000176349 001__ 176349
000176349 005__ 20181203022701.0
000176349 022__ $$a1064-8275
000176349 0247_ $$2doi$$a10.1137/060678439
000176349 037__ $$aARTICLE
000176349 245__ $$aAn effective fluid-structure interaction formulation for vascular dynamics by generalized Robin conditions
000176349 269__ $$a2008
000176349 260__ $$c2008
000176349 336__ $$aJournal Articles
000176349 520__ $$aIn this work we focus on the modeling and numerical simulation of the fluid-structure interaction mechanism in vascular dynamics. We first propose a simple membrane model to describe the deformation of the arterial wall, which is derived from the Koiter shell equations and is applicable to an arbitrary geometry. Secondly, we consider a reformulation of the fluid-structure problem, in which the newly derived membrane model, thanks to its simplicity, is embedded into the fluid equations and will appear as a generalized Robin boundary condition. The original problem is then reduced to the solution of subsequent fluid equations defined on a moving domain and may be achieved with a fluid solver only. We also derive a stability estimate for the resulting numerical scheme. Finally, we propose new out flow absorbing boundary conditions, which are easy to implement and allow us to reduce significantly the spurious pressure wave reflections that typically appear in artificially truncated computational domains. We present several numerical results showing the effectiveness of the proposed approaches.
000176349 6531_ $$afluid-structure interaction
000176349 6531_ $$amembrane model
000176349 6531_ $$aabsorbing boundary conditions
000176349 6531_ $$aNavier-Stokes equations
000176349 6531_ $$aWomersley profile
000176349 6531_ $$afinite elements
000176349 6531_ $$atime marching schemes
000176349 6531_ $$aDefective Boundary-Conditions
000176349 6531_ $$aIncompressible Viscous Flows
000176349 6531_ $$aNavier-Stokes Equations
000176349 6531_ $$aBlood-Flow
000176349 6531_ $$aElastic Tube
000176349 6531_ $$aAlgorithm
000176349 6531_ $$aModel
000176349 6531_ $$aWaves
000176349 6531_ $$a3D
000176349 700__ $$0241873$$g118353$$aNobile, F.
000176349 700__ $$aVergara, C.
000176349 773__ $$j30$$tSiam Journal On Scientific Computing$$k2$$q731-763
000176349 909C0 $$xU12495$$0252411$$pCSQI
000176349 909CO $$pSB$$particle$$ooai:infoscience.tind.io:176349
000176349 917Z8 $$x107357
000176349 917Z8 $$x178574
000176349 917Z8 $$x178574
000176349 937__ $$aEPFL-ARTICLE-176349
000176349 973__ $$rREVIEWED$$sPUBLISHED$$aOTHER
000176349 980__ $$aARTICLE