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Based on the CYCLONE case, simulations of collisional electrostatic ion temperature gradient (ITG)

microturbulence carried out with the global gyrokinetic particle-in-cell (PIC) code ORB5 are

presented. Considering adiabatic electrons, an increase in ion heat transport over the collisionless

turbulent case due to ion-ion collisions is found to exceed the neoclassical contribution. This

synergetic effect is due to interaction of collisions, turbulence, and zonal flows. When going from a

collisionless to a collisional ITG turbulence simulation, a moderate reduction of the average zonal

flow level is observed. The collisional zonal flow level turns out to be roughly independent of the

finite collisionality considered. The Dimits shift softening by collisions [Z. Lin et al., Phys. Rev.

Lett. 83, 3645 (1999)] is further characterized, and the shearing rate saturation mechanism is

emphasized. Turbulence simulations start from a neoclassical equilibrium [T. Vernay et al., Phys.

Plasmas 17, 122301 (2010)] and are carried out over significant turbulence times and several

collision times thanks to a coarse-graining procedure, ensuring a sufficient signal/noise ratio even at

late times in the simulation. The relevance of the Lorentz approximation for ion-ion collisions,

compared to a linearized Landau self-collision operator, is finally addressed in the frame of both

neoclassical and turbulence studies. [http://dx.doi.org/10.1063/1.3699189]

I. INTRODUCTION

The effect of the radial electric field related to axisym-

metric modes and the associated zonal flows on tokamak

microturbulence has been widely studied in the frame of

gyrokinetic simulations. In particular, the ion temperature

gradient (ITG) turbulence saturation due to vortice shearing

produced by zonal flows is a well established mechanism,

which reduces the turbulent transport in ITG-dominated

regimes.1–4 Due to the high temperatures in the core of

tokamak plasmas, collisionless gyrokinetic models have

extensively been used for turbulent transport analysis.

However, even though collisionality is not a priori a domi-

nant effect for the core tokamak physics, it may nonethe-

less significantly affect the transport in at least three ways.

First, collisions produce an intrinsical neoclassical trans-

port. Usually small compared to the turbulent transport,

neoclassical transport may nevertheless reach comparable

levels, in conditions of marginal stability of microinstabil-

ities. Second, collisions damp radial perturbations and asso-

ciated zonal flows as predicted in Ref. 5. Third, collisions

may, in fact, also generate a neoclassical radial electric

field for ensuring ambipolarity in the presence of density

and temperature gradients, leading to background ~E � ~B
flows. This strong effect of collisions on radial electric field

dynamics, appearing through a competition between gener-

ation and damping, affects in turn through zonal flow

shearing the turbulent transport levels, as studied in this

paper.

In order to address issues related to collisional turbulent

transport with a particle-in-cell (PIC) code, such as

ORB5,6,7 the first requirement is to ensure long and relevant

simulations despite the numerical noise intrinsic to the PIC

method and even enhanced over time by the numerical

treatment of collisions. The code ORB5 has proven to ena-

ble long, statistically converged collisionless simulations by

using a small artificial decay of the weights.8 The latter

noise control scheme is, however, unpractical for carrying

out collisional simulations, since the required numerical

decay rate which needs to be chosen for the approach to be

effective is typically of the order of the ion-ion collision

frequency and may thus significantly interfere with the cor-

responding physical effects. The control of numerical noise

in presence of collisions is thus handled by making use of

the so-called coarse-graining procedure, first proposed in

Ref. 9 and further simplified in Ref. 10. Some details related

to the implementation of the coarse-graining algorithm in

ORB5 had already been given in Ref. 11 for carrying out

neoclassical simulations. The generalization of this imple-

mentation in ORB5 for handling turbulence simulations is

described in this paper.

Another requirement for the code is to feature a robust

and thoroughly tested collision operator. The self-collision

operators in ORB5 are linearized Landau operators conserv-

ing locally the first three velocity moments (density, parallel

momentum, and kinetic energy) and whose discretization is

presented in detail in Ref. 11. Several neoclassical bench-

marks against other codes and analytical predictions have
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been performed. In this paper, we also address the question

of whether a simple Lorentz operator for ion-ion collisions

used in other codes12 is sufficient for turbulence studies com-

pared to a more accurate Landau self-collision operator.

Studies of collisional ITG turbulence using gyrokinetic

simulations have already been performed in the past, making

use of Lagrangian (PIC),13 Semi-Lagrangian,14 and Eulerian15

methods. In Ref. 13, the damping of zonal flows by collisions

is found to increase the turbulent heat diffusivity, at all values

of the gradients considered. An Eulerian approach combined

with a simplified Krook operator for ion-ion collisions pro-

vides the same trend, however, somewhat less pronounced.16

Turbulence studies in the frame of a Z-pinch configuration

show as well a transport enhancement due to collisions.17

This general conclusion is confirmed by ORB5 results. In this

paper, we systematically analyze the mechanisms of neoclass-

ical (purely collisional) and turbulent transport, as well as

their possible interactions. To this end, in a first phase of the

simulation, a neoclassical equilibrium is established by keep-

ing only axisymmetric (n¼ 0) Fourier modes. In a second

phase, turbulence can evolve freely by considering all toroidal

Fourier modes (n¼ 0 and n 6¼ 0). Our simulations show that

collisional effects are not simply additive to collisionless tur-

bulent transport: heat transport in the presence of both turbu-

lence and collisions is larger than the sum of collisionless

turbulent transport and neoclassical transport. The softening

of the Dimits shift region obtained in Ref. 13 is as well

observed in ORB5 simulations and is further characterized in

this work. However, the bursting behaviour of the zonal flows

in the Dimits shift region predicted in Ref. 13 is only clearly

reproduced for narrow gradient profiles. For wider gradient

profiles, a steadier regime is observed. Additional drive from

increased turbulence levels in collisional simulations is found

to essentially balance the zonal flow damping by collisions,

leading to zonal flow amplitudes only slightly reduced in col-

lisional simulations compared to the collisionless situation.

Moreover, the zonal flow levels in collisional simulations turn

out to be roughly independent of the finite collisionality con-

sidered. The zonal flow saturation, due to a tertiary instability

mechanism transferring energy from zonal modes back to tur-

bulence and occurring at large ion temperature gradients, is

demonstrated.18 Like the previous results mentioned above,

the electrons are assumed adiabatic and therefore collisionless

in this paper. Considering the dynamics of kinetic electrons

along with the related electron collisionality may lead to dif-

ferent conclusions concerning the effects of collisions on tur-

bulence in certain regimes,19 mainly due to the reduction of

microinstability drive by electron collisions.

The paper is organized as follows: Sec. II presents briefly

the simulation model and the numerical method, as well as

the parameters of the specific considered physical system.

Section III explains the noise control procedure applied in col-

lisional ORB5 and shows some related tests. Section IV

presents some results related to collisional Rosenbluth-Hinton

(RH) tests, which emphasize the difference in poloidal ~E � ~B
flow physics between collisionless and collisional systems.

Section V shows how ORB5 collisional simulations of turbu-

lence are started from a neoclassical equilibrium. It addresses

the synergetic effect of collisions on the total transport for

different temperature gradients and demonstrates the zonal

flow saturation mechanism through tertiary instabilities. Sec-

tion VI considers the relevance of the simple Lorentz operator

for ion-ion collisions in the frame of turbulence studies. Con-

clusions are drawn in Sec. VII.

II. SIMULATION MODEL AND NUMERICAL METHODS

A. The gyrokinetic equation

Simulations are performed with the global gyrokinetic

code ORB5.6,7 Electrons are considered here in the limit of

the adiabatic approximation as one is interested in the purely

ITG regime. The collisional model of ORB5 is described in

detail in Ref. 11. It solves the gyrokinetic equation for the

gyro-averaged ion distribution function f ð~R; vjj; l; tÞ, where
~R is the gyrocenter position, vjj is the parallel velocity, and

l ¼ mv2
?=2B is the magnetic moment. The operator Ĉ repre-

senting ion-ion collisions is a Landau operator, which does

not retain the Finite-Larmor-Radius effects, linearized with

respect to a non-shifted local Maxwellian distribution fLM:

ĈðdfLMÞ ¼ C½fLM; dfLM� þ C½dfLM; fLM�; (1)

where dfLM ¼ f � fLM represents the deviation of the full dis-

tribution f with respect to fLM. The first term on the right hand

side represents collisions of dfLM on the background fLM and

the second term represents the background reaction (collisions

of fLM on dfLM) ensuring the local conservation of density,

parallel momentum, and kinetic energy. The background reac-

tion term is in fact approximated and of the form:9,20

C½dfLM; fLM�
fLM

’ BðdfLMÞ

¼ 1

n0

6
ffiffiffi
p
p

HðvÞ
dPjjvjj

v2
th

þ
ffiffiffi
p
p

GðvÞ dE
v2

th

)
;

(
(2)

where n0 is the background density, vth ¼
ffiffiffiffiffiffiffiffiffi
T=m

p
is the ther-

mal velocity, and v ¼ v=vth. HðvÞ and GðvÞ are defined in

Ref. 11 and related to the Rosenbluth potentials relatively to

a Maxwellian background. dPjj and dE are, respectively, the

changes in the parallel momentum and the kinetic energy of

the fluctuation distribution due to C½fLM; dfLM�:

dPjjðdfLM; ~RÞ ¼ �
ð

C½fLM; dfLM�vjjd3v; (3)

dEðdfLM; ~RÞ ¼ �
ð

C½fLM; dfLM�v2d3v: (4)

The form (2) ensures the same symmetry properties as the

exact background reaction term and associated properties

(H-theorem, stationary states). A heat source SH is also con-

sidered, such that the gyrokinetic equation reads:

D

Dt
f ¼ �ĈðdfLMÞ þ SH; (5)
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where D/Dt is the collisionless gyrokinetic operator:

D

Dt
¼ @

@t
þ d~R

dt
� @
@~R
þ

dvjj
dt

@

@vjj
: (6)

The gyrokinetic equations of motion for the gyrocenter vari-

ables, derived by Hahm,21 are given by:

d~R

dt
¼~vG ¼ vjjb̂þ~vrB þ~vc þ~vE�B|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

~vd

; (7)

dvjj
dt
¼ 1

mvjj
~vG � ðq~E � l ~rBÞ; (8)

dl
dt
¼ 0; (9)

which are valid for small fluctuation levels. Here, b̂ ¼ ~B=B is

the unitary vector along ~B;~vG is the guiding center velocity,

~vrB is the rB drift velocity,~vc is the curvature drift velocity,

~vE�B is the ~E � ~B drift velocity, and ~E is the gyro-averaged

electric field deriving from the electrostatic potential /. For

more details, the reader is referred to Ref. 7.

