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A stability analysis for the arbitrary Lagrangian Eulerian
formulation with finite elements
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Abstract — In this paper we present some theoretical results on the Arbitrary Lagrangian Eulerian (ALE) formu-
lation. This formulation may be used when dealing with moving domains and consists in recasting the governing
differential equation and the related weak formulation in a frame of reference moving with the domain.

The ALE technique is first presented in the whole generality for conservative equations and a result on the
regularity of the underlying mapping is proven. In a second part of the work, the stability property of two types
of finite element ALE schemes for parabolic evolution problems are analyzed and its relation with the so-called
Geometric Conservation Laws is addressed.

1. INTRODUCTION

When dealing with the numerical computation of fluid problems in a moving domain, a possi-
ble way to proceed consists in adapting the mesh in order to follow the boundary movement,
thus keeping a boundary conforming grid. In order to effectively apply the technique one has
to rewrite the equations in a moving frame of reference, leading to the so called Arbitrary La-
grangian Eulerian (ALE) formulation. An early presentation of this technique may be found on
a work of J. Donea [6]. It is based on the definition of an appropriate mapping from a reference
configuration to the current, moving domain.

The ALE formulation has been used extensively for fluid structure interaction problems
particularly for compressible fluid dynamics problems and aero—elasticity, using mainly finite
difference and finite volume schemes. In some of those works numerical instabilities and os-
cillations were noted. The main cause has been related to a misrepresentation of the convective
fluxes due to an inaccurate calculation of geometrical quantities such as surface normals and
volumes of the control cells used in the finite-volume computations. Indeed, when dealing with
a moving domain it is possible to write the differential equations governing the “evolution” of
such geometrical quantities during the domain movement. A failure of the numerical scheme
in correctly representing such an evolution may cause a loss of the conservation properties with
possible resulting instabilities. Possible ways to overcome the problem have been devised for
finite volume schemes and they result in an appropriate evaluation of the geometric quanti-
ties to be used in the time advancing scheme. This led to the development of the Geometric
Conservation Laws (GCL). Unfortunately, no clear-cut analysis is so far available and the real
significance of those conditions in terms of scheme stability properties has not yet been estab-
lished. In [8], M. Lesoinne and C. Farhat analyze a particular finite volume ALE formulation
and reconduce the GCL to a minimal condition on the precision of the scheme time quadrature
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formula. Notably, the limit depends on the number of space dimensions. In the same work,
a preliminary analysis on the form of the GCL conditions for finite element schemes is given.
In a later work [7], H. Guillard and C. Farhat have proved that the GCL are sufficient to the
guarantee that particular finite volume based schemes remain at least first order time accurate,
independently of the domain movement. ‘

Nevertheless, a thorough analysis on the implication and possible limits of the ALE formu-
lation in the context of finite element methods is still missing and this work is an attempt in that
direction. In Section 2 of the paper we will describe in a rather abstract form the ALE approach
for a generic conservation law of the type

gg-t—V;-F(U) = f. (.Y
ot

The ALE approach consists in recasting the equations for a moving domain. We will present
two possible ALE weak formulations of (1.1). The former will lead to non-conservative ap-
proximation schemes while the latter will maintain the conservation properties also at discrete
level. Always in this Section 2, we will investigate the smoothness condition that the ALE
mapping should satisfy if we wish to maintain a H' spatial regularity which is the one enjoyed
by piecewise continuous finite element spaces. The objective is to find a condition compatible
with an approximation of the ALE mapping by means of finite elements base functions, which
is indeed the subject tackled next in the paper.

In Section 3, we will consider a linear transport-diffusion model problem and we will ana-
lyze the stability properties of the finite element approximation of the two weak formulations
presented in Section 2. In this framework, we will introduce the Geometric Conservation Laws
(GCL) which have been originally ideated for finite-volume schemes as a sort of “patch test” to
which the discrete scheme should obey. We will recognize their formulations in a finite element
scheme and we will assess their relevance for stability and, in particular, for obtaining a sta-
bility result independent of the domain movement law. It is shown in this paper that, although
in general the GCL are neither necessary nor sufficient to that scope, for certain schemes the
fulfillment of the GCL indeed ensures a stability result independent of the domain velocity.

