000176291 001__ 176291
000176291 005__ 20181203022659.0
000176291 02470 $$2ISI$$a000301704900013
000176291 037__ $$aARTICLE
000176291 245__ $$aAntiferromagnetic Spin-S Chains with Exactly Dimerized Ground States
000176291 260__ $$c2012
000176291 269__ $$a2012
000176291 336__ $$aJournal Articles
000176291 520__ $$aWe show that spin S Heisenberg spin chains with an additional three-body interaction of the form (Si-1 center dot S-i)(S-i center dot S-i (+) (1)) + H.c. possess fully dimerized ground states if the ratio of the three-body interaction to the bilinear one is equal to 1/[4S(S + 1) - 2]. This result generalizes the Majumdar-Ghosh point of the J(1) - J(2) chain, to which the present model reduces for S = 1/2. For S = 1, we use the density matrix renormalization group method to show that the transition between the Haldane and the dimerized phases is continuous with a central charge c = 3/2. Finally, we show that such a three-body interaction appears naturally in a strong-coupling expansion of the Hubbard model, and we discuss the consequences for the dimerization of actual antiferromagnetic chains.
000176291 6531_ $$aNearest-Neighbor Interaction
000176291 6531_ $$aIsotropic Heisenberg Chain
000176291 6531_ $$aArbitrary Spins
000176291 6531_ $$aLinear Chain
000176291 6531_ $$aQuantum
000176291 6531_ $$aModel
000176291 6531_ $$aExcitations
000176291 6531_ $$aTransition
000176291 6531_ $$aLattice
000176291 6531_ $$aS=1
000176291 700__ $$0245106$$aMichaud, Frederic$$g160928$$uEcole Polytech Fed Lausanne, Inst Theoret Phys, CH-1015 Lausanne, Switzerland
000176291 700__ $$aVernay, Francois$$uLab PROMES UPR 8521, F-66860 Perpignan, France
000176291 700__ $$aManmana, Salvatore R.$$uUniv Colorado, JILA, Boulder, CO 80309 USA
000176291 700__ $$0240777$$aMila, Frederic$$g159141$$uEcole Polytech Fed Lausanne, Inst Theoret Phys, CH-1015 Lausanne, Switzerland
000176291 773__ $$j108$$q-$$tPhysical Review Letters
000176291 909C0 $$0252443$$pITP$$xU10181
000176291 909CO $$ooai:infoscience.tind.io:176291$$particle
000176291 937__ $$aEPFL-ARTICLE-176291
000176291 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000176291 980__ $$aARTICLE