B. df Particle-in-cell discretization

ORB5 uses the low noise df PIC method, requiring the

introduction of N numerical particles, called markers, for

sampling the fluctuation distribution df . The distribution f is

split into a background distribution f0 and a perturbed part

df ¼ f � f0. Introducing two weights wrðtÞ and prðtÞ for the

marker r, the fluctuation distribution df and associated back-

ground distribution f0, respectively, read:

df ð~R; vjj; l; tÞ ¼
XN

r¼1

m

B�jj
wrðtÞd½~R � ~RrðtÞ�d½vjj � vjj;rðtÞ�

� d½l� lrðtÞ�; (10)

f0ð~R; vjj; lÞ ¼
XN

r¼1

m

B�jj
prðtÞd½~R � ~RrðtÞ�d½vjj � vjj;rðtÞ�

� d½l� lrðtÞ�; (11)

where B�jj ¼ Bþ mvjjð ~r � b̂Þ � b̂=q and r is an indice for

labelling the N markers. d stands here for the Dirac function.

The gyrokinetic equation is solved through a time splitting

approach, considering successively and separately the time

stepping of the collisionless dynamics, the collisional dy-

namics, and the source term SH.

1. Collisionless stepping

For solving the collisionless part of the dynamics, the

background f0 is chosen as a so-called canonical Maxwellian

fCMðŴ; EÞ:22

fCMðŴ; EÞ ¼
n0ðŴÞ

½2pT0ðŴÞ=m�3=2
exp � E

T0ðŴÞ

" #
; (12)

where the radial coordinate Ŵ is the corrected toroidal ca-

nonical momentum and reads:

Ŵ ¼ W0 þ corr

¼ W0 � signðvjjÞ
m

q
R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

m
ðE � lB0Þ

r
HðE � lB0Þ; (13)

with H the Heaviside function, E ¼ mv2=2 ¼ mv2
jj=2þ lB

the kinetic energy, and B0 the magnetic field at the magnetic

axis. The correction in Ŵ to the toroidal canonical momen-

tum W0 ¼ Wþ mFðWÞvjj=qB, where FðWÞ ¼ RBu, is set to

zero for trapped particles and of opposite sign for forward

and backward passing particles. Ŵ, being clearly a function

of constants of the unperturbed motion, is itself a constant of

motion of the unperturbed system. fCM is thus a function of

the constants of the unperturbed motion, ðŴ; E; lÞ, and is

therefore solution of the stationary, collisionless gyrokinetic

equation in absence of perturbations. Since the constant of

motion Ŵ of a given particle provides a good estimate of the

average hWitraj of the magnetic flux coordinate W over the

guiding center trajectory,22 the profiles n0ðWÞ and T0ðWÞ are

close to the effective density and temperature profiles of the

background fCMðŴÞ. Moreover, note that choosing the back-

ground fCM as a function of the corrected toroidal canonical

momentum Ŵ has the purpose of defining an equilibrium

with essentially zero toroidal rotation.23

Evolving the collisionless part of the gyrokinetic equa-

tion is thus performed by integrating numerically in time

Eqs. (7)–(9) to obtain the collisionless marker trajectories

zrðtÞ ¼ ½~RrðtÞ; vjj;rðtÞ; lrðtÞ� together with weight equations

dwr=dt and dpr=dt, detailed in Ref. 11 and written as

follows:

d

dt
wrðtÞ ¼ �prðtÞ

1

fCM

D

Dt
fCM

����
½zrðtÞ;t�

; (14)

d

dt
prðtÞ ¼ prðtÞ

1

fCM

D

Dt
fCM

����
½zrðtÞ;t�

: (15)

The collisionless dynamics is handled through the so-called

direct-df method,24 taking advantage of the fact that the total

distribution f is conserved along collisionless trajectories.

The weight equations for collisionless dynamics can in fact

be integrated analytically:

d

dt
ðwrðtÞ þ prðtÞÞ ¼ 0) wr þ pr ¼ const:; (16)

d

dt
ln

pr

fCMjzr

¼ 0) pr

fCMjzr

¼ const:; (17)

Equation (16) resulting from adding relations (14) and (15)

and Eq. (17) obtained directly from integration of Eq. (15).

Let us suppose a marker r going from position zrðtÞ ¼ ½~RrðtÞ;
vjj;rðtÞ; lrðtÞ� to position zrðtþ DtÞ¼½~Rrðtþ DtÞ; vjj;rðtþ DtÞ;
lrðtþ DtÞ� during a collisionless time step t! tþ Dt. Mak-

ing use of Eqs. (16) and (17), the new weights are given by:
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prðtþ DtÞ ¼ prðtÞ
fCMjzrðtþDtÞ

fCMjzrðtÞ
; (18)

wrðtþ DtÞ ¼ wrðtÞ þ prðtÞ � prðtþ DtÞ: (19)

This scheme allows to avoid evaluating explicitly unpractical

terms, such as dŴ=dt, appearing through DfCM=Dt in Eqs.

(14) and (15) for the time evolution of the weights.

2. Collisional stepping

For the purely collisional part of the time splitting

approach, the background f0 is chosen as a local Maxwellian

fLMðW; EÞ:

fLMðW; EÞ ¼
n0ðWÞ

½2pT0ðWÞ=m�3=2
exp � E

T0ðWÞ

� �
; (20)

where W is the poloidal magnetic flux and n0ðWÞ and T0ðWÞ
are the background density and temperature profiles, respec-

tively. The transition between the local background fLM rep-

resentation and the canonical background fCM representation,

used for solving the collisional and the collisionless dynam-

ics, respectively, is provided by the background switching

scheme described in detail in Ref. 11. Collisions of dfLM on

fLM, so-called test particle collisions represented by

C½fLM; dfLM�, are modelled through random kicks for markers

in velocity space, according to the Langevin approach, while

collisions of fLM on dfLM appear through the following colli-

sional weight equations:

d

dt
wrðtÞ ¼ �prðtÞ

C½dfLM; fLM�
fLM

����
½zrðtÞ;t�

; (21)

d

dt
prðtÞ ¼ 0: (22)

The background reaction implementation ensures the conser-

vation of density, parallel momentum, and kinetic energy to

round-off precision through the numerical computation of the

fields (3) and (4).25 The challenge of evolving the marker

weights in the collisional step reduces to the accurate esti-

mates of dPjjð~R; tÞ and dEð~R; tÞ representing the local varia-

tions in time of parallel momentum and kinetic energy

resulting from test particle collisions and appearing in the

background reaction C½dfLM; fLM� of the linearized collision

operator as shown in Eq. (2). In practice, dPjj and dE are esti-

mated by a binning procedure. More details about the numeri-

cal methods are given in Ref. 11. Note, however, that for the

axisymmetric neoclassical runs described in Ref. 11, only a

two-dimensional binning of markers in the poloidal plane

(bins with respect to a ðW; h�Þ grid) needed to be considered

for estimating the fields dPjj and dE, while for the here con-

sidered turbulence runs, a three-dimensional binning needs to

be considered as the turbulence structures vary along all con-

figuration space dimensions. The binning related to collisions

is field-aligned, in order to take advantage of the turbulence

structure, and equivalent to the binning for the coarse-

graining in configuration space described in Sec. III.

The collisionality is defined through the normalized ��

parameter, which is the ratio between the detrapping colli-

sion frequency and the bounce frequency:

�� ¼ R0qs

siivthi�3=2
; with sii ¼

6
ffiffiffi
p
p

�ii
; (23)

where �ii is the thermal self-collision frequency for ions:

�ii ¼
niq

4
i lnK

2p�2
0m2

i v
3
thi

: (24)

The Coulomb logarithm lnK is assumed to be constant over

the whole plasma and typically chosen lnK ¼ 18. Except for

the Coulomb logarithm, the radial dependence of the colli-

sionality, through density and temperature profiles, is

accounted for. The notation ��0 is introduced and stands for

the collisionality parameter at a reference surface.

3. Heat sources

The heat source brings an additional term to the gyroki-

netic equation (5) in order to maintain an effective ion tem-

perature profile T ¼ TðWÞ. Transport processes thus tend to

relax the temperature profile, while source terms tend to

readjust it towards the reference background profile. The

effective time-averaged profile thus equilibrates more or less

near the reference background profile depending on the

strength of the relaxation parameter cH in the source term

(see Eq. (25)). The use of the heat source in global ORB5

simulations thus allows to study gradient-driven turbulence

in a quasi-stationary state. In a simulation with no heat sour-

ces, temperature gradients relax too quickly, especially in

small systems (low 1=q� values), and turbulent transport thus

remains in a transient regime, which is inappropriate for

studying quasi-stationary turbulence. The heat source takes

the form (for more details see Ref. 8):

SH ¼ �cH
edf CMðW; E; tÞ � ffCMðW; E; tÞ

Ð
dE edf CMðW; E; tÞÐ
dEffCMðW; E; tÞ

 !
;

(25)

where the symbol~stands for the operator which reconstructs

the distribution in the ðW; EÞ space. For any function A of

the gyrocenter variables ðW; h�;u; E; nÞ, where h� is the

straight-field-line poloidal angle, u is the toroidal angle, and

n ¼ vjj=v is the pitch angle, this operator reads:

~AðW; E; tÞ ¼
Ð

dh�dudnðB�jj=BÞJWh�uAðW; h�;u; E; n; tÞÐ
dh�dudnJWh�u

;

(26)

JWh�u being the Jacobian related to the ðW; h�;uÞ coordi-

nates. The heating rate cH is typically chosen as 10% of the

linear growth rate of the most unstable ITG mode. The sec-

ond term on the right hand side of Eq. (25) ensures that the

source is particle conserving, i.e., no density perturbation is

introduced. This heat source is also momentum conserving,

as SH is independent of sign(vjj), and therefore in particular
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does not affect the long-wavelength zonal flows, which is a

crucial requirement for relevant ITG turbulence simulations

as discussed in detail in Ref. 8. Equation (25) is integrated

separately from other dynamics in the frame of the time

splitting approach.