2. THE ARBITRARY LAGRANGIAN EULERIAN (ALE) FORMULATION

The Arbitrary Lagrangian Eulerian frame of reference is adopted when the domain is moving. It
may be defined in a way very similar to that of the Lagrangian frame widely used in continuum
mechanics. Let A, be a family of mappings, which at each t € (ty,7T’) associate a point Y of
a reference configuration 1, taken to be equal to the domain configuration at time t = £g, to a
point x on the current domain configuration ;. That is, for each t € (¢y,T),

AcSW CRY 5 Q, cRY,  z(Y,t) = A(Y).

We will assume 4, to be an homeomorphism, that is A; € C°({2) is invertible with continuous
inverse A; ! € C°(Q,). Furthermore, we assume that the application

t—-)a:(Y,t), Y EQQ

is differentiable almost everywhere in [ty, T). In the following, we will denote by [ the interval
(to, T).

We will call Y € Qg the ALE coordinate while z = (Y, t) will be indicated as the spatial
(or Eulerian) coordinate.
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In the following we will often have the necessity of switching between the different frame of
reference. In order to avoid an excessive number of symbols we adopt the following convention.
We will use the shorthand notation §2; x I to indicate the set

{(z,t)] TzeQ,tel}

Let then f: 9, x I — R be a function defined on the Eulerian frame and f := f o A, the
corres_ponding function on the ALE frame, defined as

FQxI—R, f(Y,t)=flAY)1).

We will indicate with the symbol %‘ the time derivative on the ALE frame, written in the
Y
spatial coordinate. It is defined as

of

ot

8 of _
‘U x TR, % Mﬂ:%Wﬁ,YzAﬂ@. @1

Y

Y

For analogy, we will indicate by %

the partial time derivative in the spatial frame.
z

We then define the domain velocity w as

oz

= (2.2)

w(z,t) =

Y

2.1. Derivation of ALE formulation for first order time evolution problems in conserva-
tive form

Let us consider a first order time evolution equation for a function

wyxI >R
written as 5
u

with appropriate initial and boundary conditions.

Here, £ indicates a differential operator (linear or non linear) in the space variable . In
order to find the equivalent equation for u o 4,, a standard application of the chain rule to the
time derivative gives

du
ot

_ Ou

Ou| | Oz
T ot

* 5

z

Ou
- Vou=

. 5 +w - Vyu. 2.4)

Y z

The symbol V, is here used to indicate the gradient with respect to the x variable, while Vy
will be used when the gradient is taken with respect to the reference domain. The substitution
of the previous result in equation (2.3) provides the following expression

ou

" + L(u) —w-Vzu=0 (2.5)

Y

which is the ALE counterpart of (2.3). It may be noted that the main difference with the original
formulation is the appearance of a convective-type term due to the domain movement.
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Often, PDE's governing continuum mechanics problems are written in conservative form,
which reflects the fact that they express indeed conservation properties. Since the context in
which the ALE technique is used is normally that of conservation laws, we will in the following
always refer to equation written in conservative form. Nevertheless, large part of the results
illustrated in this work may be readily extended to the more general case. The conservation
equation for a quantity u is written as

Ou

5 + V- F=f (2.6)

T

where F indicates the flux vector which is generally a function of u and of its first and second
space derivatives, while f is a possible source term. The application of relation (2.4) gives

’

ou

5| Ve F) - wVu=f Q.7

Y

Expression (2.7) represents one of the possible forms in which a conservation law may be cast
in the ALE frame. Another possible ALE formulation may be directly derived from the integral
formulation of the conservation equation. We indicate the Jacobian matrix of the ALE mapping
as

oz

Ja = —

AT 8y
and its determinant,

Ja, = det(J 4,)-

We now make use in the following derivation of the Euler expansion formula [1], which re-
lates the time evolution of J 4, to the divergence of the domain velocity field, according to the
following differential equation

0J 4,

5 | = JaVew (2.8)

Y
which is valid for Y € §y, € = A,(Y) and t € I. Supplemented by the initial condition
Ju, = lfort = tg, expression (2.8) may be also interpreted as an evolution law for the

