basis) is formally written as a set of basis
vectors {|b,E,1〉,|b,E,2〉,|d,E,1〉,|d,E,2〉}, where the first
label identifies one of the two energy levels of the exciton
(b or d) that are split in energy by the electron-hole exchange
interaction, the second label identifies the irrep, and the third
one is an integer index of the irrep partners. Within this exciton
subspace, the Zeeman Hamiltonian is expressed as a sum of
terms invariant under all symmetry operations of the C3v point
group. For deriving the invariant terms of the Hamiltonian, we
implement a modified version of the procedure that was first
used by Luttinger35 to study the cyclotron motion of electrons
in the valence band of a cubic crystal, and then generalized by
Cho36 to deal with any effect of symmetry breaking introduced

by an external perturbation of the motion of electrons and holes
in cubic crystals (such as a magnetic field, an electric field,
or an external stress). An invariant term of the linear Zeeman
Hamiltonian is a scalar product of one of the components of the
external magnetic field and of the corresponding component of
a irreducible tensorial operator of order 1;37 both components
must transform as basis functions of the same irrep or as basis
functions of the irrep and its complex conjugate irrep if the
two irreps are not equivalent. In the general case of a magnetic
field with Cartesian coordinates (Bx ,By ,Bz), the linear part of
the Zeeman Hamiltonian is formally written as

H lin
Z = 1

2μBg⊥
[
(Bx + iBy)L[E]

2 + (Bx − iBy)L[E]
1

]
+ 1

2μBg‖BzL
[A2]
1 , (1)

where (L[E]
1 ,L

[E]
2 ) and L

[A2]
1 are the components of irreducible

tensorial operators of order 1, which transform under the PG
C3v as partners of irreps E and A2, respectively. In the exciton
basis given above, the invariant terms of the Zeeman Hamilto-
nian are those for which the associated irrep is contained in the
direct product of the representations �∗

i ⊗ �i , where �∗
i ,�j ≡

E. For instance, the direct product of irrep E with itself gives
E ⊗ E = A1 + A2 + E; this implies that the components
(Bx + iBy,Bx − iBy) transforming as basis functions of E

appear in the Zeeman Hamiltonian with the same transverse
effective g factor denoted as g⊥, while the component Bz

transforming as irrep A2 appears with another effective g factor
denoted as g||. It is worthwhile noting that the specific form
of the basis functions of irrep E depends on the matrix repre-
sentations of the PG C3v: When using the point group tables
given by Altmann,34 the basis functions of a Cartesian tensor
of order 1 that span the irrep E are (−x − iy,x − iy) for the
components of a polar vector and (lx + ily,lx − ily) for those
of an axial vector (e.g., magnetic field, angular momentum).

Assuming that the magnetic field is oriented along the y axis
(taken to be perpendicular to one of the reflection symmetry
planes of C3v), the matrix form of the Zeeman Hamiltonian in
the standard exciton basis given above is written as

MZ = 1

2
μBBy

⎛
⎜⎜⎜⎝

0 g1 0 g3

g1 0 g3 0

0 g∗
3 0 g2

g∗
3 0 g2 0

⎞
⎟⎟⎟⎠ , (2)

where g1,g2 are real numbers, and g3 may be a complex
number. If the magnetic field is oriented along the z axis,
the matrix form of the Zeeman Hamiltonian is changed to

MZ = 1

2
μBBz

⎛
⎜⎜⎜⎝

g4 0 g6 0

0 −g4 0 −g6

g∗
6 0 g5 0

0 −g∗
6 0 −g5

⎞
⎟⎟⎟⎠ , (3)

where g4,g5 are real numbers, and g6 may be a complex
number.

The elements of the Zeeman Hamiltonian matrices for
each orientation of the magnetic field are derived by us-
ing the Wigner-Eckart theorem that relates a given matrix
element 〈d,E,i|L[E]

k |d,E,j 〉 with a reduced matrix ele-
ment 〈d,E||L[E]||d,E〉, which is independent of the partner
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functions of the irrep basis. The formal expressions of the
transverse effective g factors gi are written as

g1 = 〈b,E‖L[E]‖b,E〉, g2 = 〈d,E‖L[E]‖d,E〉,
g3 = 〈b,E‖L[E]‖d,E〉, (4)

and those of the longitudinal effective g factors as

g4 = 〈b,E‖L[A2]‖b,E〉, g5 = 〈d,E‖L[A2]‖d,E〉,
g6 = 〈b,E‖L[A2]‖d,E〉, (5)

where the operators L[E] and L[A2] in the reduced matrix
elements refer to irreducible tensorial operators of order 1
corresponding to irreps E and A2, respectively. We stress that
the reduced matrix elements take different values for each pair
of eigenstates of the ground exciton; likewise, there will be

other sets of reduced matrix elements for an excited exciton
or another exciton complex (an extension of the model to an
excited exciton is given in the Appendix).

In addition to the linear Zeeman terms, it is essential to
consider the diamagnetic Zeeman terms for their contributions
may be as large or larger depending on the strength of the
magnetic field and may introduce distinct coupling terms
between excitonic states. For instance, the set of basis functions
(2xy,x2 − y2) transforms according to the irrep E and, hence,
there are other off-diagonal diamagnetic Zeeman terms in
addition to the linear Zeeman terms considered above. In the
general case of a magnetic field with Cartesian coordinates
(Bx ,By ,Bz), the diamagnetic Zeeman Hamiltonian is derived
with the method of invariants and is given by the following
expression:

H dia
Z = [

α⊥(
B2

x + B2
y

) + α‖B2
z

] [
L

[A2]
1 L

[A2]
1 + L

[E]
1 L

[E]
2 + L

[E]
2 L

[E]
1

] + [
ω(Bx + iBy)2 + ε(Bx − iBy)Bz

] [
L

[E]
2 L

[E]
2

]
+ [

ω(Bx − iBy)2 + ε(Bx + iBy)Bz

] [
L

[E]
1 L

[E]
1

] + [
γ (Bx + iBy)Bz + η(Bx − iBy)2] [

L
[E]
2 L

[A2]
1 + L

[A2]
1 L

[E]
2

]
+ [

γ (Bx − iBy)Bz + η(Bx + iBy)2
] [

L
[E]
1 L

[A2]
1 + L

[A2]
1 L

[E]
1

]
. (6)

The matrix form of the diamagnetic Zeeman Hamiltonian for
a magnetic field along the y axis is then calculated with the
Wigner-Eckart theorem in the standard exciton basis, and it is
written as

Mdia
Z = B2

y

⎛
⎜⎜⎝

α1 0 α3 0
0 α1 0 α3

α∗
3 0 α2 0

0 α∗
3 0 α2

⎞
⎟⎟⎠

−B2
y

⎛
⎜⎜⎝

0 η1 0 η3

η1 0 η3 0
0 η∗

3 0 −η1

η∗
3 0 −η1 0

⎞
⎟⎟⎠ , (7)

where α1(η1) and α2 are real diamagnetic coefficients coupling
the bright and the dark exciton states, respectively, and where
α3 and the η3 are complex off-diagonal coefficients that couple
the bright exciton states {|b,E,1〉,|b,E,2〉} to the dark exciton
states {|d,E,1〉,|d,E,2〉} (the justification for the names bright
and dark is given later in this section). It is worthwhile
discussing first the respective role of these coefficients in order
to retain only the relevant ones. The off-diagonal coefficient η1

would introduce a quadratic dependence of the Zeeman energy
splitting with the magnetic field. Since the magnetic field
dependence of the experimentally measured Zeeman splittings
are best fitted with a linear function, this coefficient will
thus be discarded in the later analysis. The other off-diagonal
coefficients (α3,η3) could separately contribute to the coupling
between the dark states and the bright states. While the
diamagnetic terms with α3 couple identically a bright state
|b,E,i〉 to a dark state |d,E,i〉, the diamagnetic terms with η3

couple them differently. We will only retain the diamagnetic
terms with α3, however, and show that the contribution of all
the terms with ηi’s is negligible for reasons of a symmetry
elevation from C3v to D3h.