C. Quasi-neutrality equation

The electrostatic approximation is assumed in our

model. The electrons are considered adiabatic and enter the

model through the quasi-neutrality equation:

eni0ðWÞ
TeðWÞ

½/ð~x; tÞ � h/iðW; tÞ� � r? �
ni0ðWÞ

BXi
r?/

� �
¼ dnið~x; tÞ; (27)

where / is the electrostatic potential, TeðWÞ is the electron

temperature profile, Xi is the ion cyclotron frequency, e is

the elementary charge, and hi stands for the flux-surface-av-

erage operator. dnið~x; tÞ is the perturbed ion gyrodensity,

computed as follows:

dnið~x; tÞ ¼
ð B�jj

m
d3R dvjj dl dag dfCM;ið~R; vjj; l; tÞ

� dð~Rþ~qLi �~xÞ;
(28)

where dfCM;i ¼ fi � fCM;i; ag is the gyroangle and~qLiðl; agÞ is

the ion Larmor vector. It is assumed that the ion background

gyrodensity, defined as:

�ni0ð~xÞ ¼
ð B�jj

m
d3R dvjj dl dag fCM;ið~R; vjj; lÞdð~R þ~qLi �~xÞ;

(29)

is equal to the ion background density ni0ðŴÞ associated to

the background distribution fCM;i. One assumes, furthermore,

that the background densities of electrons and ions verify

quasi-neutrality, i.e., Zni0 ¼ ne0, where Z is the ion charge.

The last term on the left hand side of Eq. (27) is the linearized

polarization drift, derived considering the long wavelength

approximation (k?qLi � 1, where qLi is the ion Larmor ra-

dius). Under this assumption, the polarization drift term,

which, in general, is an integral operator, reduces to a differ-

ential operator (Poisson-like equation) and is valid only up to

second order in k?qLi. Note that the considered adiabatic elec-

tron response is also linearized, having furthermore invoked

small amplitude fluctuations, so that jeð/� h/iÞ=Tej � 1.

The details of the numerical implementation of the quasi-

neutrality equation solver are given in Refs. 7 and 26.

D. Transport diagnostics

We define, respectively, the gyrocenter particle flux C,

the kinetic energy flux Qkin, the potential energy flux Qpot,

and the heat flux qH as follows:

C ¼
~rW

j ~rWj
�
ð

d3v f
d~R

dt

* +
¼ 1

j ~rWj

ð
d3v f

dW
dt

* +
; (30)

Qkin ¼
1

j ~rWj

ð
d3v

m

2
v2f

dW
dt

* +
; (31)

Qpot ¼
1

j ~rWj

ð
d3v q/f

dW
dt

* +
; (32)

qH ¼
1

j ~rWj

ð
d3v

m

2
ðv2 � 5v2

thÞ þ q/
h i

f
dW
dt

* +
; (33)

where dW=dt¼ ~rW � d~R=dt and hAi¼ð1=SÞ
Ð

SA dr is defined

as the poloidal flux-surface-average of a quantity A, S being

the surface value. In practice, to ensure sufficient statistical

accuracy from the PIC approach, surface averages are replaced

by volume averages using the relation hAi¼hj ~rWjAiDV=
hj ~rWjiDV , where hAiDV ¼

Ð
DVAd3x=DV stands for the vol-

ume average over the small volume DV enclosed between two

neighboring magnetic surfaces W and Wþ DW. The heat flux

qH can be written as:

qH ¼ Qkin þ Qpot �
5

2
TC: (34)

Note that the presented simulations take into account the

potential energy flux for a relevant computation of the effec-

tive heat diffusivity,27 defined as vH ¼ qH=ðnjrTjÞ. Diffusiv-

ities are usually normalized with respect to the Gyro-Bohm

(GB) units: vGB ¼ csq2
s=a, where cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZTe=mi

p
is the sound

speed and the sound Larmor radius is defined as qs ¼ cs=Xi,

with Te taken at the reference radial position r/a¼ 0.5 and the

cyclotron frequency Xi ¼ ZeB=mi evaluated using the mag-

netic field on axis.

The so-called neoclassical fluxes are obtained from the

contributions dfCM � dW=dtj0 and fCM � dW=dtjE�B in Eqs.

(30)–(33), while the so-called turbulent fluxes, the usual fluxes

computed in collisionless gyrokinetic codes, are provided by

the contribution dfCM � dW=dtjE�B to f � dW=dt. Here, one has

introduced the ~E � ~B drift contribution to the radial velocity

dW=dtjE�B ¼ ~rW �~vE�B and the magnetic drift contribution

to the radial velocity dW=dtj0 ¼ ~rW � ð~vrB þ~vcÞ. The parti-

cle and kinetic energy fluxes associated to fCM � dW=dtj0 do

vanish as fCM represents a stationary state of the unperturbed

collisionless system.

E. Magnetic equilibrium

The considered ad hoc equilibrium28 consists of toroidal,

axisymmetric, nested magnetic surfaces with circular, concen-

tric, and poloidal cross-sections. In this case, the axisymmetric

magnetic field is given by ~B ¼ ~rW� ~ruþ FðWÞ ~ru,

assuming W ¼ WðrÞ with dW=dr ¼ rB0=�qðrÞ, as well as

F ¼ RBu ¼ R0B0, so that:

~B ¼ B0R0

R
êu þ

r

R0 �qðrÞ êh

� �
; (35)

where R is the major radius, r is the local minor radius, u is

the toroidal angle, h is the poloidal angle, and êu; êh are the

unit vectors in the toroidal and poloidal directions, respec-

tively. The transformation between the toroidal variables
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ðr;u; hÞ and the cylindrical variables ðR;u; zÞ is provided

by R ¼ R0 þ r cos h and z ¼ r sin h. Furthermore, B0 and R0

stand for the magnetic field amplitude and major radius on

the magnetic axis (r¼ 0). The �q profile is chosen quadratic:

�qðrÞ ¼ �q0 þ �q1r2=a2, which is related to the safety

factor profile qsðrÞ by the relation �qðrÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p

qsðrÞ,
where � ¼ r=R0 is the local inverse aspect ratio. The values

�q0 ¼ 0:854 and �q1 ¼ 2:184 have been chosen such that

�qðr=a¼ 0:5Þ¼1:4 and the magnetic shear ðr=�qÞd�q=drjr¼0:5a

¼ ŝðr=a ¼ 0:5Þ ¼ 0:8.

F. Physical parameters

For the simulation results presented in this paper, the

physical parameters are inspired by the DIII-D shot underly-

ing the CYCLONE test case29 and similar to the parameters

considered in Refs. 13 and 14. The considered aspect ratio is

a=R0 ¼ 0:36, where a is the global minor radius. Choosing

TeðrÞ ¼ TiðrÞ and Deuterium as the ion species, the size of

the plasma is set at a=qs ¼ 180, where qs is the sound Lar-

mor radius defined in Sec. II D. Let A stand for either the

temperature T or density n of a given species. Profiles are

defined with respect to the coordinate r, with a flat logarith-

mic gradient:

dlnA
dðr=aÞ¼�

jA
2

tanh
r�ðr0�DAÞ

Dr

� �
� tanh

r�ðr0þDAÞ
Dr

� �� �
;

(36)

where the values r0 ¼ 0:5a for the center of the gradient pro-

file and Dr ¼ 0:04a for the width of the ramps have been

chosen. Two actual gradient profile widths are considered: a

narrow one with DA ¼ 0:15a and a wide one with

DA ¼ 0:3a. For the density profile jn ¼ 0:789 such that

R0=Ln ¼ R0jn=a ¼ 2:2 at r ¼ r0. Several temperature gra-

dients ranging from R0=LT0
¼ 4:5 up to R0=LT0

¼ 7:5 are

studied in the Secs. III–VI. The physical collisionality (see

Eq. (23)) at r ¼ r0 for the CYCLONE case parameters is

��phys ’ 0:045. Collisionalities larger than the physical one,

ranging from 2��phys up to 10��phys, are studied in this paper,

in order to emphasize the effects of collisions on the system.

G. Numerical parameters

The grid in configuration space chosen for solving the

quasi-neutrality equation in this system is Nr � Nh� � Nu

¼ 128� 512� 256, where Nr;Nh� , and Nu are the number of

grid points in the radial, poloidal, and toroidal direction,

respectively. The size of the binning grid in (energy E, pitch

angle n) velocity space for the coarse-graining procedure

described in Sec. III is nE � nn ¼ 40� 40 in Sec. III and nE �
nn ¼ 64� 64 in Secs. V and VI. For the turbulent simulations,

only every second toroidal Fourier mode of the solution given

by Eq. (27) is retained, namely n¼ 0, 2, 4,..., 56, correspond-

ing in real space to restricting the system to a toroidal wedge

of half the full torus. A time step of Dt ¼ 0:22½a=cs� is chosen.

For the CYCLONE case described above, the number of

markers ranges typically from �100� 106 for collisionless

runs up to 500� 106 for collisional runs.

III. CONTROLLING NUMERICAL SAMPLING NOISE
IN COLLISIONAL SIMULATIONS

A. Fourier filtering and signal-to-noise ratio (SNR)
estimate

Numerical sampling noise is diagnosed in ORB5 by

examining the spatially averaged squared density fluctuation

amplitude in non-resonant, high-kjj turbulent modes, which

are physically supposed to be strongly Landau damped. These

latter modes are thus at the limit or even beyond the gyroki-

netic ordering, and only arise due to sampling errors.30 Here,

kjj ’ ðnqs � mÞ=Rqs is the component of the wave vector of a

given poloidal-toroidal Fourier mode (m, n) parallel to the

magnetic field. Let us point out that the Fourier modes are

computed using a straight-field-line poloidal angle h�. Invok-

ing the fact that microturbulence is essentially aligned along

the magnetic field lines, the charge density is Fourier-filtered,

i.e., the quasi-neutrality solver retains only the Fourier modes

(m, n), which at a given radial position W, are such that

jnqsðWÞ � mj 	 Dm, where Dm ¼ 5 is typically used. Due to

the validity range of the long wavelength approximation, the

upper boundary for the toroidal Fourier modes n is typically

chosen such that khqLi ’ nqsðr0ÞqLi=r0 	 0:8. In order to

define a signal-to-noise ratio, the following definitions are

introduced: the signal is estimated by the energy in the modes

inside a certain Fourier filter F (low-kjj modes), while the

noise is estimated by the modes outside the Fourier filter

(high-kjj modes):

signal ¼
1=a

ða

0

dr
X

ðn;mÞ2F jdnðn;mÞðrÞj2X
ðn;mÞ2F

;

noise ¼
1=a

ða

0

dr
X

ðn;mÞ62F jdnðn;mÞðrÞj2X
ðn;mÞ62F

;

(37)

where the energy-like estimates are computed on the basis of

the density fluctuations. The Fourier components outside the

filter F are removed from the density fluctuations before

computing the electrostatic field. This is the basic noise-

control procedure. If the noise becomes large compared to

the physical signal, the simulations become irrelevant and

are not further carried out. The critical level of the SNR

which is considered to provide relevant results was empiri-

cally found to be SNR ’ 10. In this paper, we describe an

additional noise-control procedure in ORB5 for collisional

runs, the so-called coarse-graining method, first proposed in

Ref. 9 and further simplified in Ref. 10.