Jacobian determinant, once the mesh velocity field is known. This interpretation is not the usual
one, since expression (2.8) is normally regarded as an identity satisfied at each time during the
domain evolution process. Yet, considering (2.8) as an evolution law may shed some light on
a possible interpretation of the Geometric Conservation Laws, as it will be discussed later on.
The derivation of expression (2.8), yet relative to a full Lagrangian frame, may be found in [1].
It may be readily extended to the ALE frame. ‘

We wish now to find an expression for a term in the form

d
— [ udf) (2.9)
y

where V; is an arbitrary subdomain V; C ),. We will indicate with V} the subset of {}; such
that V; = A,(Vp). We have that

%‘{um:%/ua,dﬂ:/-@—%ﬂ

Vo Vo

0 (2.10)
Y
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then, using expression (2.8), we finally obtain that

%V["d":v[[%

which is a generalization of the well known Reynolds transport formula [1].
Consequently, the conservation equation (2.6) in integral form and ALE frame is

+ uV,,-w} d§2 (2.11)
Y

d
a;/udQ%—/V,,-(F—wu) dQ:/fdQ. (2.12)
. Vi Ve Vi
In the previous relation all integrals have been expressed in the current frame of reference.

However, one may choose to write the equation with respect to the reference domain. This
- would lead to the following expression:

jo

+ J4, [V (F — wu) ~f]}dQ:0 (2.13)
o

Y
and, due to the arbitrariness of Vy, we may write the following differential equation,

0(Jaw)

ot +JA‘V3'(F'—‘W’U) :JAgf (214)

Y

which is another form in which the ALE equations are often found (see, for instance, [12])!.
Relation (2.14) could have been derived directly from (2.7) by employing the Euler expansion
formula (2.8). Indeed, it may be said that expression (2.14) is equivalent to (2.7) if the relation
(2.8) is true.

This somehow lengthy presentation had the main objective to denive some of the different
formulations in which the ALE equations are presented in the literature. Another approach
may be followed by using a weak formulation as a starting point, which is the basis for the
derivation of ALE finite elements.

2.2, Weak formulation in the ALE frame
The flux F'(u) may be often decomposed into two parts
F(u) = F.(u) + F,(u) ' (2.15)

where F, does not contain any derivative of u, while F',(u) contains first order spatial deriva-
tives of the unknown. A typical case is the Navier-Stokes equations which govern fluid dynam-
ics, where F', contains the convective terms, while F',(u) represents the viscous fluxes.

A weak formulation of (2.6) may be formally obtained as

PG

where u is sought in an appropriate functional space and W((2,) is the space of test functions
defined on ), with the required regularity at each time ¢. Relation (2.16) is formally the weak

+ V,-Fe(u)) o — /F,,(u) Vo dQ = /wfdQ Ve WEQ) (2.16)
z [973 [

tRelation (2.14) may be written completely on the reference domain transforming the divergence term by
exploiting the Piola-Kirchoff theorem [5]. We omit the derivation here; it may be found in [12].
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formulation for a moving boundary problem. Yet, in that form is impractical, since it contains a
time derivative in the Eulerian frame, while 1t will be natural to work with variables that follow
the domain evolution. The test functions moreover, cannot be taken constant with time since
they should vanish on the part of the moving boundary where essential boundary conditions are
applied. It is then natural to recast them in the moving frame of reference as well.

To that purpose, we consider a space of admissible test functions Y (), defined on the
reference domain, and made of functions 1/3 : £y — R that are smooth enough, The ALE
mapping then identifies a corresponding set X'(€2,) of weighting functions on the “current con-
figuration”, defined as follows:

X(Q)={v: U xI >R, p=vod, ¥eIh)} (2.17)

Clearly, we must have that, at each time t, X(§2;) C W(,) in order that the function space is
admissible. This condition will impose constraints on the regularity of the mapping, as it will
be analyzed in a later section for the particular case of W(Q,) = H!(£,).

In the following we will illustrate two possible ways of building a weak formulation in the
ALE frame.