Including the dominant diamagnetic Zeeman terms, the
matrix form of the complete Zeeman Hamiltonian for a
magnetic field oriented along the y axis is written in the
standard exciton basis as

M lin
Z + Mdia

Z = 1

2
μBBy

⎛
⎜⎜⎝

0 g1 0 g3

g1 0 g3 0
0 g∗

3 0 g2

g∗
3 0 g2 0

⎞
⎟⎟⎠

+B2
y

⎛
⎜⎜⎝

α1 0 α3 0
0 α1 0 α3

α∗
3 0 α2 0

0 α∗
3 0 α2

⎞
⎟⎟⎠ . (8)

When the magnetic field is aligned instead with the x axis, the
matrix elements of the diamagnetic terms are unchanged if the
second term of expression (7) is neglected. The matrix form
of the linear Zeeman terms differs, however, by a phase factor.
For the sake of completeness, we also give the linear Zeeman
matrix form for a magnetic field oriented along the x axis; it
is written as

MZ = 1

2
μBBx

⎛
⎜⎜⎝

0 −ig1 0 −ig3

ig1 0 ig3 0
0 −ig∗

3 0 −ig2

ig∗
3 0 ig2 0

⎞
⎟⎟⎠ . (9)

In the standard exciton basis, the matrix form of the unper-
turbed exciton Hamiltonian is given by the diagonal matrix

Mexch = 1

2

⎛
⎜⎜⎝

δ0 0 0 0
0 δ0 0 0
0 0 −δ0 0
0 0 0 −δ0

⎞
⎟⎟⎠ , (10)

where δ0 is the fine structure splitting between the set
of degenerate exciton eigenstates {|b,E,1〉,|b,E,2〉} and
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TABLE I. Eigenenergies of neutral exciton states in a transverse magnetic field (Voigt
configuration, B = Bx or By) ordered by decreasing values when g′

1,g
′
2 � 0. In these

expressions, the prime value of the effective g factors and diamagnetic coefficients is a
shortened notation defined by α′

i = αiB
2 and g′

i = 1
2 giμBB for i = 1,2,3.

E1 = 1
2 (α′

1 + α′
2 + g′

1 + g′
2) + 1

2

√
(g′

1 − g′
2 + α′

1 − α′
2 + δ0)2 + 4|g′

3 + α′
3|2

E2 = 1
2 (α′

1 + α′
2 − g′

1 − g′
2) + 1

2

√
(g′

2 − g′
1 + α′

1 − α′
2 + δ0)2 + 4|g′

3 − α′
3|2

E3 = 1
2 (α′

1 + α′
2 + g′

1 + g′
2) − 1

2

√
(g′

1 − g′
2 + α′

1 − α′
2 + δ0)2 + 4|g′

3 + α′
3|2

E4 = 1
2 (α′

1 + α′
2 − g′

1 − g′
2) − 1

2

√
(g′

2 − g′
1 + α′

1 − α′
2 + δ0)2 + 4|g′

3 − α′
3|2

{|d,E,1〉,|d,E,2〉}, which originates from the electron-hole
(e-h) exchange interaction.

B. Analysis of Zeeman splittings

The 4 × 4 secular equation det ||Hij − Eδij || = 0 can
be solved exactly and yields analytical expressions for the
eigenstates and eigenvalues of the total Hamiltonian H =
H lin

Z + H dia
Z + Hexch in the Voigt and in the Faraday config-

urations.

1. Voigt configuration

For a transverse magnetic field, the eigenenergies and eigen-
states are given in Tables I and II, respectively. The optical
selection rules are derived by applying the Wigner-Eckart
theorem to the point group C3v . Using the tables of Altmann’s
Clebsch-Gordon coefficients for C3v ,34 we determined the
nonzero dipole matrix elements; these are given by

〈A1 |x − iy| b,E,1〉 = 〈A1 |−(x + iy)| b,E,2〉 ≡ μb,

where |A1〉 corresponds to the irrep of the vacuum state,
(x − iy) is the component of the dipole moment operator
for left circularly polarized light, and −(x + iy) is that for
right circularly polarized light. Hence, it follows that an
optically active transition from any of the four exciton states
is characterized by a linear polarization with a direction given
in Table III.

For the Voigt configuration, we then expect that the optical
spectrum of the exciton is composed of two doublets of
linearly polarized lines corresponding to the two sets of
quantum states {|ψ1〉,|ψ2〉} and {|ψ3〉,|ψ4〉}. Since in the
limit of low magnetic field, the linear Zeeman energies are
typically much smaller than the e-h exchange energy δ0, we
derived an approximate expression of the Zeeman splitting
energies �EZ(up),�EZ(low) for the upper and lower Zeeman
doublet, respectively; these expressions are valid in the limit

(giμBBy,αiB
2
y 
 δ0, i = 1,2) and are given by

�Ez(up) ∼= g1μBBy + 1

δ0

(∣∣∣∣1

2
g3μBBy + α3B

2
y

∣∣∣∣
2

−
∣∣∣∣1

2
g3μBBy − α3B

2
y

∣∣∣∣
2
)

(11)

and

�Ez(low) ∼= g2μBBy + 1

δ0

(∣∣∣∣1

2
g3μBBy − α3B

2
y

∣∣∣∣
2

−
∣∣∣∣1

2
g3μBBy + α3B

2
y

∣∣∣∣
2
)

. (12)

Consequently, we predict that the Zeeman energy splitting of
each doublet varies linearly with the magnetic field strength
for a QD possessing the C3v symmetry. This linear dependence
of the Zeeman splittings with the magnetic field arises from
the intertwining between the Coulomb and the Zeeman
interactions in a transverse magnetic field. We emphasize
that this linear dependence provides a unique signature of
this intertwining as the standard theoretical description of
the Zeeman interaction at the carrier level predicts instead
a hyperbolic dependence of the Zeeman doublet splitting
with a transverse magnetic field. The expression of this
dependence can be easily obtained from the diagonalization of
the Zeeman and e-h exchange Hamiltonian given in Ref. 27,
taking into account that the anisotropic electron-hole exchange
parameters (δ = δ∗ = 0) are equal to zero in the case of C3v

symmetry; it is then written as

�Ez = 1

2

∣∣√δ2
0 + (ge

⊥ − gh
⊥)2μ2

BB2
y

−
√

δ2
0 + (ge

⊥ + gh
⊥)2μ2

BB2
y

∣∣, (13)

TABLE II. Eigenstates of neutral excitons in a transverse magnetic field (B = By). Prime
values are defined in the caption of Table I.