B. Coarse-graining

The purpose of the coarse-graining is to reduce the nu-

merical noise, by filtering the high-k modes both in configu-

ration and velocity space in case of a collisionless run and/or

by reducing the weight spreading in case of a collisional

run.9 The aim of this procedure is to enable to maintain the

signal/noise ratio at a higher level than simulations without

coarse-graining, while retaining the key physics from the

simulation. At a given time step, the coarse-graining
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procedure involves: (1) the binning of the markers in the

whole gyrokinetic phase space, i.e., a 5D binning and (2) the

smoothing of the marker weights within a same bin, consist-

ing of assigning the marker weights to their average value.

1. Binning

Let us describe the critical choice of the bin sizes and

number of marker particles. In every direction of phase

space, coarse-graining in effect damps any fluctuation scale

which is of the order or below the corresponding bin size.

This damping, being unphysical, must therefore apply to

scales which do not contribute significantly to turbulent

transport. This constraint thus fixes an upper limit on the size

of bins. A practical choice for an appropriate coordinate sys-

tem and grid resolution for defining the bins is provided by

the meshes used in Eulerian-based gyrokinetic codes.31

However, for the coarse-graining to be effective, one must

ensure that every marker meets sufficiently often at least one

other marker in a same bin at the same time step. This con-

straint in turn sets a lower limit on the number of required

markers for a given number of bins. One must emphasize,

however, that coarse-graining need not apply to each marker

at each time step. Such a constraint would naturally compro-

mise any advantage of a PIC method versus an Eulerian

approach. Practice has shown that, on average, markers need

only to undergo an effective coarse-graining procedure (i.e.,

meet at least one other marker in the same bin) every n-th

time step for this noise control method to be efficient, where

typically n � 10. As a result, the required ratio of marker

number to bin number must be (at least) of order

1=n � 1=10.

Let us define the normalized kinetic energy E ¼ v2=2TðrÞ
and the pitch angle n ¼ vjj=v. Note that the energy dimension

depends on the radial coordinate through the temperature pro-

file T(r). A uniform grid in h� is first built, leading to Nh� bins.

Let us write h�0ðh�Þ the function giving the position of the bin

center h�0 corresponding to h�:

h�0ðh�Þ ¼ FLOOR
h� þ p
Dh�

� �
þ 1

2

� �
Dh� � p; (38)

where h� 2 ½�p; p� and Dh� ¼ 2p=Nh� is the width of the

bins along h�. FLOOR(x) stands for the largest integer which

is smaller or equal to x. We define a new field-aligned coor-

dinate z:

z ¼ u� qsðsÞ½h� � h�0ðh�Þ�; (39)

where qs is the safety factor and s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W=Wedge

p
is a normal-

ized radial coordinate. Note that this field-aligned coordinate

enables to use the largest possible bins in the h� direction,

which now parametrizes the position along the field line.

Indeed in the coordinates ðs; h�; zÞ, the dependence with

respect to h� of a field-aligned fluctuation quantity represents

the slowly varying envelope along the magnetic line. The

fast phase variation transverse to the magnetic field is repre-

sented by both s and z. The binning is then defined as a

block-structured Cartesian grid in the new set of variables

ðs; h�; z;E; nÞ. The number of bins in the h� direction is pro-

portional to the radial coordinate s ðsDh� � const:Þ in order

to have bins of approximately the same volume, including

near the magnetic axis, which is the center of the polar-like

coordinates ðs; h�Þ. Figure 1 shows how the binning follows

the field lines in the ðh�;uÞ plane, as well as the bin structure

in the ðh�; zÞ plane and in the ðh�; sÞ plane.

2. Smoothing

Let us write a the general index identifying a 5D bin.

Considering the bin a, we define the averaged w-weight and

p-weight for the markers with index r present in the bin a at

a given time:

�waðtÞ ¼
1

Na

X
r2a

wrðtÞ; (40)

�paðtÞ ¼
1

Na

X
r2a

prðtÞ; (41)

where Na is the number of markers in the bin a. Let us con-

sider a marker r in a bin a. Introducing the relaxation rates

cw and cp, the modification brought to both weights of the

marker r after a coarse-graining procedure is:

Dwr ¼ NDt � cw � ð�wa � wrÞ; (42)

Dpr ¼ NDt � cp � ð�pa � prÞ; (43)

where N is the number of time steps of length Dt between

which coarse-graining is performed. The typical parameters

for the simulations presented in this paper are N ¼ 10;
cw ¼ 0:45½cs=a� and cp ¼ 0:045½cs=a�. The chosen values

are specific to given physical quantities, like the growth

rate of the instability or the collisionality, and are not uni-

versal. The only mandatory requirement is NDt � c6 1. A

full relaxation of all weights in a bin to the averaged weight

value corresponds to NDt � cw ¼ NDt � cp ¼ 1.

FIG. 1. Field-aligned binning in configuration space represented, respec-

tively, in the (h�;u) plane, the (h�; z) plane, and the (h�; s) plane.
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C. Effects on turbulence

As already mentioned, the size of the bins needs to be

chosen so as to be smaller than any scale length relevant to a

correct estimation of the turbulent transport levels. Consider-

ing the CYCLONE base case described in Sec. II F with

R0=LT0
¼ 6:9 and taking ns � nh� � nz � nE � nn ¼ 128

�32� 128� 40� 40 as the binning grid for half of the torus

(corresponding to a total of � 840� 106 bins), we first con-

sider a non-heated plasma discretized with 100� 106

markers. On average, each marker is thus expected to undergo

an effective coarse-graining procedure every 10 time steps, 10

corresponding roughly to the ratio between the here consid-

ered number of bins and number of markers. Figure 2 shows

that the coarse-graining procedure has no significant effect on

the growth and non-linear saturation of different ITG

modes, n¼ 10 and n¼ 44 corresponding, respectively, to

khqLi ’ 0:15 and khqLi ’ 0:68. The latest result is in accord-

ance with the purpose of the coarse-graining procedure, which

is to reduce the numerical noise while not affecting scales rel-

evant to turbulent transport. The size of the binning is, as

expected, very important: if the bins are too large, significant

scales of the turbulence are affected through the numerical

damping of corresponding modes, as illustrated in Figure 2

for a number of bins reduced by a factor two in each direction.

Let us emphasize again that this noise control method is fully

compatible with the physics of collisions.11 The self-induced

zonal flows playing an essential role in the saturation of ITG

turbulence, it is thus important to verify that their dynamics

remain unaffected by the coarse-graining procedure as well.

As these flows involve large scales, they are not expected to

be directly affected by the potential damping of the binning

process. They may, however, be indirectly affected by the

flow drive, coming from the shorter scale fluctuation modes.

This point is addressed in Figure 3 for the same conditions as

in Figure 2, showing how the radially averaged ~E � ~B shear-

ing rate hjxE�Bjir , defined by Eq. (45), is clearly unaffected

in a time-average sense by the coarse-graining procedure.

Considering the appropriate binning mentioned above,

the positive effect of the coarse-graining is clearly illustrated

in Figure 4, showing the signal/noise ratio for runs with ei-

ther 90� 106 or 180� 106 markers, the heating operator

being switched on. It has to be noticed from Figure 4 that the

coarse-graining procedure is able to stabilize the signal/noise

ratio. The simulations for which the noise is not controlled

by the coarse-graining method indeed present a decaying sig-

nal/noise ratio in the time evolution, finally reaching a level

below the threshold of simulation relevance (�10). The

described coarse-graining procedure allows to carry out rele-

vant, i.e., long enough studies of turbulence in the frame of

the df PIC method.

Note that the field-aligned coordinates are compatible

with the gyrokinetic ordering (small kjjqLi) and are thus the

natural choice for representing micro-turbulence. Consider-

ing bins aligned along these coordinates enables to take the

largest possible bins, essential for ensuring that every marker

meets sufficiently often (�every 10 time steps) at least one

FIG. 2. Evolution in time of the energy EðnÞ of two toroidal Fourier modes

(n¼ 10 and n¼ 44), for different coarse-graining parameters, in the linear

phase and the early non-linear phase of the simulation. An appropriate

choice of the coarse-graining binning parameters allows to preserve the lin-

ear growth rate of the modes, while too large bins lead to an important non-

physical energy dissipation.

FIG. 3. Time evolution of the radially averaged ~E � ~B shearing rate

hjxE�Bjir without (plain line) and with (dashed line) coarse-graining: the

coarse-graining procedure does not affect the time-average ~E � ~B flow

shearing rate, as desired.

FIG. 4. Time evolution of the signal-to-noise ratio considering the coarse-

graining procedure switched off (plain lines) and on (dash-dotted lines),

respectively, both for 90� 106 (grey lines) and 180� 106 (black lines)

markers. The coarse-graining method is crucial in order to carry out simula-

tions above the SNR threshold of relevance (� 10, dashed line).
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other marker in a same bin at the same time step, while

avoiding the coarse-graining procedure to smooth out essen-

tial physical scale lengths. This is illustrated by the number

of bins considered in configuration space (128� 32� 128

for half of the torus) versus the number of grid points consid-

ered in straight-field-line coordinates for the field solver

(128� 512� 128 for half of the torus).