2.2.1. A non-conservative formulation

If we transform the Eulerian time derivative of relation (2.16) into its ALE counterpart the

following weak formulation may be written
/111% dQ+/1/1(Vz-F, - szu)dQ—/F,,(u) - V¢ dQ = /wfdQ V€ X(().
Q Qq Ioh Q

(2.18)

This equation stems directly from the weak formutlation of the original problem, recast in the
ALE frame.

Y

2.2.2. A conservative ALE formulation

Another ALE weak formulation may be obtained bearing in mind that functions in Y () do
not depend on time. An immediate consequence is that the following important relation may
be written:

oY o
A Ve X :
0 3|, atz““" Ve VY e X(8y) (2.19)
and then, for any time-differentiable function g = g(z, t), we have that
o(yg) dg
—= == Yy e X(0Q,). 2.2
B =V YPer®) 220)

By recalling expression (2.11), one may then write the following useful formulae, valid for
any w,X € X(Qt)

%/wdQ:/d;V,-wdQ 221)
Q¢ Q.

d ou
a?n/z/mdﬂ _n/¢ (“a'{ ) +uV,,-w) 40 (2.22)
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d
= Q/ by dQ = Q/ DXV 5w . (2.23)

The alternative ALE weak formulation may then be obtained following two routes. The
first starts from (2.16), taking ¥ € X'(£),), expanding the time derivative using (2.4) and finally
exploiting relation (2.22). The result is the following expression

d
a-t-n/wdn +n/1/)(V,,-(Fe(u) — wu))dQ —‘{F”(u) -V, d0 :f{@[;fdﬂ Ve X(Q,).
(2.24)

The second route starts from the differential expression (2.14) which in weak form reads

[v(2z

Qo

Y

) 40+ [ B4 (Vor(Fo(w) - wu) 42 — [ Fy(u) - Va0
o o (2.25)
- /1/zfdQ V€ V().
o5

By exploiting the fact that %;é = ( the time derivative may be moved out of the integral

sign and the integrals may be transformed on the current domain configuration, leading again
to (2.24). In this formulation the transient term is expressed as a total time derivative while the
ALE convection term appears in the form of the divergence of the product of the mesh velocity
field and the solution u. The time derivative term accounts for both effects due to the variation
of the solution u and the change in the grid nodes position. For conservation equations, it has
the advantage that the ALE term is itself in “conservation form”, therefore the modification
of an existing “fixed-grid” code is (at least apparently) straightforward, as it is just required
to change the definition of the fluxes. In addition, the formulation is “conservative”, in the
sense that, taking any V' C ), with Lipschitz continuous boundary, should 9|, = const be
admissible?, we derive from (2.24), taking s = 0, that

fi/udQJr/F-ndr—[uw-ndF:o (2.26)
dt v v av
which indeed expresses the fact that, in absence of source terms, the variation of u over V' is due
only to contribution coming from the boundary of V. It can be noted that also the contribution
of the ALE term to the conservation reduces to a boundary term, which is indeed related to the
additional “flux” of u through the boundary as a consequence of its movement?,

Formulations (2.18) and (2.24) are equivalent at the continuous level, but they lead to dif-
ferent discrete systems. In particular, the conservation property just mentioned, may not be
satisfied by the discrete systems associated to (2.18).

2.3. Considerations on the regularity of the ALE mapping

We may note that the fulfillment of the appropriate regularity condition for the functions in
X (€,) may impose a certain level of regularity to the ALE mapping. Since we are mainly

$This is always the case if V C .

$We may anticipate that for the Navier-Stokes equation the “ALE” fluxes will exactly balance the convective
fluxes on the part of the boundary which moves at the same velocity as the fluid, reflecting the fact that there is no
mass exchange through that portion of boundary. '
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interested in fluid flow and elasticity problems, we would deal with functions u(z, t) so that
u(-,1): 1 = V() c H'(Q).

Therefore, in the following we will investigate the regularity required on the mapping in or-
der that if Y(Qp) C H'(€y) then, at each time ¢ during the domain motion the 'transformed
function space space’ X' (£;) remains a subspace of H'(£;).