Eigenstates Eigenvalues

|ψ1〉 = 1√
2

(|b,E,1〉 + |b,E,2〉) − (δ0/2+α′
1+g′

1−E1)√
2(g′

3+α′
3)

(|d,E,1〉 + |d,E,2〉) E1

|ψ2〉 = 1√
2

(|b,E,1〉 − |b,E,2〉) + (δ0/2+α′
1−g′

1−E2)√
2(g′

3−α′
3)

(|d,E,1〉 − |d,E,2〉) E2

|ψ3〉 = 1√
2

(|d,E,1〉 + |d,E,2〉) − (−δ0/2+α′
2+g′

2−E3)√
2(g′

3+α′
3)

∗ (|b,E,1〉 + |b,E,2〉) E3

|ψ4〉 = 1√
2

(|d,E,1〉 − |d,E,2〉) + (−δ0/2+α′
2−g′

2−E4)√
2(g′

3−α′
3)

∗ (|b,E,1〉 − |b,E,2〉) E4
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TABLE III. Orientation of polarization vector for an optical trans-
ition stemming from an exciton eigenstate |ψi〉, where i = 1,2,3,4.

Eigenstate |ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉
Polarization y x y x

where ge
⊥ and gh

⊥ are the transverse effective g factors for an
electron and a hole, respectively.

In addition to the Zeeman splittings of the cross-linearly
polarized doublets, we also calculated the energy splitting of
the collinearly polarized Zeeman doublets. Their expressions
are given by

�Ez(x−pol) =
{√[

(α1 − α2)B2
y − 1

2
(g1 − g2)μBBy + δ0

]2

+ 4

∣∣∣∣α3B2
y − 1

2
g3μBBy

∣∣∣∣
2}

(14)

and

�Ez(y−pol) =
{√[

(α1 − α2)B2
y + 1

2
(g1 − g2)μBBy + δ0

]2

+ 4

∣∣∣∣α3B2
y + 1

2
g3μBBy

∣∣∣∣
2}

, (15)

where �Ez(x−pol) and �Ez(y−pol) correspond to the energy
splittings of the x-polarized and y-polarized transitions, re-
spectively. In contrast with the cross-polarized Zeeman doublet
splittings, the energy splittings of the copolarized doublets
extrapolate to the e-h exchange energy at zero magnetic field,
thereby providing a means to measure it experimentally. A
direct determination of the e-h exchange energy is not possible
because the exciton states {|d,E,1〉,|d,E,2〉} are, in general,
not radiatively active.

The contribution of the off-diagonal terms in the Zeeman
Hamiltonian give rise, on the one hand, to a quartic and
a quadratic correction of the Zeeman doublet splittings (as
discussed above) and, on the other hand, to a hybridization
of the exciton states {|b,E,1〉,|b,E,2〉} to {|d,E,1〉,|d,E,2〉}
(see Table II). The first consequence of this hybridization
is a coupling between exciton states, which have their own
optical dipole moment (μd or μb). As will be demonstrated
in this section, the optical transitions originating from the
exciton states {|d,E,1〉,i = 1,2} are completely “dark” in
quantum dots for which the symmetry is elevated from
C3v to D3h. Hence, the hybridization between the so-called
“dark” excitonic states and the “bright” exciton states leads
to a significant transfer of oscillator strength to the “dark”
state transitions. When both the linear and quadratic terms
contribute to the coupling, the intensity of the two optical
transitions originating from the dark states is state specific.
In the limit of μ2

d 
 μ2
b, it is straightforward to derive from

Table II the intensity ratio between the optical transitions from
the “dark” and from the “bright” exciton states for a given
orientation of the linear polarization vector. The intensity ratios
for the linearly polarized transitions (x- and y-pol) are given
in the limit of low magnetic field by the following expressions:

I3

I1
(y−pol) 


∣∣1/2g3μBBy + α3B
2
y

∣∣2

δ2
0

(16)

and

I4

I2
(x−pol) 


∣∣1/2g3μBBy − α3B
2
y

∣∣2

δ2
0

. (17)

From these expressions, one readily predicts an uneven transfer
of oscillator strength to the “dark” exciton states, which
originates from an interference between the off-diagonal linear
and quadratic Zeeman terms g3 and α3.

2. Faraday configuration

For a longitudinal magnetic field, the matrix form of the
diamagnetic Zeeman Hamiltonian is given in the standard
exciton basis by

Mdia
Z = B2

z

⎛
⎜⎜⎜⎝

α4 0 α6 0

0 α4 0 α6

α∗
6 0 α5 0

0 α∗
6 0 α5

⎞
⎟⎟⎟⎠ . (18)

The eigenenergies and eigenstates of the 4 × 4 secular equation
are given in Tables IV and V, respectively.

For the Faraday configuration, we then find that the optical
spectrum of the exciton is composed of two doublets of
circularly polarized lines corresponding to the two sets of
quantum states {|ψ1〉,|ψ2〉} and {|ψ3〉,|ψ4〉} as summarized
in Table V. In the limit of low magnetic field, the off-
diagonal elements of the Zeeman interaction are typically
much smaller than the e-h exchange energy δ0; we can thus
derive an approximate expression of the Zeeman splitting
energies �EZ(up),�EZ(low) for the upper and lower Zeeman
doublets, respectively; these expressions are valid in the limit
(g6μBBz,α6B

2
z 
 δ0) and are given by

�Ez(up) = g4μBBz + 1

δ0

(∣∣∣∣α6B
2
z + 1

2
g6μBBz

∣∣∣∣
2

−
∣∣∣∣α6B

2
z − 1

2
g6μBBz

∣∣∣∣
2
)

(19)

and

�Ez(low) = g5μBBz + 1

δ0

(∣∣∣∣α6B
2
z − 1

2
g6μBBz

∣∣∣∣
2

−
∣∣∣∣α6B

2
z + 1

2
g6μBBz

∣∣∣∣
2
)

. (20)
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TABLE IV. Eigenenergies of neutral exciton states in a longitudinal magnetic
field (Faraday configuration, B = Bz) ordered by decreasing values when g′

4,g
′
5 � 0.

In these expressions, the prime values of the effective g factors and diamagnetic
coefficients are defined by α′

i = αiB
2 and g′

i = 1
2 giμBB for i = 4,5,6.

