Nobile, F.
Vergara, C.
An effective fluid-structure interaction formulation for vascular dynamics by generalized Robin conditions
Siam Journal On Scientific Computing
Siam Journal On Scientific Computing
Siam Journal On Scientific Computing
Siam Journal On Scientific Computing
30
2
fluid-structure interaction
membrane model
absorbing boundary conditions
Navier-Stokes equations
Womersley profile
finite elements
time marching schemes
Defective Boundary-Conditions
Incompressible Viscous Flows
Navier-Stokes Equations
Blood-Flow
Elastic Tube
Algorithm
Model
Waves
3D
2008
2008
In this work we focus on the modeling and numerical simulation of the fluid-structure interaction mechanism in vascular dynamics. We first propose a simple membrane model to describe the deformation of the arterial wall, which is derived from the Koiter shell equations and is applicable to an arbitrary geometry. Secondly, we consider a reformulation of the fluid-structure problem, in which the newly derived membrane model, thanks to its simplicity, is embedded into the fluid equations and will appear as a generalized Robin boundary condition. The original problem is then reduced to the solution of subsequent fluid equations defined on a moving domain and may be achieved with a fluid solver only. We also derive a stability estimate for the resulting numerical scheme. Finally, we propose new out flow absorbing boundary conditions, which are easy to implement and allow us to reduce significantly the spurious pressure wave reflections that typically appear in artificially truncated computational domains. We present several numerical results showing the effectiveness of the proposed approaches.
1064-8275
Siam Journal On Scientific Computing
Journal Articles
10.1137/060678439