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Abstract: In this paper, a new method for fixed-order controller design of systems with
polytopic uncertainty in their state space representation is proposed. The approach uses the
strictly positive realness (SPRness) of some transfer functions, as a tool to decouple the
controller parameters and the Lyapunov matrices and represent the stability conditions and
the performance criteria by a set of linear matrix inequalities. The quality of this convex
approximation depends on the choice of a central state matrix. It is shown that this central
matrix can be computed from a set of initial fixed-order controllers computed for each vertex
of the polytope. The stability of the closed-loop polytopic system is guaranteed by a linear
parameter dependent Lyapunov matrix. The results are extended to fixed-order H., controller

design for SISO systems.

1. INTRODUCTION

Most of the standard controller design methods usually
lead to high-order controllers which have the same order
as that of the generalized plant (i.e. the plant plus some
frequency weighting functions) [Zhou (1998)]. The imple-
mentation of such controllers will result in high cost, dif-
ficult commissioning, poor reliability, fragility, numerical
error and potential problems in maintenance [Gu et al.
(2005)]. Therefore, they narrow the scope of use in practi-
cal applications.

Low-order controllers are always welcomed by control en-
gineers. There has been a considerable interest in the
design of low-, fixed-order controllers. Plant or controller
reduction techniques do not always guarantee that the
closed-loop performance is preserved. Therefore, a chal-
lenging problem is to design directly a low-, fixed-order
controller for a system. The origin of difficulty in the
development of efficient methods for designing fixed-order
controllers is that it is a non-convex problem which are
known to be NP-complete. Some researchers have been
tried to solve the non-convex problem and find the local
optimum. This problem has been formulated as Bilinear
Matrix Inequalities (BMIs) in Safonov et al. (1994) and a
non-convex matrix rank condition in Iwasaki and Skelton
(1994), Scherer et al. (1997). A non-smooth H., optimiza-
tion approach has been also proposed by Apkarian and
Noll (2006) for design of fixed-structure controllers.

Some researchers have been focused on the problem of
full-order controller design for the systems with polytopic
uncertainty. In Kanev et al. (2004), a locally optimal full-
order output feedback controller for polytopic systems has
been proposed by the use of local BMI optimization. This
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approach, which has iterative framework, starts from an
initial controller and performs local optimization over a
suitably defined non-convex function at each iteration. In
Geromel et al. (2007), sufficient conditions for full-order
robust output feedback controller in terms of LMIs with
common Lyapunov matrices have been presented.

The problem of fixed-order controller design becomes more
complicated for systems affected by polytopic uncertainty.
Recently, new methods for fixed-order controller design of
polytopic systems have been proposed in the polynomial
framework for SISO systems. In Henrion et al. (2003),
a convex parameterization of fixed-order stabilizing con-
trollers for systems with polytopic uncertainty has been
proposed. The same method is also utilized for fixed-order
H controller design [Yang et al. (2007)]. The approach is
based on the positivity of polynomials and depends on the
choice of a so-called central polynomial. In Khatibi et al.
(2008), the effect of the chosen central polynomial on the
closed-loop poles is investigated.

A convex set of all stabilizing controllers for SISO poly-
topic systems is presented in Karimi et al. (2007) based
on the Strict Positive Realness of the transfer functions.
The results of this paper are extended to H., controller
design in H. Khatibi and A. Karimi (2010). For the case
of fixed-order controller design, this approach leads to an
inner approximation of the non-convex set of all stabilizing
controllers presented by a set of LMIs originated from the
Kalman-Yakoubovic-Popov (KYP) lemma. The quality of
this approach for low-order controller design is related to
the choice of some basis functions which is closely related
to the choice of the central polynomial in Henrion et al.
(2003).