IV. COLLISIONAL ROSENBLUTH-HINTON TESTS

This section points out essential differences between

collisionless and collisional behaviour of the zonal flows by

showing some results related to the so-called RH test.5,32

The standard parameters given in Sec. II F are considered,

except that temperature and density profiles with a peaked

shape, as described by Eq. (43) of Ref. 11, are used in this

section. In order to carry out RH tests, a local Maxwellian

background f0 ¼ fLM is chosen for both the collisionless and

collisional dynamics, and an initial distribution perturbation

dfLM ¼ ðdn=n0Þcosðpr=aÞfLM is loaded. The system is then

linearly evolved by retaining only the axisymmetric compo-

nent (n¼ 0 modes) of the electrostatic potential. In collision-

less simulations, after relaxation of geodesic acoustic modes

(GAMs) oscillations, the residual value of the radial electric

field is proportional to the initial amplitude of the perturba-

tion,32 in both cases where profile gradients are or are not

considered. In collisional simulations, the situation is funda-

mentally different: the zonal flows are damped as a result of

collisions between passing and trapped ions5 and the radial

electric field always relaxes towards the neoclassical equilib-

rium value, which is non-zero for finite background profile

gradients, regardless of the initial electric field amplitude. As

expected, the neoclassical equilibrium field does vanish if no

gradients are considered. Figures 5 and 6 illustrate these dif-

ferent scenarios by presenting the time evolution of the radial

electric field ErðtÞ at r/a¼ 0.5, for both zero and non-zero

CYCLONE case density and temperature gradients.

V. COLLISIONAL TURBULENT SIMULATIONS
STARTED FROM A NEOCLASSICAL EQUILIBRIUM

Simulations have been carried out for collisionalities in

the range ��0 ¼ 0:09� 0:45, i.e., 2 to 10 times higher than the

physical one ��phys ¼ 0:045. Note that for studying collisional

effects, simulations must be carried out over multiple collision

times while resolving the shorter time scale of the turbulent

fluctuations. Low collisionality is thus numerically challenging

due to the large number of time steps required in order to reach

a sufficient simulation time, while high collisionality is chal-

lenging as well due to the large number of markers required

for ensuring a sufficient signal/noise ratio. Collisional simula-

tions are performed with 500� 106 markers representing the

ions and started from a canonical Maxwellian as the total ini-

tial distribution: f ðt ¼ 0Þ ¼ fCMðŴÞ. For collisional simula-

tions, a first run with only axisymmetric modes (n¼ 0) is

carried out over approximately two collision times sii, in order

to establish a neoclassical equilibrium with associated electric

field and toroidal rotation profile. Note that the toroidal rota-

tion profile of the neoclassical equilibrium is determined by

the initial ion distribution function and may in principle affect,

through its shearing, the development of turbulence in the sub-

sequent simulation. As mentioned in Sec. II B 1, the choice of

the background fCMðŴÞ has the purpose to provide neoclassi-

cal equilibria with essentially zero toroidal rotation. For the

typical collisional CYCLONE cases considered here, the maxi-

mum toroidal velocity is vtoro � 0:02� 0:03vthi and the associ-

ated toroidal shearing rate is much smaller than the ~E � ~B
shearing rate: xtoro � 0:1xE�B.

In a second phase, the simulation is resumed taking into

account both the axisymmetric and the non-axisymmetric

modes (n¼ 0 and n 6¼ 0), thus allowing turbulence to develop

and enabling to study the resulting anomalous transport and in

particular the interaction between turbulence, neoclassical

background flows, and turbulence-induced zonal flows. The

FIG. 5. Rosenbluth-Hinton test where no gradients are considered: time

evolution of the radial electric field Er at mid-radius for both collisionless

and collisional simulations. The collisionless residual depends on the initial

amplitude of the perturbation jdf=fLMj, while the collisional residual does

always vanish. Time is normalized by the GAM frequency xg.

FIG. 6. Rosenbluth-Hinton test where the CYCLONE case gradients

(R0=Ln0
¼ 2:2; R0=LT0

¼ 6:9) are considered: time evolution of the radial

electric field Er at mid-radius for both collisionless and collisional simula-

tions. The collisionless residual depends on the initial amplitude of the per-

turbation jdf=fLMj, while the collisional residual converges towards the

neoclassical equilibrium value, regardless of the initial perturbation. Time is

normalized by the GAM frequency xg.
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typical time evolution of the neoclassical and turbulent contri-

butions to the kinetic energy flux Qkin (as defined in Sec. II D),

both in the neoclassical and turbulent phases of the

simulation, is shown in Figure 7 for the temperature gradient

R0=LT0
¼ 6:9 and collisionality ��0 ¼ 4��phys ¼ 0:18. The use

of the heat source described by Eq. (25) enables to reach a

quasi-stationary level of transport by maintaining a constant

temperature gradient, in a time-average sense.

A. Heat diffusivity: Temperature gradient
and collisionality effects

In this section, two temperature gradients are first consid-

ered, along with wide non-zero gradient profiles (DA ¼ 0:3a)

for carrying out a collisionality scan. The first one,

R0=LT0
¼ 5:3, is above the linear stability threshold

R0=LT0
’ 4:5, but below the collisionless non-linear stability

threshold R0=LT0
’ 6:0 of ITG turbulence in the considered

physical system, i.e., in the so-called Dimits shift region.29

The second one, R0=LT0
¼ 6:9, is above the non-linear stabil-

ity threshold and thus ensures a stronger drive for the

turbulence.

Figure 8 shows the neoclassical heat diffusivity vneo
H

and the quasi-stationary total (neoclassicalþ turbulent)

heat diffusivity vtot
H ¼ vneo

H þ vturb
H at mid-radius with respect

to the collisionality. For the gradient below the non-linear

stability threshold, R0=LT0
¼ 5:3, a non-vanishing turbulent

transport illustrating a softening of the Dimits shift region

is established through collisions. The turbulent diffusivity

is relatively small in this latter case, i.e., of the order of the

neoclassical diffusivity at each collisionality (vturb
H � vneo

H

such that vtot
H � 2vneo

H ). Note that, as expected, there is

zero transport at R0=LT0
¼ 5:3 if the collisions are

switched off ½vHð�� ¼ 0;R0=LT0
¼ 5:3Þ ¼ 0�. For the higher

temperature gradient R0=LT0
¼ 6:9, the increase of the total

diffusivity due to collisions is significantly larger than for

R0=LT0
¼ 5:3 ½vturb

H ð��Þ � vturb
H ð�� ¼ 0Þ > vneo

H ð��Þ�. For

all gradients above the linear stability threshold, one thus

observes:

vtot
H ð��Þ > vturb

H ð�� ¼ 0Þ þ vneo
H ð��Þ: (44)

In general, the heat transport in the presence of both turbu-

lence and ion-ion collisions is thus larger than the sum of

collisionless turbulent and neoclassical transport considered

separately. This reflects the complex interplay between colli-

sional effects, flows, and turbulence.

Figure 9 presents the radial profiles of the quasi-

stationary diffusivity vH for the particular collisionality case

FIG. 7. Time evolution of the neoclassical (red dashed line) and turbulent

(blue plain line) contributions to the kinetic energy flux Qkin at mid-radius, in

the neoclassical phase (t < 500½a=cs� � 2sii) and the turbulent phase

(t > 500½a=cs�) of the simulation, for ��0 ¼ 0:18. Once a neoclassical equilib-

rium is established, turbulence is switched on and turbulent transport becomes

dominant compared to neoclassical transport, for the here considered

CYCLONE case gradients (R0=Ln0
¼ 2:2; R0=LT0

¼ 6:9). The neoclassical

flux is perturbed by turbulence but remains constant in a time-average sense.

FIG. 8. Heat diffusivity vH at mid-radius versus the collisionality parame-

ter ��, for both temperature gradients R0=LT0
¼ 5:3 (blue crosses) and

R0=LT0
¼ 6:9 (black squares). The contribution of the neoclassical diffu-

sivity (red circles) to the total diffusivity is important for the weaker gradi-

ent R0=LT0
¼ 5:3, while it becomes marginal for the larger gradient

R0=LT0
¼ 6:9. The total diffusivity, increasing with collisions, is in all

cases larger than the neoclassical diffusivity added to the collisionless tur-

bulent diffusivity.

FIG. 9. Heat diffusivity profile vHðrÞ in the quasi-stationary state of the sim-

ulation, for a collisionality ��0 ¼ 0:45 and both temperature gradients

R0=LT0
¼ 5:3 and R0=LT0

¼ 6:9. For the weaker gradient R0=LT0
¼ 5:3, the

turbulent contribution profile (blue crosses) is similar to the neoclassical

contribution profile (red plain line), while the turbulent contribution profile

in the case of the larger gradient R0=LT0
¼ 6:9 (black squares) is clearly

dominant. The neoclassical contribution is successfully benchmarked

against the Chang-Hinton predictions (green dashed line).
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��0 ¼ 10��phys ¼ 0:45. The neoclassical contribution computed

during the turbulent phase is compared to an analytical predic-

tion derived by Chang and Hinton,33 showing a good agree-

ment. While the turbulent transport is of the order of the

neoclassical transport in the case of the lower gradient

R0=LT0
¼ 5:3, it becomes clearly dominant for R0=LT0

¼ 6:9.

The scan of considered temperature gradients is then

extended at fixed collisionality, in order to sketch the depend-

ence of the collisional heat diffusivity on the ion temperature

gradient. Similar to studies already done for the CYCLONE

parameters in the frame of collisionless simulations,29 Figure

10 shows how the ion temperature gradient affects the ion

heat diffusivity for ITG turbulence at mid-radius r/a¼ 0.5, for

the chosen collisionality �� ¼ 0:09 ¼ 2��phys as well as for the

collisionless situation for reference. The blue plain line in Fig-

ure 10 is the fit to collisionless simulation results given in Ref.

29. While the Dimits shift softening is again clearly illustrated

by the difference between neoclassical diffusivity and total

collisional diffusivity in the collisionless Dimits shift region

(4:5 	 R0=LT0
< 6:0), the collisional increase of the transport

level is also emphasized in the region above the non-linear

stability threshold (R0=LT0

 6:0).