2.3.1, Some additional nomenclature

In the following we will make use of standard function spaces. We will indicate by LP((2), with
1 < p < oo, the set of measurable functions v defined on 2 C R¢ and such that

; / lv(z)|P A2 < oo. (2.27)
0

The set LP(£2) forms a Banach space when equipped with the norm

1
»

Iolloray = ( / |v(m)|?dﬂ) . (2.28)
9]

In the case of L*°(2) the norm is defined as
lV]lLeo(y = inf{M| |v(x)] <M ae inQ}. (2.29)

With the Sobolev space W*?()), with k > 0 integer and 1 < p < oo, we indicate the class of
functions "

Wk (Q) ={ve LP(Q)] D*ve L*(Q), |af <k} (2.30)
being a = (ay, ..., 0q), With o > 0 integer, and || = a; + + + a4. D* indicates the
distributional partial derivative

dlely
D%y = . 2.31

v 0y - -O%zy @.31)

With H?(f)) it is indicated the Hilbert space WP?(Q). Finally, H}(Q) indicates the set
formed by functions of H*(2) with zero trace on 9.

For vector functions, we will use the bold symbols. For example L?({2) indicates the space

of vector functions v such that each component v; satisfies v; € LP(2). The associated norm is

then defined by

o1z = 2 oillzo(a)- (2.32)
When dealing with space-time functions

v{t,z) with (t,z) €l xQ
we will make use of the spaces

LA HP(Q)) = {v: I - HP(Q)| v measurable , / lo(6) ey dt < 00} (2.33)
I

and

HYI; H*(Q)) = {v € L*(I; H?(Q))] % € L*(I; H"(Q))} . (2.34)
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The dual space H~1(2) of H}(f2), is formed by all continuous linear operators on functions
belonging to Hy (£2). We will indicate the duality paring between H~1(Q) and H} () by

(fiv), feHQ), veHIN). 2.35)
The space H~!(f) is equipped with the norm
\fllz-1@y = sup v (2.36)
v € H}(D) Hv“H‘(O)
lvH m1qay # 0

All these definitions can naturally be extended to a moving domain §2;. For example,

L2(I; H?(Q)) = {v: ] — H?(%)| v measurable , / ()% dt < 00} (2.37)
I

2.3.2. Mapping regularity condition
The following problem will be addressed.

Problem 2.1. Find sufficient conditions for the ALE mapping A, so that if o € H'()
thenv = 90 A; ' € H'(Q,) and vice-versa.

Classical results [2] indicate that a sufficient condition is that A, be a C!-diffeomorphism,
which implies thatV ¢ €

A, € C'(Qy), Al e CHRY) (2.38)

and, moreover,
J 4, € L*($), JA;‘ € L*=(). (2.39)

Unfortunately, this requirement is too restrictive for our purposes. In fact, we would like to
express the ALE mapping by means of finite element shape functions, which are required to
be in H'(f2), but not necessarily in C*({2). The reason is that in practical applications, we will
reconstruct the ALE mapping from the boundary movement and, as we shall see later on, we
will use for this purpose a finite element space discretisation. We need then to slightly relax the
requirements stated above. This is possible by imposing some (quite reasonable) constraints on
Qt.
We can then state the following Proposition.

Proposition 2.1. Let 0y be a bounded domain with Lipschitz continuous boundary and A,
be invertible in Qg and satisfying the following conditions: for eacht € I

o Oy = A() is bounded and Lipschitz continuous?,
e we have that

A € W), A7t e WHe(Q,). (2.40)

Then, v € H'(Q) ifand only if 0 = v o A, € H'(S). Moreover, ||v| g1 (q,) is equivalent to
”"3”171(90)'
Proof. Under the assumption (2.40), Sobolev embedding theorem assures that

A €eC(Ty), AlelC() (2.41)

11f A, is a C! -diffeomorphism this requirement would be automatically satisfied, see, for example, [5].
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and, as consequence of the hypotheses, the Jacobian
J 4,: 0y — R

and

JAt_l:Qt — RdXd .

are in L*(Qg) and L*(£2;), respectively, and their determinants, J 4, and J -1, being made
of products of L* functions defined on a bounded domain, are themselves in L*(€}y) and

L)), respectively. Moreover, we have
4 0 Az—IHL‘”(m) = ”JA¢||L°°(QO)

/ (T 42 © Al =90y = (| g1l L= (ay-

(2.42)

(2.43)