In this paper, the problem of fixed-order controller design
for polytopic systems is presented in the state space frame-
work. It is clear that a polytopic state space representation
is more general than a polytopic system in the coeffi-



cients of the transfer function parameters. Moreover, the
extension to MIMO systems is more straightforward for
state space representation than the polynomial approach.
It should be mentioned that the existing fixed-order con-
troller design for polytopic systems considers only SISO
systems with rational transfer function representation.
The first contribution of this paper is to present a convex
set of fixed-order stabilizing controllers for MIMO systems
with polytopic uncertainty. The second contribution is to
present a convex set of fixed-order stabilizing controllers
with H., bound on every weighted closed-loop transfer
function for SISO polytopic systems. The main idea is
to find an inner convex approximation of the non-convex
set of all stabilizing, or H.,, controllers around a desired
central closed-loop state matrix.

The organization of the paper is as follows: The problem
formulation, the basic idea, the concept of central state
matrix and simulation results are presented in Section 2.
In Section 3, the convex set of fixed-order H., controllers
for SISO systems together with a simulation example
are given. Finally, Section 4 presents some concluding
remarks.

2. FIXED-ORDER STABILIZING CONTROLLERS
2.1 Problem formulation

Consider a linear time-invariant multi-input multi-output
polytopic system represented by the following state space
realization:

Eg(t) = Agag(t) + Byu(t)
y(t) = Cyry(t) M)

where z, € R", v € R", and y € R" are the state,
the input and the output of the system, respectively.
The model is supposed to be strictly proper as it is
a characteristic of the real physical systems. For the
technical reasons, it is assumed that the matrices A, and
Cy have polytopic uncertainty as follows:

A,(\) = zq: NA Cy(\) = zq: A Ci 2)

where \; > 0 and .7, A; = 1, and (4;, By, C;,0) is the
state space realization of each vertex of the polytope. Note
that if the matrix B, has polytopic uncertainty and Cy is
fixed, similar results can be obtained.

The first objective is to find a convex set of fixed-order
stabilizing output feedback controllers for the polytopic
system. The controller is represented by:

where Ay € R™*™ and By, Ck, and Dy, are of appropriate
dimensions. Then, the state matrix of the closed-loop
system A, is given by:

AN = [Ag(A) — ByDiCy(N) Bgck] @

—B,Cy(N) Ag
This matrix is called stable if all its eigenvalues have
strictly negative real part.

2.2 Basic idea

In Henrion et al. (2003), the main idea for synthesis of a
fixed order controller for a SISO polytopic system with a
rational transfer function representation is given as follows.
Suppose that ¢;(s) for ¢ = 1,...,q is the characteristic
polynomials of the closed-loop system at i-th vertex, then
the polytopic system is stable if ¢;(s)/d(s) fori =1,...,q
is an SPR transfer function where d(s) is a given stable
polynomial called the central polynomial. The choice of the
central polynomial is very crucial and affects the control
performance as well as the conservatism of the approach.
In this paper, the same idea is used to find a convex
set of fixed-order controllers for systems with polytopic
uncertainty in their state space representation. The main
idea is presented in the following lemma, definition and
theorem.

Lemma 1. The following statements are equivalent:

(1) H(s) = [%’% is SPR.
2) H(s) = {A_;gc’% is SPR.

Proof: According to the KYP lemma, the statement (1) is
equivalent to the existence of P = P” > 0 such that

A"P+PA PB-C"
[BTPC —or }<0 ®)
which leads to the following inequality:
1
ATP 4+ PA+ 5(PB -oNBTP-C)<0  (6)
This inequality can be rearranged to
1
(A—BC)' P+ P(A- BO) + 5(PB+ CTYBTP+C) <0
(7)
which is equivalent to
(A—BC)'P+ P(A—BC) PB+CT <0 (8
BTpP+C —21
Therefore, the statement (2) follows. O
Remark 1: Note that A and A — BC' are both stable with

a common Lyapunov matrix P.

Definition 1. Two matrices M and A in R™*™ are called
SPR-pair matrices if :

M |I

H6) = |7t ] )

is SPR.