B. Zonal flows in collisional ITG turbulence
simulations

As the ion-ion collisions have a marginal influence on

the growth rate of the ITG modes in the linear phase of the

simulation (a slight increase of the linear growth rate if the

parallel momentum is correctly conserved by collisions34), it

is expected that the effect of collisions on the turbulent ITG

transport happens mainly through their damping effect on

the zonal flows. Just as for the collisionless case, the study of

the zonal flows is thus essential in order to get insight into

the collisional turbulent transport. The standard picture of

the interaction between zonal flows and turbulence is the fol-

lowing:1,3 above the linear ion temperature gradient thresh-

old for the ITG instability, turbulence starts to develop and

non-linearly drives zonal modes, which in turn tend to

quench the turbulence due to the ~E � ~B shearing rate xE�B,

given by the following approximate form:35

xE�B ¼
r

qsB0

d

dr

qsEr

r

� �
: (45)

In order to deal with a global shearing rate, we define the ra-

dial average operator over the width DA of the gradient

profiles:

h…ir ¼
1

2DA

ðr0þDA

r0�DA

…dr: (46)

The maximum saturation level of zonal flows appears to be

determined by a tertiary, Kelvin-Helmoltz (KH) type insta-

bility,18 providing a mechanism for transferring energy back

from zonal flows to turbulence. The KH saturation mecha-

nism is illustrated in Figure 11(a), showing the time evolu-

tion of the radially averaged shearing rate hjxE�Bjir for the

CYCLONE base case with R0=LT0
¼ 6:9. In a first phase

ð0 < tcs=a < 130Þ, three collisionless simulations under the

linear Rosenbluth-Hinton test conditions described in Sec.

IV are performed, for different amplitudes of the initial per-

turbation: jdfLM=fLMjðt ¼ 0Þ ¼ 0:01; 0:05; 0:1. The zonal

flow residual and associated shearing rate amplitudes estab-

lished after a time t ’ 130½a=cs� are proportional to the initial

amplitude of the perturbation, as expected and observed in

Figure 11(a): hjxE�Bjir ¼ 0:04; 0:21; 0:42½cs=a�, respec-

tively. In a second phase ðtcs=a > 130Þ, the non-axisymmetric

turbulent modes (n 6¼ 0) are enabled to evolve and interact

with the axisymmetric zonal flows. The lowest initial ampli-

tude case [jdfLM=fLMjðt ¼ 0Þ ¼ 0:01] provides a residual zonal

flow level clearly lower than the KH threshold level. Once the

turbulence is switched on, it thus drives the zonal flows of the

considered simulation to a higher level until the associated

shearing rate reaches a saturation level of approximately

hjxE�Bjir ’ 0:11½cs=a�, identified as the KH saturation level.

For the higher amplitude cases [jdfLM=fLMjðt ¼ 0Þ
¼ 0:05; 0:1], the shearing rate level of the residual zonal flow

reached during the first phase of the simulation is clearly above

the just mentioned KH saturation level. Once the non-

axisymmetric modes (n 6¼ 0) are switched on, the axisymmet-

ric modes transfer energy back to turbulence and the xE�B

shearing rate decays to the KH saturation level,

hjxE�Bjir ’ 0:11½cs=a�, as observed in Figure 11(a). These

results are clear proof of the tertiary instability threshold limit-

ing the xE�B shearing rate amplitude.

In order to fully isolate the KH instability mechanism

limiting the shearing rate of the self-induced zonal flows, the

previous runs are repeated with zero density and temperature

gradients. In this case, the growth of n 6¼ 0 modes can thus

only result from the decay of the zonal flows (ZF’s) due to

the tertiary instability, as the actual turbulent drive from the

ITG instability has been removed. As shown in Figure 11(a),

for the initial amplitude case jdfLM=fLMjðt ¼ 0Þ ¼ 0:05, the

shearing rate again decays once the n 6¼ 0 modes are turned

on and the KH instability is enabled to evolve, from hjxE�Bjir
’ 0:21½cs=a� at t ¼ 130½a=cs� to hjxE�Bjir ’ 0:11½cs=a�, i.e.,

FIG. 10. Heat diffusivity vH at mid-radius versus the temperature gradient

R0=LT0
. The blue plain line is the collisionless prediction resulting from an

empirical fit on gyrokinetic simulation results. For ��0 ¼ 0:09, the red dashed

line shows the neoclassical diffusivity level and the green diamonds represent

the total diffusivity for different temperature gradients. Collisions clearly

increase the heat diffusivity and soften the so-called Dimits shift region.
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to essentially the same KH threshold level observed in the

presence of background gradients. For the initial amplitude

case jdfLM=fLMjðt ¼ 0Þ ¼ 0:01, the resulting shearing rate at

t ¼ 130½a=cs� again takes the value hjxE�Bjir ’ 0:04½cs=a� as

in the presence of gradients, i.e., lies below the KH threshold.

As the turbulent drive of the zonal flows from the n 6¼ 0

modes is absent in this case, this shearing rate remains station-

ary as expected. The exponential growths of the n 6¼ 0 modes

during the initial phase of the tertiary instability mechanism

have been estimated. Modes in the range n¼ 17–20 (corre-

sponding to khqLi ’ 0:26� 0:31) have been identified as the

most unstable in this case. Evolution of the n 6¼ 0 modes dur-

ing the KH instability is shown in Figure 11(b) for the initial

amplitude case jdfLM=fLMjðt ¼ 0Þ ¼ 0:1. A maximum growth

rate cKH ¼ 0:55½cs=a� for n¼ 19 was measured for this latter

case, while essentially half this growth rate is measured for

jdfLM=fLMjðt ¼ 0Þ ¼ 0:05, i.e., cKH ¼ 0:27½cs=a� (n¼ 17), in

very good agreement with theory18 predicting that the KH

growth rate is proportional to the amplitude of the zonal

modes.

In a third phase, the simulation with gradients and the ini-

tial perturbation jdfLM=fLMjðt ¼ 0Þ ¼ 0:05 is then resumed

from t ’ 330½a=cs�, considering two different collisionalities

��0 ¼ 0:09 and ��0 ¼ 0:45 as presented in Figure 12. The aver-

age zonal flow level hjxE�Bjir is as expected damped by colli-

sions, but nevertheless maintained close to the collisionless

value through additional drive from increased turbulence in

collisional simulations, as presented in Sec. V A. Moreover,

one observes that both collisionalities considered lead to

approximately the same collisional level of the zonal flow

shearing rate xE�B, reduced by � 30% compared to the colli-

sionless value. In the first phase of the collisional simulation,

the zonal flows are more strongly damped for the largest colli-

sionality ��0 ¼ 0:45, but then increase in a second phase

through additional turbulence kicks in order to reach roughly

the same level as obtained with the moderate collisionality

��0 ¼ 0:09. As a consequence of the stronger turbulence

drive, the radially averaged turbulent energy flux hQturbir for

��0 ¼ 0:45 is larger than for ��0 ¼ 0:09 [hQturbirð��0 ¼ 0:45Þ
=hQturbirð��0 ¼ 0:09Þ ’ 1:8], in accordance with the colli-

sional increase of the turbulent transport emphasized in

Sec. V A.

In absence of collisions, if the zonal shearing rate xE�B

is strong enough below or at its KH saturation level in order

to quench the turbulence, as is the case for the temperature

gradient R0=LT0
¼ 5:3, no turbulent transport occurs. On the

contrary, if the drive is strong enough, as is the case for the

temperature gradient R0=LT0
¼ 6:9, turbulence is not totally

quenched by the saturated zonal flow shearing and some tur-

bulent transport develops. The existence of a tertiary insta-

bility threshold setting a saturation level on the zonal flows

thus explains the end of the Dimits shift region starting from

R0=LT0
’ 6:0, where the turbulence drive becomes too large

compared to the saturated zonal flow level and is thus able to

produce finite anomalous transport. The latter mechanism is

emphasized in Figure 13, which shows, respectively,

hjxE�Bjir;t and the maximum linear growth rate cmax for dif-

ferent values of the temperature gradient R0=LT0
, considering

the collisionless situation as well as the finite collisionality

��0 ¼ 0:09. Note that the considered collisionality has a neg-

ligible effect on cmax. The end of the Dimits shift region, at

approximately R0=LT0
’ 6:0, is characterized by a maximum

FIG. 11. Illustration of the KH saturation mechanism. (a) Time evolution of the radially averaged zonal flow shearing rate hjxE�Bjir in non-linear collisionless

simulations, following an initial linear n¼ 0 phase (until t ’ 130½a=cs�) started at t¼ 0 from jdf=fLMj ¼ 0.01, 0.05, and 0.1, respectively. With external turbu-

lence drive from density and temperature gradients (plain lines), all three cases establish, in the long time scale, a similar level of zonal flow shearing rate.

With no external turbulence drive (dashed lines), transfer of energy is only possible from zonal flows to turbulence. Note that the KH saturation level with or

without external turbulence drive remains the same. (b) Growth of the n 6¼ 0 modes through zonal flow decay, for jdf=fLMjðt ¼ 0Þ ¼ 0:1 and no external turbu-

lence drive. The most unstable mode is n¼ 19 and its exponential growth phase is detailed in the inset.

FIG. 12. Non-linear simulations resumed at t ’ 330½a=cs� from the simula-

tion in Fig. 11 started from jdf=fLMj ¼ 0:05, turning on finite collisionalities

��0 ¼ 0:09 (circles) and ��0 ¼ 0:45 (squares), respectively. A moderate reduc-

tion of the average zonal flow shear level hjxE�Bjir by collisions is observed,

roughly independent of the considered collisionality at sufficiently long time

scales.
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linear growth rate cmax which becomes larger than the aver-

age zonal flow shear level hjxE�Bjir;t. Note that the differ-

ence between cmax and hjxE�Bjir;t increases for temperature

gradients R0=LT0
> 6:0, due to the mentioned tertiary insta-

bility mechanism, which limits hjxE�Bjir;t and thus allows a

stronger turbulence to develop at higher temperature

gradients.