E1 = 1
2 (g′

4 + g′
5 + α′

4 + α′
5) + 1

2

√
(g′

4 − g′
5 + α′

4 − α′
5 + δ0)2 + 4|α′

6 + g′
6|2

E2 = − 1
2 (g′

4 + g′
5 − α′

4 − α′
5) + 1

2

√
(g′

5 − g′
4 + α′

4 − α′
5 + δ0)2 + 4|α′

6 − g′
6|2

E3 = 1
2 (g′

4 + g′
5 + α′

4 + α′
5) − 1

2

√
(g′

4 − g′
5 + α′

4 − α′
5 + δ0)2 + 4|α′

6 + g′
6|2

E4 = − 1
2 (g′

4 + g′
5 − α′

4 − α′
5) − 1

2

√
(g′

5 − g′
4 + α′

4 − α′
5 + δ0)2 + 4|α′

6 − g′
6|2

Hence, we predict that the Zeeman splitting energies of the
doublets depend linearly on the strength of the longitudinal
magnetic field in the low-field limit. A cubic magnetic
field dependence of the Zeeman splittings is expected to
arise in the intermediate-field limit, which would indicate
a significant hybridization between the bright and the dark
exciton states. Nevertheless, the hybridization is determined
by the relative strength of the off-diagonal versus the diagonal
matrix elements of the Zeeman Hamiltonian and will be
revealed by an optical transition from a “dark” exciton state, the
intensity of which will grow quadratically with the magnetic
field strength in the weak-field limit. In the intermediate-field
limit, the intensity of one of the dark exciton transition
increases monotonically as a function of the magnetic field
while the other one varies nonmonotonically due to the inter-
ference between the off-diagonal Zeeman terms in matrices
(3) and (18) (see expressions of the eigenstates ψ3 and ψ4

in Table V).

C. Symmetry elevation to D3h

In this section, we consider the consequences of symmetry
elevation to D3h on the Zeeman interaction terms of the ef-
fective Zeeman Hamiltonian derived above for C3v symmetry.
Several quadratic and linear terms with the magnetic field
were discarded in this derivation. The quadratic terms denoted
after their parameters (η1,η3) in the diamagnetic Zeeman
matrix are expected to be negligible because the symmetry
of excitonic quantum states of C3v QDs are well approximated
by a symmetry elevation to D3h. Previous studies38,39 of the
optical spectra of excitonic complexes in C3v QDs revealed
the presence of this symmetry elevation; it manifested itself
by an extinction of the optical activity of the “dark” exciton
states, although both “dark” and “bright” exciton states are
labeled with the same irrep E of the C3v PG. We recall that
the two exciton states {|d,E,1〉,|d,E,2〉} are associated with
the irrep E′′ of D3h and thus are optically inactive and have

TABLE V. Eigenstates of neutral excitons in a longitudinal
magnetic field and corresponding polarization of the emission line.
Prime values are defined in the caption of Table IV.

Eigenstates Eigenvalues Polarization

|ψ1〉 = |b,E,1〉 + (α′
6+g′

6)∗
E1−g′

5−α′
5+δ0/2 |d,E,1〉 E1 σ−

|ψ2〉 = |b,E,2〉 + (α′
6−g′

6)∗
E2+g′

5−α′
5+δ0/2 |d,E,2〉 E2 σ+

|ψ3〉 = |d,E,1〉 + (α′
6+g′

6)

E3−g′
4−α′

4−δ0/2 |b,E,1〉 E3 σ−

|ψ4〉 = |d,E,2〉 + (α′
6−g′

6)

E4+g′
4−α′

4−δ0/2 |b,E,2〉 E4 σ+

been called “dark” states so far, whereas the exciton states
{|b,E,1〉,|b,E,2〉} are associated with irrep E′ and have been
called “bright” states because there are optically active.

When the global symmetry of the QD is D3h, an analysis of
the invariant terms of the Zeeman Hamiltonian leads to fewer
linear and quadratic terms. In the D3h PG, the set of quadratic
basis functions (2xy,x2 − y2) transforms according to irrep
E′ and, likewise, the function (x2 + y2) transforms according
to A′

1; hence, the invariant terms containing (B2
x − B2

y ) only
couples excitonic states |E′,i〉 (or |E′′,i〉) within themselves
since the decomposition of the direct products E′ ⊗ E′ (or
E′′ ⊗ E′′) contains E′, but that of E′ ⊗ E′′ does not contain it.
In order to couple together “dark” and “bright” exciton states,
the Zeeman interaction term must contain basis functions that
transform according to an irreducible representation contained
in the direct product E′ ⊗ E′′ = A′′

1 ⊕ A′′
2 ⊕ E′′. Looking for

a quadratic Zeeman interaction term, the only set of basis
functions that transforms according to E′′ is (zx,zy), while for
a linear Zeeman term the only set of basis functions is given
by the components of the axial vector (Rx ,Ry), which also
transforms according to the irrep E′′.

If the symmetry elevation to D3h is effective in the C3v QDs,
the quadratic part of the Zeeman Hamiltonian will thus contain
two terms associated with the effective parameters (α1 and α2)
while its linear part will contain a single term associated with
g3 when the transverse magnetic field is oriented along the x

or y axis. We emphasize that the linear Zeeman terms that are
associated with the effective g factors g1 and g2 are strictly
equal to zero in the case of D3h, implying that the Zeeman
doublet splittings are equal to zero in a transverse magnetic
field. In a longitudinal magnetic field, the Zeeman splittings
are, however, not equal to zero because the linear Zeeman
terms containing the effective g factors g4 and g5 are allowed
for symmetry reasons in the case of the PG, D3h, as they were
in the case of C3v .

In summary, by considering the symmetry elevation to D3h

we are able to identify the dominant contributions to the
Zeeman Hamiltonian in C3v QDs for a transverse magnetic
field. These contributions include a single effective g factor
(g3) and three quadratic Zeeman terms with α1, α2, and α3, the
third parameter being allowed only if the symmetry elevation
to D3h is incomplete.

III. EXPERIMENTAL RESULTS

A. Sample and experimental conditions

We have studied pyramidal InGaAs/AlGaAs quantum
dots by magnetophotoluminescence spectroscopy in both the
Voigt and the Faraday configuration. All the quantum dots
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were measured from the same sample, which permitted the
simultaneous observation of positively and negatively charged
excitons in a single luminescence spectrum.27 The sample
was grown by low-pressure organometallic chemical vapor
deposition on 2◦ off-(111)B GaAs substrates prepatterned
with a 5-μm pitch array of inverted tetrahedral recesses.40