By applying Lemma 1, it is evident that if M and A are
SPR-pair, then A and M are also SPR-pair and they are
both stable with a common Lyapunov matrix. As a result,
the following LMIs are equivalent:

MTP+PM P—MT + AT
[P—M+A —21 <0 10
ATp+PA P— AT+ M”T
[P—A+M —21 =0 (11)

Theorem 1. The fixed-order controller defined in (3) sta-
bilizes the polytopic system in (1) and (2) if a given stable
matrix M, makes an SPR-pair with A for i = 1,...,¢q,



where A’ is the closed-loop state matrix of the i-th vertex
defined by:

Ai =

—B.C; A, (12)

Thus, a convex set of stabilizing controllers can be given
using the KYP lemma by the following set of LMIs:
M"P;+ P,M P, — M" + (AL)"
P, — M+ A —21
fori =1,...,q. The variables are the controller parameters
(Ag, Bk, Ck, Di) and ¢ symmetric matrices P; for i =
1,...,q.

[Ai — ByDy,C; Bgck]

} <0 (13)

Proof : Based on Lemma 1 and the equivalence of (10)
and (11), the LMIs in (13) is equivalent to the following
inequalities:
(AP + PAL P — (A)T + M
P—A +M —21
for i = 1,...,q. which ensures the stability of A’. By
convex combination of (13) for all vertices, we get:

[MTP(A) +PAM PO\ — MT + AT (N

] <0 (14)

P(A\) — M+ A:(N) —21
that shows that M and A.(\) are SPR-pair. Therefore,
using again the equivalence of (10) and (11), we can
conclude that (13) is equivalent to:

AT(NP(N) + P(V)AN) PO — AT + MT
P(\) = Ac(\) + M Y

] <0 (15)

<0

(16)
Thus, the closed-loop state matrix of the polytopic system
Ac(N) = Y1 MAL is stable with a linearly dependent
Lyapunov matrix P(\) = Y 7_, MiP;. |

The convex set of fixed-order stabilizing controller pre-
sented in this theorem is an inner convex approximation of
the non-convex set of all fixed-order stabilizing controllers
for the polytopic system. The quality of this approxima-
tion depends on the choice M, the central state matrix,
which will be discussed in the next subsection.

2.3 Choice of the central state matrix

In the polynomial approaches to fixed-order controller
design for polytopic systems, the central polynomial is
interpreted as the desired closed-loop characteristic poly-
nomial. In a similar way, the central state matrix M can
be seen as the desired closed-loop state matrix. Suppose
that o = [a1, g, . . ., At 18 the vector of desired closed-
loop eigenvalues, therefore a choice for the central matrix
is M = diag(a). It should be mentioned that in addition
to the eigenvalues, desired eigenvectors of the closed-loop
state matrix can also be assigned. The eigenstructure as-
signment is used as a closed-loop specification in aerospace
engineering [Andry et al. (1983)] and fault detection [Pat-
ton and Chen (2000)]. Suppose that the desired eigenvec-
tors are given in V' = [V4, Vs, ..., Vi,40] that corresponds
to m + n distinct eigenvalue in vector «, then a choice for
the central matrix is M = Vdiag(a)V 1.

In the case that a desired state matrix cannot be defined
or the problem becomes infeasible, an alternative is to
use a set of initial stabilizing controllers designed for each
vertex. Nowadays, there are several fixed-order controller

design methods to deal with systems without parametric
uncertainty. Therefore, it is reasonable to suppose that
a set of fixed-order controllers that satisfy the control
performance for each vertex of the polytopic system is
available. These controllers may be designed by balanced
controller order reduction of a full-order controller [Zhou
(1998)], or by convex relaxation of a rank constraint
in the classical full-order controller design [Grigoriadis
and Skelton (1996)] or by non smooth H. optimization
[Apkarian and Noll (2006)] or finally by a fixed-order
linearly parameterized controller based on the spectral
models of each vertex [Karimi and Galdos (2010); Galdos
et al. (2010)].

Take A% as the closed loop state matrix of each vertex with
its corresponding controller, then a good candidate for the
central state matrix will be a matrix which is SPR-pair
with A% for alli = 1,...,¢. Thus, the central state matrix
M can be chosen as a feasible solution to the following
LMIs:

(ADT P+ P AL P — (A)T + M"

P—A 4+ M —2I

fori=1,...,q.

<0 (17)

The results can be further improved if the resulted robust
controller is used for computing A% and then for updating
the matrix M iteratively. This is illustrated in the follow-
ing simulation examples.