Consistently with Figure 12, the averaged shearing rate

for basically all gradients is only slightly reduced by collisions

(�20%), although, as predicted in Ref. 5 and as illustrated in

Sec. IV, the zonal flows driven by turbulence are shown to be

damped by ion-ion collisions. This effect is detailed in Tables

I and II, for both temperature gradients R0=LT0
¼ 5:3 and

R0=LT0
¼ 6:9, respectively, where the average shearing rate

amplitudes hjxE�Bjir;t are presented, including statistical error

estimates given by the variance of means for 4 overlapping

time windows of width 200½a=cs� (� 2sii for �� ¼ 0:45) in

the quasi-stationary state of the simulation. These values are

indeed only slightly reduced by finite collisionality over the

whole considered range �� ¼ 2� 10��phys and thus remain of

the order of the collisionless level. The additional drive for

zonal flows, coming from the increased turbulence observed

in collisional simulations, thus appears to essentially compen-

sate the damping by ion-ion collisions. For collisional runs in

the Dimits shift region (including R0=LT0
¼ 5:3), the average

shearing rates can only be maintained at approximately the

collisionless levels thanks to a finite turbulence level, leading

to finite transport and to the so-called Dimits shift softening.

A tight equilibrium between zonal flow damping by collisions

and zonal flow drive by additional turbulence is thus appa-

rently established. In the absence of collisions, no such tight

balance between damping and drive is imposed on the zonal

flows, which are thus free to exceed the minimum required

level for quenching turbulence in the Dimits shift region. This

probably explains the larger difference between xE�B for

��0 ¼ 0 and ��0 ¼ 0:09 at R0=LT0
¼ 4:5 than for other values

of R0=LT0
.

Figure 14 shows the profiles of the absolute ~E � ~B
shearing rate values jxE�BjðrÞ, averaged over a time window

of 200½a=cs� in the quasi-stationary state of the turbulent sim-

ulation, for different collisionalities and for the temperature

gradient R0=LT0
¼ 5:3. Considering this latter case in the

Dimits shift region, the radially averaged shearing rate

hjxE�Bjir ’ 5:2� 10�2½cs=a� (average over all ��) is close

to the linear growth rate of the most unstable mode

cmax ’ 5:8� 10�2½cs=a�, consistently with Figure 13. Fur-

thermore, as mentioned above, the radially averaged shear-

ing rate hjxE�Bjir is only slightly affected by collisions. This

is remarkable, given that the radial shearing rate profile

jxE�BjðrÞ is significantly modified when going from zero to

finite collisionality. Note, however, the almost identical

shape of jxE�BjðrÞ for the two considered finite collisional-

ities ��0 ¼ 0:09 and ��0 ¼ 0:18.

Figure 15 is similar to Figure 14 but considers the higher

temperature gradient R0=LT0
¼ 6:9. Considering this latter

case above the Dimits shift region, cmax ’ 15:6� 10�2½cs=a�
is significantly larger than the shearing rate (hjxE�Bjir
’ 9:4� 10�2½cs=a�, average over all ��), allowing the turbu-

lence to survive and continuously drive anomalous transport,

in accordance with Figures 10 and 13. As for R0=LT0
¼ 5:3,

FIG. 13. Maximum linear growth rate cmax (black crosses) and average

shearing rate hjxE�Bjir;t, considering both the finite collisionality ��0 ¼ 0:09

(red squares) and a collisionless case (blue circles), for different temperature

gradients R0=LT0
. Note that the average shearing rate is in general slightly

reduced by collisions. Beyond the Dimits shift region, cmax > hjxE�Bjir;t.
The important difference between cmax and hjxE�Bjir;t at large temperature

gradients is due to a tertiary instability mechanism.

TABLE I. Dependence on ��0 of average shearing rate hjxE�Bjir;t for

R0=LT0
¼ 5:3.

��0 0 0.09 0.18 0.3 0.45

hjxE�Bjir;t½10�2cs=a� 5.6 6 0.09 4.9 6 0.03 4.8 6 0.03 5.2 6 0.01 5.3 6 0.03

TABLE II. Same as Table I but for R0=LT0
¼ 6:9.

��0 0 0.09 0.18 0.3 0.45

hjxE�Bjir;t½10�2cs=a� 10.5 6 1.3 8.4 6 0.4 9.5 6 1.4 9.4 6 0.5 9.5 6 0.09

FIG. 14. Profiles of the ~E � ~B shearing rate absolute value jxE�BjðrÞ for

different collisionalities and a temperature gradient R0=LT0
¼ 5:3, the neo-

classical contribution being emphasized. The average shearing rate level is

of the order of the growth rate of the most unstable mode cmax (grey dashed

line). The zonal flow damping by collisions appears to be balanced by an

additional turbulence drive. For the considered collisionalities, the

turbulence-driven zonal flows are dominant compared to the neoclassical

flows.
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the amplitude of the collisional zonal flows appears to be

only slightly reduced in the case R0=LT0
¼ 6:9 compared to

the collisionless situation. The detailed shape of the profile

jxE�BjðrÞ is, however, affected by collisions and, unlike in

the Dimits shift region, different collisionalities (��0 ¼ 0:09

and ��0 ¼ 0:18) give different profiles jxE�BjðrÞ for

R0=LT0
¼ 6:9.

Note that ion-ion collisions generate neoclassical back-

ground flows through the neoclassical equilibrium electric

field. For the collisionalities considered in this paper (up to

10� ��phys), the turbulence-driven flows are dominant com-

pared to the neoclassical background flows, as shown in Fig-

ures 14 and 15. At even larger collisionality, one may expect

that the neoclassical shearing rate would become dominant,

and thus that the turbulent transport would possibly be

reduced due to collisions. However, such a high collisional-

ity range would be very far from the typical low collisional-

ity regimes of fusion-relevant tokamak plasmas.

C. Details of the Dimits shift softening mechanism

In Ref. 13, the zonal flow damping by collisions was

first identified as the cause for the non-vanishing collisional

turbulent transport for R0=LT0
¼ 5:3, although the tempera-

ture gradient is in the Dimits shift region. A locally bursting

behaviour of turbulence, associated zonal flow amplitude,

and turbulent transport was observed. The bursting behav-

iour results from the following mechanism: turbulence

driven by the (weak) temperature gradients in the Dimits

shift region initially develops and drives zonal flows to suffi-

ciently high levels such that the associated shearing rate

xE�B is able to quench the turbulence, as in the collisionless

case. As a result of collisional damping, zonal flow ampli-

tudes and related shearing then, however, decrease, and tur-

bulence is able to recover, thus completing a bursting cycle.

The period of this bursting cycle therefore clearly scales

with the collision time sii. This result is confirmed by simula-

tions performed with the collisional version of ORB5 based

on the parameters defined in Sec. II F for a narrow gradient

profile, i.e., with DA ¼ 0:15a. Figure 16 shows the time evo-

lution of the radial shearing rate profile xE�BðrÞ for

��0 ¼ 0:3, considering a narrow gradient profile with

R0=LT0
¼ 5:3. Note that the observation of a clear bursting

behaviour, as in Figure 16, requires narrow gradients as

those considered in this section. As an illustration, Figure 17

presents the time evolution of the radial shearing rate profile

xE�BðrÞ for ��0 ¼ 0:3 and considering a wide gradient pro-

file, i.e., with DA ¼ 0:3a, and still with R0=LT0
¼ 5:3. In this

latter case, discussed in Sec. V A, the bursting behaviour is

much less obvious.

The bursting behaviour due to collisions for profile

width DA ¼ 0:15a and gradient R0=LT0
¼ 5:3 is clearly illus-

trated in Figures 18–20. As expected, transport is totally

absent in a collisionless case, as shown in Figure 18 for

�� ¼ 0, since the temperature gradient R0=LT0
¼ 5:3 is in the

Dimits shift region, where the collisionless zonal flows are

strong enough to quench the turbulence. Considering again

R0=LT0
¼ 5:3 and two different collisionalities �� ’ 0:18

and �� ’ 0:3 at the radial position r/a¼ 0.45, Figures 19 and

FIG. 15. Same representation as in Fig. 14, but considering a temperature

gradient R0=LT0
¼ 6:9. The average shearing rate level is much smaller than

the growth rate of the most unstable mode cmax (grey dashed line). The colli-

sional zonal flow amplitudes are only slightly reduced thanks to the addi-

tional turbulence drive. For the considered collisionalities, the turbulence-

driven zonal flows are dominant compared to the neoclassical flows.

FIG. 16. Time evolution of the ~E � ~B shearing rate profile, considering a

collisionality ��0 ¼ 0:3 and a temperature gradient R0=LT0
¼ 5:3. The tem-

perature and density gradients are non-zero from r/a¼ 0.35 to r/a¼ 0.65

(narrow-shaped profiles, DA ¼ 0:15a). The bursting evolution of the zonal

flows is visible.

FIG. 17. Same representation as in Fig. 16, but considering temperature and

density gradients which are non-zero from r/a¼ 0.2 to r/a¼ 0.8 (wide-

shaped profiles, DA ¼ 0:3a). The bursting behaviour of the zonal flows is

much less obvious than in Fig. 16.
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20 show the time evolution of the turbulent ion energy flux

Qturb, normalized with respect to its corresponding neoclassi-

cal value Qneo, as well as the time evolution of the ~E � ~B
shearing rate xE�B, normalized with respect to the growth

rate of the most unstable mode cmax in the linear phase of the

simulation. A non-vanishing turbulent transport is clearly

established through collisions. The above mentioned burst-

ing behaviour appears clearly in Figures 19 and 20: at an

intermittent period which is proportional to the collision

time sii (indicated for reference in the figures), the ~E � ~B
shearing rate is damped, which in turn leads to an increase of

the turbulent ion energy flux. The observation of a non-

vanishing turbulent transport implies that the Dimits shift

region of ion temperature gradients is softened by collisions,

as already discussed in Sec. V A for DA ¼ 0:3a cases. As al-

ready mentioned, the observed bursting behaviour is, how-

ever, not as clearly identifiable if the gradient profiles are

larger, maybe due to interaction of this bursting behaviour

happening at different uncorrelated times at different radii,

leading to a less coherent evolution of the overall system.

The basic underlying mechanisms of turbulence-driven zonal

flow damping are, however, probably essentially the same,

leading to an increase of the diffusivity with collisions for all

gradient widths.