The growth on a (111)B-oriented substrate is perfectly
suited to obtain semiconductor QDs possessing the symmetry
properties of the C3v point group because the growth axis is
a threefold rotation axis of cubic crystals.25,39,41 We focused
our photoluminescence study on selected pyramidal QDs for
which the fine-structure splitting (FSS) of the neutral exciton
was equal to zero. These pyramidal QDs were also shown
in previous studies28 to exhibit the characteristic polarized
emission patterns of biexcitonic complexes resulting from
optical selection rules for the C3v point group. Other pyramidal
QDs of the same sample had a small FSS in the range of
10–60 μeV, indicating a notable symmetry breaking from C3v

to Cs . The sample was mounted on the cold finger of a cryostat
and maintained at a temperature of 10 K unless specified
otherwise. The cryostat was inserted in the room-temperature
bore of a superconducting magnet, and the magnetic field was
varied between 0 and 6.5 T. The photoluminescence (PL) was
excited with a cw Ti-sapphire laser tuned to 700 nm or with a
Nd-YVO4 laser at 532 nm; it was dispersed in a spectrograph
of 55-cm focal length equipped with a nitrogen-cooled Si
charged-coupled-device (CCD) array detector. The spectral
resolution was 40 μeV and the spectral accuracy was ±5 μeV
by fitting the peaks with a symmetric spectral line shape. For all
the investigated QDs, the linewidth corresponding to full width
at half maximum was found to vary in a range between 80 and
110 μeV. Individual QDs were optically selected by focusing
the laser light on the sample with a high numerical aperture
microscope objective (N.A. = 0.55). The polarization analysis
was realized by means of a linear polarizer mounted in front
of the spectrograph slit; the linear polarization direction of the
incident light was chosen by rotating a λ/2 plate positioned in
front of the linear polarizer.

B. Photoluminescence of a single QD

A typical PL spectrum from a C3v QD at zero magnetic field
is displayed in Fig. 1(a). The spectrum of the QD is composed
of a set of four major lines corresponding to radiative emission
of the negatively charged exciton (X−), of the biexciton (2X),
of the neutral exciton (X), and of the positively charged
exciton (X+). The linear polarized emission spectra attest
to the absence of any energy splitting of the neutral exciton
line; this observation is the spectral signature of the doubly
degenerate nature of the exciton eigenstates in a pyramidal QD
with C3v symmetry.25,28 We emphasize that a symmetry lower
than C3v (e.g., C2v ,Cs) is characterized by a doublet of linearly
polarized emission lines, which is generally observed in the
PL spectra of self-assembled InGaAs/AlGaAs QDs grown on
(100) substrates, for CdSe/ZnSe QDs,13,42 and of interfacial
QDs in GaAs/AlGaAs quantum wells.43 The weaker lines in
the PL spectrum have been identified in previous works as
emission lines from excitonic complexes, for which one hole
occupied an excited state confined in the QD.28,44

FIG. 1. (Color online) Photoluminescence spectra of a single
pyramidal quantum dot in two orthogonal linear polarizations
measured at 10 K (a) without and (b) with an external magnetic field
of 6.5 T in the Voigt configuration. The inset shows a pyramidal QD
and the orientation of the Cartesian coordinate system with respect
to its threefold axis of rotation, denoted as the z axis. The external
magnetic field is applied along the [−110] crystalline axis of the
zinc-blende lattice (y axis) and the photons are collected along the
[111] axis (z axis).

C. Magnetophotoluminescence in the Voigt configuration

The application of a magnetic field in the Voigt config-
uration allows a clear distinction between lines originating
from neutral and charged excitons. The emission pattern
of the charged excitons is characterized by a set of two
doublets of lines that are linearly polarized in a direction either
parallel or perpendicular to the applied magnetic field. While
the Zeeman energy splittings of the doublets vanish at zero
magnetic field for both the charged and the neutral excitons,
the energy separation between the doublets converges to zero
for a charged exciton, whereas it takes a finite value for the
neutral exciton.14,20,27 In Fig. 1(b), we show the polarized
photoluminescence spectra of the same QD that were recorded
at a magnetic field of 6.5 T in the Voigt configuration.
The pattern of emission lines from the charged excitons is
composed of two doublets of linearly polarized emission lines
that have nearly identical intensities, while that of the neutral
exciton (or the neutral biexciton) consists of a weak doublet on
the low-energy side of an intense emission doublet (note that
the ordering of lines is opposite for the emission pattern of the
biexciton). In preceding magneto-optical studies of QDs,27 the
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FIG. 2. Energy splitting of the Zeeman doublet associated with
the “bright” exciton states of QD1 [the intense Zeeman doublet is
labeled with an X in Fig. 1(b)].

weak doublet was assigned to the radiatively forbidden exciton
states (also known as the “dark” exciton states) of total angular
momentum projection Mz = ±2, and the intense doublet was
associated with the radiatively allowed exciton states (also
known as the “bright” exciton states with Mz = ±1). Although
seemingly similar to the optical spectra of self-assembled QDs,
the analysis of their evolution in an increasing magnetic field
reveals a behavior with the transverse magnetic field that is
specific to the point group symmetry of C3v QDs.

In Fig. 2, we display the dependence of the Zeeman energy
splitting of the intense emission doublet with the magnetic
field. There are two remarkable features in these data: The
Zeeman splitting remains very tiny at the highest magnetic
field of 6.5 T (≈30 μeV), and the doublet splitting varies
linearly with the magnetic field strength. This observation
is in full agreement with the predicted behavior from our
theoretical model of the Zeeman interaction in C3v QDs.
The linearity of the Zeeman splitting dependence with the
magnetic field proves that the description of the interplay
between the Coulomb and Zeeman interactions is crucial
to the understanding of the exciton states in a transverse
magnetic field. A linear fit to these data yields a value of
the effective g factor |g1| = 0.075, which is extremely small
in comparison to typical values of effective g factors for the
Zeeman splitting in the Faraday configuration (see the results
in the next section). The sign of the effective g factor g1

is determined unequivocally by the ordering of the linear
polarization orientation of the intense Zeeman doublet: As
the component of the Zeeman doublet on its high-energy
side is linearly polarized along the x axis, the sign of g1 is
negative (see Tables I and III). Figure 3 shows an expanded
view of the polarized PL spectra on the low-energy side of
the intense Zeeman doublet in order to estimate the Zeeman
splitting energy of the weak Zeeman doublet. At a magnetic
field of 6.5 T, the intensity of the weak Zeeman doublet
reaches a maximum, and the estimated value of its splitting
energy is about 7 μeV. In order to evaluate the effective g

factor g2, one first needs to determine the values of the three
diamagnetic coefficients (α1,α2,α3) and of the effective g factor
g3 because the intensity of the weak Zeeman doublet prevents

FIG. 3. (Color online) Polarized photoluminescence spectra of
QD1 showing on an expanded energy scale the weak Zeeman doublet
on the low-energy side of the intense Zeeman doublet. The dotted
line corresponds to the original spectrum for y-polarization while
the solid line is the same spectrum normalized to the weak doublet
component in the x-polarization spectrum. The origin of the energy
scale is taken at the position of the x-polarized component of the
intense Zeeman doublet.

the determination of the splitting energy at other values of the
magnetic field.