Finally, because of the invertibility of .4;, there is no loss of generality in assuming that

there are two positive constants c;, ¢z such that

Jo(Y)>e, VY e, Vtel

and
JA;x(m)ch Ve, Vtel.
We then have
o113y = [7* 42 = / T4 0?4 < [ gt 9 e
Qo
vl 00 = [U dQd = /JA¢ dQ < a0y 181 5020)-
Q 02
In addition,
2
ov Oz
1 0 = / o ] .
IUIH (Q) — /Z (6}@) (/ 6.’5_7 ayk) dQ
We have

By using the previous relation into expression (2.46), we obtain
6200y < Pl () 19 40l 0y o -
Analogously, by exchanging the role of v and ¥ we have
vy < 1V acll i@ 4t 1 P11 )

by which the theorem is proved.

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)
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As for the time regularity of the mapping, we will assurue that the function (Y, t) satisfies
z € H' (LW"(Q)). (2.50)

Proposition 2.2. Under the assumption (2.50), we have that if 1 € H'(I, H'(()) then,
v=790A;' € HY(I,H'(,)) and
v

Gl € L*(I, H' (). 2.51)

Y

Proof. Indeed, with the help of Proposition 2.1 we have established an isomorphism be-
tween H'(Qp) and ‘H'(Q,). Being H'(€) a separable Hilbert space, we may express any
9 € HY(I; H'(y)) as

oc
(Y, 1) = 3 () L(Y) 2.52)
=1
where {¥;(Y")} is an orthonormal basis of H'(Q) and %(t) = (v, ¥;) g1 (q,) is the correspond-

ing Fourier coefficient. We have indicated by (-, -) gr1(n,) the scalar product in H*(£). Clearly,
9;(t) € H'(I). Then, we have

ov

EZYOAt: azga‘y, (253)
Therefore, \

o, A, € L*(I; H' (). (2.54)

ot Y

Finally, we note that the set {®;| ®; = ¥, 0.4; '} forms a complete basis (not necessarily
orthogonal) of H'(€2,), thanks to the equivalence of norms in H'(;) and H'(() proved in
Proposition 2.1. Then we have

v=00 A =3 Wi A =) ;% (2.55)
i=1 =1
thusv € H'(I, H'(Q,)). Furthermore,
ov o, Xdi IR
_ = — jonnnd ——.\I/ = —@1, 2.
3|, &OA' i;dt io A, Z;dt (2.56)
0
Then, —| € L*(I; H' (). ' O
ot |y

2.4. A practical construction of the ALE mapping A,

In practice we are normally faced with the following problem.

Problem 2.2. Given the time evolution of the domain boundary

g:00g x I — 0
find an ALE mapping .4, such that, at each time ¢t € [,
A(Y) =g(Y,1), Y € 0.

Several techniques have been proposed in the literature. For instance, one may construct
the domain motion by considering the domain as an “elastic” or viscoelastic solid and solve
the stated problem by resorting to the equations of elastodynamics. This approach is used, for

example in [9]. Yet, one may look to simplified models. Here, we present two possibilities
without the pretension of being exhaustive.
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2.4.1. Solving a parabolic system
It consists in finding a solution to the following problem.

Problem 2.3. Given the initial configuration {2, and the law of evolution of the domain
boundary g find

. Qo X I —> Qg
such that
oz
—é't— - Vy'(KVyZ) =0, Y € Qo, tel
z(Y,0)=Y, Y € Q (2.57)
z(Y,t) = g(Y,1), Y €00, tel.

Here « is a positive constant (which may be taken equal to 1).

Remark 2.1. We may note that a more complex expression for k, by letting it be a tensor
function with coefficients depending on the numerical solution of the problem at hand, may
allow to implement a mesh adaption scheme based on node movement, at very little computa-
tional price, since the domain movement has to be computed anyway.

2.4.2. Harmonic extension

Very often we need to know the ALE mapping only at discrete time levels, where the approx-
imate solution of the problem at hand is sought. The data of the problem are the reference
(initial) configuration and the new position of the boundary, which could be described as a
function h : 09y — 0Qr, being r the configuration at the given time 7'. In this case a
simple alternative to the technique just presented consists in making an harmonic extension of
h onto the whole {}, in order to obtain the ALE mapping at time 7". That is, one solves the
following problem. following problem.