VI. RELEVANCE OF THE PITCH ANGLE SCATTERING
APPROXIMATION

Historically, collision operators have been implemented

in gyrokinetic codes by making use of several approxima-

tions. Certain gyrokinetic codes for instance only consider a

pitch angle scattering operator for turbulence studies.12 The

linearized Landau operator implemented in ORB5 for self-

collisions, described in detail in Ref. 11, accounts for pitch

angle and energy diffusion, and thanks to its approximated

background reaction term ensures all the essential conserva-

tion and symmetry properties. In this respect, it is clearly

more realistic than the simpler pitch angle scattering operator

(Lorentz approximation). A pitch angle scattering operator

for electron-ion collisions, acting only through random kicks

for markers in the pitch angle variable, is also implemented

in ORB5 and described in full detail in Ref. 11. Such an op-

erator is clearly relevant for simulating the collisions of elec-

trons on ions, due to the large mass ratio mi=me between the

two species. Such a mass ratio argument clearly does not

apply for ion-ion collisions, which are thus different from

electron-ion collisions, and the use of a pitch angle scattering

operator for ion-ion collisions may be questioned. Using a

Lorentz operator in order to account for self-collisions is

equivalent to considering the linearized Landau self-

collision operator without the background reaction term

C½dfLM; fLM� and without the energy diffusion term, such that

the simplified self-collision operator reads (see Eq. (31) in

Ref. 11):

ĈðdfLMÞ ¼
�DðvÞ

2
L̂

2
dfLM ¼

�iiKðvÞ
4v2

L̂
2
dfLM; (47)

where v ¼ v=vth; L̂
2 ¼ @=@nð1� n2Þ@=@n and

FIG. 18. For a collisionless simulation and a narrow temperature gradient

with R0=LT0
¼ 5:3, time evolution of both the heat diffusivity vH (black

plain line) and the ~E � ~B shearing rate jxE�Bj (grey dash-dotted line) at

mid-radius. jxE�Bj reaches a quasi-stationary value comparable to the linear

growth rate of the most unstable mode cmax (grey dashed line), quenching

totally the turbulence and leading to a vanishing heat transport.

FIG. 19. For ��0 ¼ 0:18 and a narrow temperature gradient with

R0=LT0
¼ 5:3, time evolution of both the kinetic energy flux driven by turbu-

lence Qturb (black plain line) and the ~E � ~B shearing rate xE�B (grey dash-

dotted line) at r/a¼ 0.45. The periodic damping of the zonal flows by colli-

sions leads in turn to periodic bursts in the heat transport, at a rate proportional

to the collision frequency.

FIG. 20. Same representation as in Fig. 19 for ��0 ¼ 0:3, leading to the same

conclusions. The periodicity of the observed bursting behaviour is again

related to the collision frequency.
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KðvÞ ¼ 1

v3
ðv2 � 1Þerfðv=

ffiffiffi
2
p
Þ þ

ffiffiffiffiffiffiffiffi
2=p

p
ve�v

2=2

��
(48)

is a Rosenbluth potential related function.

Considering the standard CYCLONE case with

R0=LT0
¼ 5:3, a turbulent run started from a neoclassical equi-

librium at very high collisionality ��0 ’ 0:71 is first studied.

As expected, the neoclassical equilibrium to which the system

settles with the Lorentz operator (47) is different from the

equilibrium with the full self-collision operator (1). The neo-

classical kinetic energy flux Qneo predicted by the Lorentz op-

erator is for instance larger than the neoclassical kinetic

energy flux predicted by the Landau self-collision operator, as

shown in Figure 21. Note that the neoclassical electric field is

in some sense inconsistent in the case of the Lorentz operator,

since the Lorentz operator does not conserve parallel momen-

tum and thus leads to a neoclassical ion particle flux which is

unphysical for self-collisions.36 The neoclassical electric field,

settled for ensuring a vanishing ion particle flux in order to

satisfy the quasi-neutrality equation with adiabatic electrons,

is thus distorted by the unphysical particle flux driven by the

Lorentz operator. However, the use of the Lorentz operator in

the frame of turbulence studies seems to be roughly justified.

Despite evident neoclassical discrepancies, the time-averaged

turbulent kinetic energy flux at mid-radius r/a¼ 0.5

remains comparable between the operators, hQturb;Lorentzitime=
hQturb;self�collitime ¼ 1:14. Considering the statistical uncer-

tainty of 15%,8 this deviation is probably not significant. Fig-

ure 22 shows the evolution in time of the turbulent kinetic

energy flux at mid-radius r/a¼ 0.5 for both operators.

In order to reduce the importance of the neoclassical

transport compared to the turbulent transport, the gradient

R0=LT0
¼ 6:9 is then chosen, along with a weaker collision-

ality ��0 ¼ 0:14. The simulation is carried out in this latter

case without any neoclassical initialization phase. Figure

23 shows the evolution in time of the turbulent heat diffu-

sivity vturb ¼ Qturb=njrTj, averaged between r/a¼ 0.4 and

r/a ¼ 0.6, for both operators. The difference is obviously

small, at least in a time-average sense: hvturb;Lorentzitime=
hvturb;self�collitime ¼ 1:05. The discrepancy is again probably

not significant relatively to the statistical error. The Lorentz

approximation for ion-ion collisions appears thus to make

sense in the frame of collisional ITG turbulence simula-

tions, at least for a moderate collisionality. However, the

Lorentz approximation is obviously inappropriate for han-

dling neoclassical transport of ions.

VII. CONCLUSION

The issue of ion-ion collision effects on electrostatic

ITG turbulent transport has been studied through robust col-

lision algorithms implemented in the global gyrokinetic code

ORB5. Our turbulence simulations with collisions have been

systematically started from a neoclassical equilibrium. The

so-obtained neoclassical transport level thus provides a refer-

ence for evaluating the relative effects of collisions on turbu-

lent transport. Through ORB5 simulations, the issue of the

FIG. 21. For ��0 ’ 0:71 and R0=LT0
¼ 5:3, neoclassical kinetic energy flux

profile due to ion-ion collisions QneoðsÞ predicted by both the Lorentz opera-

tor (grey dashed line) and the Landau self-collision operator (black plain

line). The Lorentz approximation is not accurate enough in order to describe

correctly the neoclassical transport due to self-collisions.

FIG. 22. For ��0 ’ 0:71 and R0=LT0
¼ 5:3, time evolution of the turbulent

kinetic energy flux Qturb at mid-radius predicted by both the Lorentz opera-

tor (grey dashed line) and the Landau self-collision operator (black plain

line). Despite visible discrepancies, the level of turbulent transport is

approximately described by the Lorentz operator in a time-average sense.

FIG. 23. For ��0 ’ 0:14 and R0=LT0
¼ 6:9, time evolution of the turbulent

heat diffusivity vturb averaged between r/a¼ 0.4 and r/a¼ 0.6, predicted by

both the Lorentz operator (grey dashed line) and the Landau self-collision

operator (black plain line). The turbulent transport level in a time-average

sense is accurately described by the Lorentz operator.
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possible interaction between neoclassical and turbulent trans-

port physics has been addressed: strong collisional damping

of turbulence-driven zonal ~E � ~B flows is observed, while

the shearing effect from neoclassical background ~E � ~B
flows remains weak for the smooth density and temperature

background profiles considered. As a result, a general

increase in ion heat transport due to collisions is observed in

agreement with previous studies within the frame of the adia-

batic electron model.13 The sources of the mentioned

increased transport (neoclassical contributions and amplified

turbulent contributions via interactions between collisions

and zonal flows) have been emphasized and studied for dif-

ferent ion temperature gradients R0=LTi
.

Conditions similar to Ref. 13 have been revisited in this

paper. A more extensive scan in collisionality �� and ion

temperature gradient R0=LTi
in particular enabled to provide

a more detailed characterisation of the Dimits shift softening

by collisions. The width of the temperature gradient profile

is varied as well in this paper. In most respects, results of

Ref. 13 are confirmed: (i) Above the Dimits shift region, the

synergetic effect of collisions on turbulence leads to an

increased collisional turbulent transport with respect to the

collisionless situation [vtot
H ð��Þ > vturb

H ð�� ¼ 0Þ þ vneo
H ð��Þ].

(ii) Within the Dimits shift region, finite turbulent transport

is established through collisions (Dimits shift softening). (iii)

The bursting behaviour described in Ref. 13 for ion tempera-

ture gradients in the Dimits shift region is reproduced in the

case of narrow temperature gradient profiles, enabling a

coherent regime. However, for wider gradient profiles a

steadier regime is observed, which we have interpreted as

resulting from interactions between different radial regions

of the basic bursting mechanism, happening at different

phases at different radii.

Both within and above the Dimits shift region for wide

gradient profiles, a relatively steady state of zonal flows and

associated shearing rate xE�B is thus observed. Noteworthy

is the fact that the shearing rate level at finite collisionality

(�� > 0) is only slightly reduced compared to the collision-

less situation (�� ¼ 0). Moreover, this collisional shearing

rate level appears to be only weakly dependent on the finite

collisionality considered. Above the Dimits shift region, a

detailed study has shown that the shearing rate level is lim-

ited by Kelvin-Helmoltz type tertiary instabilities affecting

the zonal flows. It has also been shown that the instability

threshold level is only weakly dependent on the collisional-

ity. At finite ��, the collisional damping of zonal flows, how-

ever, requires increased drive from turbulence to reach this

threshold, resulting in increased turbulent transport levels.

Within the Dimits shift region, zonal flow shearing rates

below the tertiary instability threshold are sufficiently strong

to fully quench the turbulence (less strongly driven than for

gradients above the Dimits shift region) in the collisionless

regime. With finite collisionality, the average shearing rates

are maintained close to the collisionless levels thanks to a fi-

nite turbulence drive counter-acting the collisional damping,

thus leading to finite transport. While increasing collisional-

ity, a balance is thus apparently maintained between

strengthened zonal flow damping and additional zonal flows

from amplified turbulence levels.

The tool for controlling the numerical noise in colli-

sional turbulent simulations with ORB5, the coarse-graining

procedure,10,11 has been presented and its essential role in

enabling to carry out turbulence simulations over multiple

collision times, without affecting the essential physical dy-

namics, was demonstrated.

Finally, for both neoclassical and turbulence simula-

tions, the Lorentz approximation for self-collisions was

tested against the linearized Landau self-collision operator in

ORB5, which accounts for energy diffusion and ensures the

local conservation of density, parallel momentum, and ki-

netic energy. While a physically accurate self-collision oper-

ator is required in order to predict correctly the neoclassical

transport, the Lorentz approximation is sufficient for captur-

ing the essential features of the collisional turbulent transport

in the ITG regime. However, the Lorentz approximation is

inappropriate for handling properly the ion neoclassical

transport and thus leads to inaccurate estimates of the total

transport.
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