The off-diagonal terms of the Zeeman Hamiltonian contain-
ing g3 and α3 can be determined from the magnetic field depen-
dence of the intensity of the so-called dark state transitions.
In Fig. 4, we display the polarized PL spectra obtained for
various values of the magnetic field in the Voigt configuration.
The emission of the weak Zeeman doublet becomes observable
as soon as the magnetic field strength is larger than about 3 T in
this sample. Furthermore, the linearly polarized components
of the weak Zeeman doublet do not have the same intensity,
the intensity of the x-polarized line being always much larger
than that of the y-polarized line at a given value of the
magnetic field. This striking asymmetry in the intensity of
the weak Zeeman doublet originates from an interference
between the linear and quadratic Zeeman terms associated with
the off-diagonal terms of the Zeeman Hamiltonian containing
g3 and α3. The magnetic field dependence of each linearly
polarized component of the weak Zeeman doublet is shown in
Fig. 5. From a fit to expressions (16) and (17) for the intensity
ratio of the linearly polarized transitions, we obtain consistent
values for g3 and α3; they are equal to −0.204 ± 0.015 and
0.63 ± 0.02 μeV/T2, respectively. The sign of g3 is opposite
to that of α3 because the larger intensity corresponds to that
of the x-polarized component of the weak Zeeman doublet.
Note that the sign of the diamagnetic term is taken to be
positive, as one would expect it. From expression (12) for the
energy splitting of the “dark” exciton Zeeman doublet, it is then
possible to estimate the effective g factor g2 at a fixed magnetic
field of 6.5 T: This yields the value of g2 = −0.038 ± 0.02 [the
large error is compounded by the measurement accuracy of the
transition energy (±5 μeV) and the error in the determination
of g3 and α3].

In Fig. 6, we show the magnetic field dependence of the
average energy of each Zeeman doublet. Making use of the
expressions for the eigenenergies given in Table I, one obtains
from the fit to the data the values of the diamagnetic coefficients
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FIG. 4. (Color online) Polarized photoluminescence spectra of
the pyramidal QD1 for intermediate strengths of the external magnetic
field. The x-polarized component of the weak Zeeman doublet is
always more intense than its y-polarized component.

α1 = 7.05 ± 0.06 μeV/T2, α2 = 7.47 ± 0.06 μeV/T2, and the
e-h exchange parameter δ0 = 191 μeV. It is instructive to note
that these diamagnetic coefficients have nearly the same value;
this is not surprising since the “dark” and the “bright” excitons
correspond to the same carrier configuration (electron and hole
in the ground state) if Coulomb correlation is neglected.

Figure 7 displays the magnetic field dependence of the
Zeeman splitting of the outer lines of the quadruplet, which

FIG. 5. Intensity ratio between one of the components of the
weak Zeeman doublet and the component of the intense Zeeman
doublet corresponding to the same linear polarization (a) polarization
direction along the x axis and (b) polarization direction along the
y axis. The dotted lines are the best fits according to theoretical
expressions given in the text.

are linearly polarized along the x axis, corresponding to a
direction perpendicular to the applied magnetic field. From a
fit according to expression (14), one obtains a value of the e-h
exchange parameter δ0 that is identical to that obtained above,
and consistent values for the parameters g3 and α3 (with a
relative error of 60%, which is relatively large because of the
size of the error bars for the photon energy).

FIG. 6. Diamagnetic shift of the Zeeman doublets of QD1. Open
and solid dots correspond respectively to the intense and weak
doublets. The energy separation extrapolated at zero magnetic field
yields the value of the electron-hole exchange energy δ0.
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FIG. 7. Magnetic field dependence of the measured Zeeman
splitting between the x-polarized lines of the neutral exciton in QD1.
The dotted line is the best fit from expression (13) given in the text.
The extrapolated value at zero magnetic field is the electron-hole
exchange energy δ0.

D. Magnetophotoluminescence in the Faraday configuration

In Fig. 8(b), we present a typical spectrum of a C3v QD
in the Faraday configuration at a magnetic field of 6.5 T. The
C3v symmetry of this QD is identified by the characteristic
emission pattern of the excited biexciton complex 2X11, which
is shown in the unpolarized spectrum of Fig. 8(a) in the absence
of a magnetic field. The specificity of this emission pattern is

FIG. 8. Photoluminescence spectra of a C3v QD, pyramidal QD2,
measured in the Faraday configuration at a temperature of 32 K:
(a) for 0 T and (b) for 6.5 T. The Zeeman splittings of the doublets
labeled X, X−, X+, and 2X are identical in the Faraday configuration.
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FIG. 9. Zeeman doublet splitting of the neutral exciton as a
function of the applied longitudinal magnetic field Bz for another
C3v QD, pyramidal QD3.

a set of three prominent lines for the radiative cascade starting
from the 2X11 states and ending on the X01 exciton states, as
we reported in Ref. 28. The other weak emission lines in the
spectra were identified by the analysis of their excitation power
dependences and their spectral positions (see, e.g., Ref. 44). In
a longitudinal magnetic field, we find that the emission pattern
of the main excitonic complexes (X−,2X,X,X+) is composed
of only one Zeeman doublet. We observe that all the emission
lines are circularly polarized and that the highest-energy line of
each Zeeman doublet is left circularly polarized for a magnetic
field pointing upward along the z axis. These results in the
Faraday configuration are in sharp contrast with those obtained
in the Voigt configuration, for which the emission pattern was a
quadruplet of Zeeman lines. The generality of these results was
confirmed in the study of more than ten other pyramidal QDs.

In Fig. 9, we show the magnetic field dependence of the
Zeeman doublet splitting of the neutral exciton. From the best
fit to the data we find that the Zeeman doublet splitting varies
linearly with the applied magnetic field, which yields a value
of g4 equal to 1.79 ± 0.02; we can then exclude any significant
contribution to the splitting of a cubic dependence with the
longitudinal magnetic field. It implies that the parameters
g6 and α6, which were introduced in the effective Zeeman
Hamiltonian in the case of C3v symmetry, are equal to zero for
this QD. Moreover, if these parameters had taken very small
values, one would have observed a small contribution from the
“dark” states {|d,E,1〉,|d,E,2〉} to the emission pattern of the
neutral exciton at the highest values of the applied magnetic
field. A close inspection of the PL spectra from QD1 and QD2
displayed, respectively, in Figs. 8(b) and 10, does not reveal
any weak emission lines at proximity to the Zeeman doublet
associated with the neutral exciton states. The absence of the
off-diagonal terms associated with the parameters g6 and α6

in the Zeeman Hamiltonian likely arises from the symmetry
elevation from C3v to D3h. As the longitudinal magnetic
field in the direction of the z axis transforms according to
the irrep A′

2 of the PG D3h, the off-diagonal terms that are
linear and quadratic with Bz do not exist because the irreps
A′

2 and A′
1 are not found in the irrep decomposition of the

direct product E′ ⊗ E′′. Hence, the absence of hybridization
in the Faraday configuration between the “bright” and the
“dark” exciton states is attributed to the symmetry elevation
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FIG. 10. Polarized photoluminescence spectra of QD3 at a
magnetic field of 6.5 T and a temperature of 30.5 K. The scaling
of intensity is chosen to enhance the weaker lines from X−, 2X, and
X+.

to D3h that is present in the pyramidal QDs. Nevertheless,
the hybridization between the “dark” states and the “bright”
states could be restored if the magnetic field were tilted with
respect to the threefold rotation axis of the QD; this would
allow the measurement of the effective g factor g5. This was
not attempted, however, in our experiment because of the fixed
orientation of the sample holder.