2.4 Simulation examples

Example 1: Consider the following forth-order polytopic
system. This example is borrowed from Wu (2001) and
represents a mechanical system:

0 0 1 0
Ag(pr; p2) = p1—0200 o0 1o
—400 py —400 0 —2 (18)
Bg=[0010]"
Cg=1[0100]
where p; € [0 9k] and py € [0 25k]. This is a

polytopic system with 4 vertices (A1 = A,4(0,0), 4y =
Ag(9k,0), Az = Ay(9k, 25k) and A,4(0,25k)) and k is used
to increase or decrease the size of the polytope. It should
be mentioned that the open loop system is unstable except
for py = pa = 0. The proposed approach is used to
compute a second-order stabilizing controller for the whole
polytope. The central matrix is chosen using four simple
PID controllers computed for each vertex using a controller
design toolbox [Karimi (2012)]. These controllers are used
to compute a feasible solution M of (14). Finally, a robust
controller is computed using the results of Theorem 1.

Using this approach k could be increased up to 0.58 and
for greater value a feasible solution could not be obtained.
The initial PID controllers for k = 0.58 are given below:

 —11621.35(s + 0.407)(s + 8.65)

PID, (s) =
1(s) s(s + 833.3)

PIDy(s) — Z12T86.91(5 + 0.5226)(s +13.5)
S s(s + 833.3)



PIDa(s) = —13088.56(s + 0.7177)(s + 19.63)
s s(s + 833.3)
PIDa(s) — —12546.07(s 4 0.602) (s + 15.85)

s(s + 833.3)

and the resulting second-order robust controller is:
—13038.35(s + 1.064)(s + 16.71)

(s 4+ 0.7969)(s + 883.9)

Now, if this controller is used to find a new M, less

conservative results can be obtained. In fact, k can be
increased to k = 1. This controller is :

—12284.83(s + 46.73)(s + 13.82

Kol ( ) )

(s + 34.2)(s + 937.5)

The results can be further improved by an iterative ap-
proach in which M is computed based on the controller
in the last iteration. It should be mentioned that this
approach is similar to solving a BMI using an iterative
approach. However, the main difference is that the Lya-
punov matrices P; are always optimization variables and
are not fixed in any iteration. In other words, from LMI
n (14) M is computed and then from LMI in (13) the
controller parameters are computed that use to compute
Al in (14) for the next iteration.

To solve the optimization problems in MATLAB, YALMIP
[Lofberg (2004)] as the interface and SDPT3 [Toh et al.
(1999)] as the solver are used.

Ko(s) = (19)

(20)

3. CONVEX SET OF FIXED-ORDER Hs
CONTROLLERS

In this section, the objective is to design a fixed-order
stabilizing controller for the polytopic system which sat-
isfies some H,, norm bounds on some weighted transfer
functions of the closed-loop system. The results of this
section are valid only for SISO systems (i. e. n; = n, = 1)
for the reason that becomes clear in the sequel.

For simplicity of the presentation, the infinity norm of the
sensitivity function S = (1 + GK)~! is considered but it
can be applied to any other closed-loop transfer function
as well. The objective is therefore to design a fixed-order
controller for the polytopic system in (1) and (2) to achieve

[WSM)lloo < (21)
where v is given and W is a weighting transfer function

with the realization (A, By, Cw, 0). Then, the state space
realization of WS(\) is as follows:

Ay(N) — ByDyCy(X) ByCr 0
As(\) = —BkCg()\) A, 0
—B,Cg(A 0 A,
g(\) (22)
By Dy,
B, = By, Cs=[0 0 C,] Ds=0
By

The proposed approach is based on the relation between
the infinity norm and quadratic stability according to the
following lemma from Chilali et al. (1999):

Lemma 2. The following statements are equivalent.

(1) [[WSllog <7
(2) As—y 'BsACs is quadratically stable for all || Ao <
1.

The approach that we propose is to find a sufficient
condition to satisfy Statement (2).