We also investigated the dispersion of the Zeeman doublet
splitting of the neutral exciton in a set of 15 pyramidal QDs
at the maximum value of the magnetic field. We estimated a
mean value of the effective g factor associated with the neutral
exciton g4 = 1.75 with a standard deviation of about 0.1. We
did not find any correlation between the value of the effective g

factor and the emission energy of the exciton, which suggests
that the dispersion among the values of the g factor is not
simply related to a size variation of the QDs. The diamagnetic
coefficient α4 was determined in QD3, yielding a value of
6.3 ± 0.1 μeV/T2, which was typical of all the measured QDs
in the Faraday configuration. This value is also comparable
with diamagnetic coefficients measured in other QD systems
in the intermediate to strong confinement regime.45

A comparison of our results with a recent study46 of the
Zeeman effect in symmetric QDs is enlightening as to the
origin of the dark-bright mixing of the exciton states that is
induced by a longitudinal magnetic field. In this study, the
GaAs QDs were grown by droplet epitaxy on a GaAs (111)A
substrate. Typical values of the fine-structure splitting (FSS)
of the neutral exciton emission were of a few μeV, which led
the authors to conclude that these QDs had a high symmetry
corresponding to the C3v point group. Nevertheless, a nonzero
value of the FSS indicates an anisotropy of the electron-hole
exchange interaction that results from a symmetry breaking
to Cs . The radiative pattern of the neutral exciton confined
to a symmetric GaAs QD was composed of four emission
lines when a longitudinal magnetic field was applied, thereby
revealing a mixing between the bright and the dark states of
the exciton. Sallen and co-workers attributed this mixing to a
coupling between the heavy-hole states with spin projections
+3/2 and −3/2 onto the [111] growth axis, which is induced
by a Zeeman interaction term varying linearly with the
magnetic field.27,46 Although this Zeeman interaction term is

sufficient to explain the circular polarization and the Zeeman
splitting of the emission lines, it alone cannot account for their
relative emission intensities. Indeed, the emission intensity of
the σ+ polarized dark transition is much weaker than the σ−
polarized one. In our model, we can explain this asymmetric
coupling by the interference between the contribution of the
diamagnetic interaction term α6B

2
z and the linear Zeeman term

g6μBBz, the existence of which is accounted for by the hole
effective g factor gh2 in their theoretical approach.

IV. CONCLUDING REMARKS

We have studied experimentally and theoretically the radia-
tive emission pattern of neutral excitons in highly symmetric
quantum dots and their evolution in an external magnetic field.
The measurements of the Zeeman doublet splittings of the ex-
citon quantum states revealed a large anisotropy of the exciton
effective g factors when the magnetic field was oriented in di-
rections parallel and perpendicular to the [111] symmetry axis
of the C3v QD. We interpreted the very small Zeeman splitting
of the “bright” exciton states in a transverse magnetic field to an
effect of symmetry elevation from C3v to D3h, which nullifies
the Zeeman splitting. The origin of the observed Zeeman
splitting anisotropy should be distinguished, however, from the
known effect of the QD shape asymmetry in self-assembled
InGaAs/GaAs QDs that gives rise to a strong anisotropy of the
hole effective g factor (and to a lesser extent to the electron
g factor) when the magnetic field is oriented along the strong
confinement direction or perpendicular to it.18,47 The diamag-
netic shifts of the “bright” exciton states were measured and
corresponded to comparatively similar values of the diamag-
netic coefficients (α1 ≈ 7 μeV/T2, α4 ≈ 6 μeV/T2) in a trans-
verse and a longitudinal magnetic field. As the diamagnetic
shift is a sensitive probe of the spatial confinement in a direc-
tion transverse to the magnetic field,48 we infer from its insensi-
tivity to the magnetic field orientation that the spatial extent of
the exciton wave function is close to isotropic in our pyramidal
quantum dots. This qualitative analysis of the diamagnetic
shifts corroborates our interpretation of the small values of the
Zeeman splitting for a transverse magnetic field as resulting
from a peculiar effect of symmetry elevation, which is particu-
larly effective in these pyramidal quantum dots, as was demon-
strated in the analysis of their photoluminescence spectra.28

For the Voigt configuration, we observed that the Zeeman
effect on the neutral exciton radiative pattern had two re-
markable characteristics in highly symmetric QDs: a linear
dependence of the Zeeman doublet splitting with the magnetic
field and a nonlinear hybridization of the “dark” states with
the “bright” states of the exciton. These observations in
pyramidal QDs should be contrasted with those made on
the neutral exciton in self-assembled QDs, for which the
Zeeman splittings followed a hyperbolic dependence with a
transverse magnetic field.14 In addition to the role played
by the high symmetry of the neutral exciton states in C3v

QDs, we highlighted the predominant intertwining between the
Coulomb and Zeeman interactions to explain the linearity of
the Zeeman splittings. The excellent agreement with our theory
demonstrates that this is not merely an interplay between
the electron-hole exchange and the Zeeman interactions. In
order to fully account for this intertwining, we chose the four
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exciton states as the vector basis to formulate the effective
Zeeman Hamiltonian. Moreover, we included in the invariant
expression of the effective Zeeman Hamiltonian all the linear
and diamagnetic Zeeman terms that are allowed for symmetry
reasons. It should be clear that the given expression of the
effective Zeeman Hamiltonian is specific to the symmetry
properties of the exciton states, and might then require other
invariant terms if one were to formulate an effective Zeeman
Hamiltonian for another exciton complex. For instance, the
common description of the charged exciton radiative pattern
in an external magnetic field makes use of different effective
g factors for electrons and holes, and predicts Zeeman
doublet splittings that are independent of the sign of the extra
charge. This prediction was, however, not validated by recent
experimental studies of the Zeeman effect on charged excitons
in various QD systems.23,24,46 The strong sensitivity of the
radiative pattern of charged exciton in a transverse magnetic
field was attributed to a Coulomb interaction among the three
carriers composing a charged exciton, or, in other words, to a
charge-dependent extension of the complex wave function.27

In summary, our theory provides the framework to analyze
the experimental radiative pattern of neutral excitons confined
in pyramidal quantum dots of C3v symmetry for different
orientations of an applied magnetic field. We highlighted
the intertwining of the Zeeman and Coulomb interactions
by analyzing the magnetic field dependence of the Zeeman
splittings in the neutral exciton emission spectra of single
pyramidal QDs. We uncovered an interference between a
linear Zeeman term and a diamagnetic term that resulted in
an asymmetrical coupling of the optically forbidden exciton
states to the optically allowed ones in a transverse magnetic
field. Although our theoretical formalism was developed to
describe the Zeeman effect on the optical spectra of the neutral
exciton confined in highly symmetric QDs of C3v symmetry,
it can be extended to other exciton complexes, such as the
charged exciton and biexciton states and to quantum dots of
other symmetries. To assess the Zeeman effect on other exciton
complexes, we expect the contribution of the diamagnetic
Zeeman terms to be equally important as the diamagnetic shift
is mainly determined by the difference of wave-function radial
extension of the complex between the initial and final states of
the radiative process.
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APPENDIX: ZEEMAN SPLITTINGS FOR
AN EXCITED EXCITON

We consider the case of an exciton for which the electron
and the hole states transform according to the same irrep E1/2.
Since the direct product of the electron and hole irreps is de-
composed into E1/2 ⊗ E1/2 = A1 + E + A2, the set of exciton
states can be formally written as {|A1〉,|E,1〉,|E,2〉,|A2〉}, to
which are associated the eigenenergies (δ1,δ3,δ3,δ2). These
eigenenergies account for the Coulomb exchange interaction
between the electron and the hole.

The calculation of the matrix form of the linear part of the
Zeeman Hamiltonian in the exciton state basis given above
yields:

M lin
Z = 1

2
√

2
μBBx

⎛
⎜⎜⎜⎝

0 g1 g1 0

g∗
1 0

√
2g3 −g∗

2

g∗
1 −√

2g3 0 g∗
2

0 −g2 g2 0

⎞
⎟⎟⎟⎠

+ i

2
√

2
μBBy

⎛
⎜⎜⎜⎝

0 g1 −g1 0

−g∗
1 0

√
2g3 g∗

2

g∗
1

√
2g3 0 g∗

2

0 −g2 −g2 0

⎞
⎟⎟⎟⎠

+ 1

2
μBBz

⎛
⎜⎜⎜⎝

0 0 0 g5

0 g4 0 0

0 0 −g4 0

g∗
5 0 0 0

⎞
⎟⎟⎟⎠ . (A1)

The effective g factors are defined by the following expres-
sions:

g1 = 〈A1‖L[E]‖E〉, g2 = 〈A2‖L[E]‖E〉,
g3 = 〈E‖L[E]‖E〉, g4 = 〈E‖L[A2]‖E〉,
g5 = 〈A1‖L[A2]‖A2〉.

The Hermiticity of the Zeeman Hamiltonian implies that g4

is real and that g3 is purely imaginary. These five parameters
constitute a full set of effective g factors that completely define
the linear part of the Zeeman effect for the exciton under
consideration.

When the magnetic field is oriented along a symmetry axis
(x, y, or z axis), the matrix form of the diamagnetic part of the
Zeeman Hamiltonian depends on fewer effective parameters
than for an arbitrary orientation of the magnetic field. We will

TABLE VI. Eigenenergies of the C3v exciton in a transverse magnetic field (B=By).

E1 = 1
2 (δ1 + δ3) − i

2 g3μBB + 1
2 (α1 + α3 + ω2)B2 − 1

2

√
[(α3 − α1 + ω2)B2 + (δ3 − δ1) − ig3μBB]2 + |2√

2(ω1 − η1)B2 + ig1μBB|2
E2 = 1

2 (δ1 + δ3) − i

2 g3μBB + 1
2 (α1 + α3 + ω2)B2 + 1

2

√
[(α3 − α1 + ω2)B2 + (δ3 − δ1) − ig3μBB]2 + |2√

2(ω1 − η1)B2 + ig1μBB|2
E3 = 1

2 (δ3 + δ2) + i

2 g3μBB + 1
2 (α3 + α2 − ω2)B2 + 1

2

√
[(α3 − α2 − ω2)B2 + (δ3 − δ2) + ig3μBB]2 + |2√

2(ω3 − η∗
2)B2 + ig2μBB|2

E4 = 1
2 (δ3 + δ2) + i

2 g3μBB + 1
2 (α3 + α2 − ω2)B2 − 1

2

√
[(α3 − α2 − ω2)B2 + (δ3 − δ2) + ig3μBB]2 + |2√

2(ω3 − η∗
2)B2 + ig2μBB|2
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TABLE VII. Eigenenergies of the C3v exciton in a longitudinal magnetic field (Bz).

E1 = 1
2 (β1 + β2)B2

z + 1
2 (δ1 + δ2) + 1

2

√
[(β1 − β2)B2

z + (δ1 − δ2)]2 + |g5μBBz|2
E2 = δ3 + β3B

2
z + 1

2 g4μBBz

E3 = δ3 + β3B
2
z − 1

2 g4μBBz

E4 = 1
2 (β1 + β2)B2

z + 1
2 (δ1 + δ2) − 1

2

√
[(β1 − β2)B2

z + (δ1 − δ2)]2 + |g5μBBz|2

only give explicit expressions for these three cases:

Mdia
Z (Bz) = B2

z

⎛
⎜⎜⎜⎝

β1 0 0 0

0 β3 0 0

0 0 β3 0

0 0 0 β2

⎞
⎟⎟⎟⎠ , (A2)

Mdia
Z (By) = B2

y

⎛
⎜⎜⎜⎝

α1 0 0 0

0 α3 0 0

0 0 α3 0

0 0 0 α2

⎞
⎟⎟⎟⎠ − B2

y

⎛
⎜⎜⎜⎝

0 η1 − ω1 −η1 + ω1 0

η∗
1 − ω∗

1 0 ω2 η2 − ω∗
3

−η∗
1 + ω∗

1 ω2 0 η2 − ω∗
3

0 η∗
2 − ω3 η∗

2 − ω3 0

⎞
⎟⎟⎟⎠ , (A3)

Mdia
Z (Bx) = B2

x

⎛
⎜⎝

α1 0 0 0
0 α3 0 0
0 0 α3 0
0 0 0 α2

⎞
⎟⎠ + B2

x

⎛
⎜⎝

0 η1 − ω1 −η1 + ω1 0
η∗

1 − ω∗
1 0 ω2 η2 − ω∗

3−η∗
1 + ω∗

1 ω2 0 η2 − ω∗
3

0 η∗
2 − ω3 η∗

2 − ω3 0

⎞
⎟⎠ . (A4)

The effective parameters, αi , βi , and ω2 are real, and all the
other parameters are complex numbers.

When symmetry elevation to D3h is considered, the sym-
metry of the exciton states corresponds to irreps E′, A′′

1, and
A′′

2 instead of irreps E, A′
1, and A′

2; it is then straightforward to
show that the effective g factor g3 = 0 and that the diamagnetic
coefficients ω1 = 0 and ω3 = 0.

An analytical solution of the secular equation can be
found, and the eigenenergies are given in Tables VI and
VII for a transverse and a longitudinal magnetic field,
respectively. We note that a simple analytical solution does
not exist for a transverse magnetic field aligned along the x

axis.

1G. R. Eaton, S. S. Eaton, and K. M. Salikhov, Foundations of
Modern EPR (World Scientific, Singapore, 1998).

2G. E. Uhlenbeck and S. Goudsmit, Nature (London) 117, 264
(1926); Naturwissenshaften 47, 953 (1925).

3W. Gerlach and O. Stern, Phys. Z. 9, 349 (1922).
4W. Kohn and J. M. Luttinger, Phys. Rev. 96, 529 (1954).
5J. M. Luttinger, Phys. Rev. 102, 1030 (1956).
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