For SISO systems A will be a scalar, therefore, if A, =
As —y7'BsCs and A, = A; + v~ B;C; are quadratically
stable, then Statement (2) and consequently Statement (1)
are satisfied. On the other hand, if A, and A, are SPR-
pair matrices, they will be stable with a common Lyapunov
matrix and so Statement (1) is satisfied. However, applying
the KYP lemma for these SPR-pair matrices leads to
a BMI. Now, suppose that there exists a central stable
matrix M, which is an SPR-pair with A, and another
central matrix M, which is an SPR-pair with A,, then
M, will be quadratically stable with A, and M, with
Ayp. Moreover, if we use the same Lyapunov matrix in the
KYP lemma associated to each SPR-pair matrices then the
quadratic stability of A, and A, is ensured. The results
can be summarized in the following theorem:

Theorem 2. The fixed-order controller defined in (3) sta-
bilizes the polytopic system in (1) and (2) and guarantees
an infinity norm less than ~ for the weighted sensitivity
function defined in (22) if :

MIP, + P,M, P, — M} 4+ (A)T
[Pi—Mn-i-A; "or <0 (23)
T p, : AT iNT
M, P; + Pz]w;_p P, — M, +(A) <0 (24)
P, — M, + A, —21
fori=1,...,q, where
Al = AL —47IB,C, (25)
A= A £y B,C, (26)
with
_ A; — ByDC; B,Cy, 0
A, = —BC; Ar O (27)
—B,C; 0 A,

and M,, and M, are stable matrices.

Proof: 1f the inequalities in (23) and (24) are satisfied, we
conclude that A}, and A7 are stable with P; as Lyapunov
matrix. Therefore, A}, and A} are quadratically stable
and according to Lemma 2, |[WS;|lcc < 7, where S;
is the sensitivity function of the i-th vertex. By convex
combination of (23) and (24) for all vertices of the closed-
loop polytope, we obtain:

MIP+ PM, P—M!+ AT
[P—Mn+An 91 <0 (28)

MTP+PM, P— MT + AT

P p P P
[P—MI,—I—A,, oI <0 (29)

Then, using the equivalent matrices in (10) and (11) we
got:

ATP+ PA, P— AL+ M}
[P"An+Mn Tor <0 B0
AP+ PA, P—AY + M
{PpAerMp RO I (31)

that shows A, and A, are quadratically stable with the
linear parameter dependent matrix P = Zf A P; which
guarantees ||W.S||s < 7y for all members of the closed-loop
polytopic system. O



The matrices M, and M, can be computed based on a
set of initial controllers computed for each vertex from the
following LMIs:

(AL)" P+ P A, Pi— (A,)" + M,
P— A 1M, Y
TiVT D, X op. (BT T
(Ap) ]?Z.JFPZAP b (Ap) +Mp <0 (33)
P — Al 4+ M, Y
fori=1,...,q, where A}, = AL —y"'B,C, and A} = AL +
7 1BsCs and A%, B and Cs are computed from (22) by
replacing the initial controllers for Ay, By, Cy, and Dy.

} <0 (32

3.1 Simulation results

In this part, the control objective is to design a second-
order controller such that || S| < v for the mechanical
polytopic system of Subsection 2.4. The low-pass weighting
filter W is as follows:

1.2
W(s) = ——— 34
()= Srom (34)
and k£ = 0.2 is chosen. In the first step, some initial

controllers are required for computing the central matrices
M,, and M,. For this purpose, Ko(s) in (19) is used. This
controller ensures the following weighted infinity norm of
the sensitivity functions for four vertices of the polytopic
system: 0.6200, 1.7356, 4.4813, 2.4660. The central matri-
ces are computed by minimizing « in the LMIs in (32)
and (33) using the bisection algorithm. In the next step,
an Ho, controller is computed using the LMIs in (23) and
(24). Note that the Ho, performance of this controller will
be never worse than the initial one, because the initial
controller is in the feasible set of these LMIs. Therefore,
using an iterative algorithm the infinity norm of W'S; will
monotonically converge to a local minimum that depends
on the initial controller. Fig. 1 shows that the value of
~ converges to v = 0.8743 after 13 iterations. The final
controller is :

—13743(s + 0.4598)(s + 16.71
Kats) - ( )( )

(s 4+ 0.04193)(s + 879)
which results in the following infinity norms at the ver-
tices: 0.6559, 0.7149, 0.8145, 0.7374. The Bode magnitude
diagrams of WS; are shown only for the four vertices in
Fig.2, however, the H, constraint is satisfied for the whole
polytope according to Theorem 2.

(35)

The results can only be compared with fixed-order Ho
controller designed for simultaneous stabilization of multi-
model systems, since, to the best of the authors knowledge,
there is no fixed-order H., controller design method for
polytopic systems.

The frequency-domain robust control toolbox (FDRC)
[Karimi (2012)] can be used to compute a second order
controller that minimizes the infinity norm of the weighted
sensitivity functions of all vertices. This method is based
on the loop shaping in the Nyquist diagram with con-
straints on the infinity norm of the sensitivity functions
and uses Laguerre basis functions to obtain linearly param-
eterized controllers (the denominator of the controller is
fixed) [Karimi and Galdos (2010)]. The resulting controller
is given by:

—454.7689(s* + 1.1955 + 3.967)
Kiqre(s) =

(s+1)2

(36)

2 4 6 8 10 12 14
Iterations

Fig. 1. Evolution of the infinity norm versus the iteration
number

Bode Magnitude Diagram of the Weighted Sensitivity Functions

Magnitude (dB)

_60 . — - .
10~ 10~ 10 10 10 10
Frequency (rad/s)

Fig. 2. Bode magnitude diagrams of W S;

which leads to the following infinity norms: 0.6604, 0.6868,
0.7286, 0.6956.

If the above controller is used as an initial controller for the
method proposed in this paper, the algorithm converges to
v = 0.7353 after four iterations and leads to the following
controller:

—609.9401(s* 4 3.1s + 3.804)

Ks(s) =
(s+5.726)(s + 0.1234)

with the following infinity norms: 0.4636, 0.4813, 0.5078,
0.4872. It can be observed that the results can be signifi-
cantly improved because of more degree of freedom in the
parameters of the controller’s denominator.

The results are also compared with HIFOO [Burke et al.
(2006)] which is a public-domain MATLAB package for
fixed-order H,, controller design of multi-model systems
using non-smooth non-convex optimization algorithms
[Gumussoy and Overton (2008)]. Since HIFOO uses ran-
domly generated starting points, three sequences of op-
timized H,, norm with 10 iterations are generated. To
improve the results with HIFOO, the designed controller
in previous iteration is used as an initial guess. HIFOO
converges into the following controller after 10 iterations

(37)



in each run:
B —1506(s + 2363)(s + 13.01)

Ky =
hifoo(*) = (53 7565)(s + 14.89)

(38)

This controller can minimize ||[W.S;||o for all vertices of
the polytope (not for the whole polytope). The norms
[[WS;|loc achieved at the four vertices are as follows:
0.7795, 0.7837, 0.7895, and 0.7895, respectively.

The results of HIFOO controller are very close to those
of Ks(s) designed based on Theorem 2 and initialized
with a stabilizing controller with the difference that K(s)
guarantees the performance for the whole polytope. On the
other hand, it can be seen that the final results depends
on the quality of the initial controller. In this example, an
initialization using the FDRC toolbox seems to give the
best results.

4. CONCLUSIONS

In this paper, the design of fixed-order stabilizing con-
trollers for multivariable systems with polytopic parameter
uncertainty in their state space representation is investi-
gated. An inner convex approximation of fixed-order stabi-
lizing controllers as a set of LMIs is given. The approach is
based on the new definition of SPR-pair matrices that can
help to decouple the Lyapunov matrix variables from the
controller variables. It is shown that this concept can be
applied to compute fixed-order H,, controllers for SISO
polytopic systems. The convex approximation is based
on the choice of a central state matrix. A method based
on a set of initial stabilizing controllers to compute the
central matrix is proposed. The simulation results have
demonstrated the effectiveness of the proposed method.
The extension of the proposed idea to design of fixed-order
MIMO H., and Hs controllers is under investigation.
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