Problem 2.4. Given )y and h, find = : Qy — Qr such that

{ Vy(kVyz) =0, Y €
(2.58)

z(Y)=h(Y), Y €.

Again, if x is a function of the numerical solution it may be used to drive an adaption type
procedure.

2.5. Finite element discretisation of the ALE mapping -

Our final objective will be the numerical solution of problems (2.18) or (2.24) by a finite el-
ement method. The choice of finite element space for the main variable u will undoubtedly
affect the type of discretisation to be used for the ALE mapping. In particular, the discrete
ALE mapping should be such that the domain triangulation maintains during its movement its
suitability with respect to the chosen finite element space. For instance, if we use linear finite
elements we need to ensure that the images of the mesh during the domain movement maintain
straight edges.
There are thus two inter-related issues which must be faced.

1. Finding the appropriate discrete formulation for (2.18) and (2.24).
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2. Finding a suitable finite element discretisation, A, for the ALE mapping and, conse-
quently, an algonthm for solving expression (2.57) or (2.58).

We will first briefly recall some basics of the finite element method which are necessary for
our discussion. The domain £ is discretised by partitioning it into a finite number of (possibly
curved) polyhedra called finite elements. The set of finite elements is called mesh and it is
indicated by Ty ,. The discretised domain 2, o, formed by the union of all mesh elements, may
differ from £ because of the approximation of the boundary geometry. Yet, since this fact is
not particularly relevant for our discussion, in the following we will assume {2, o = ;. We
consider Lagrangian finite elements and the general case of a finite element function space F, &
of degree n and parainctric mapping degree k, defined as follows:

Fak (Ton) = {Un: % = R| Pa € CO(), |, o M[® € Pa(Kr) VKo € Ton}
~ A (2.59)
where, 1[1,,|K indicates the restriction of v to the finite element Ky, P,(Kg) is the space

of polynomials of degree n defined on a reference element K and ME° € P (Kjp) is a
homeomorphic mapping from K to Kp. In general £ < n and in particular it is either equal
to 1 (affine mapping) or n (isoparametric mapping). Since we wish to consider the general
case, we will indicate with the term ““vertices” the finite element nodes which are used for the
parametric mapping. Mf" is defined as follows:

MEKp Ky, Y(n) = MP(n) = > Yibi(n), meKr ¢ € P(Kg).

tENK
(2.60)
Here, ¢; is the base function associated to i-th vertex of the reference element, while Y, is the
coordinate of the correspondent vertex in 7g 5. The sum extends over all vertices of Kg, here
indicated by N'X. Tt can be shown that F, x (To ) € H'(S%), and, in particular, F, x (7o) €
W1>(Qg). In case of an affine mapping the finite element space F, ; reduces to the more
familiar expression:

Far (Ton) = (9w = R| € C°(), |, € PalKo) VEo€Ton}. (260

Should we wish to utilize a finite element discretisation for our problem, the space of test
functions V() will be approximated by X, () = Fnx (Ton); we remark that this implies,
in particular, that V Ky € 7o, M € Pi(Kg). In Subsection 2.2 we have advocated that
the proper ALE extension of the discrete test function space to a moving domain would be

o) = (Y x I =R, Y04, =% ¥ € (W)} - (2.62)

where now we use the discrete ALE mapping. Therefore, in order to be consistent with the
chosen finite element discretisation, we should require that at any t X (§,) = F,,  (T; ) where
7T¢ » is the image under the ALE mapping of Ty . If x;(t) denotes the position of the i-th vertex
at time ¢, we may formally define M f‘ on each element K, of 7; » as follows:

MKy o K, z(n) = M (n) = > xi(t)¢;i(ﬂ), neKp é¢€ Pi(KRg) (2.63)
fENK

while Fp x (Tea) is
Fose (Top) = {0 Q% > R| ¥ € C'(Q), ¥nli, o ML* € Pu(Kr) VKi € Tip}. (264)
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Proposition 2.3. If, at any t € I the discrete ALE mapping satisfies

Anile, o ME = M VKo € Top, K= A(Ko) (2.65)
and, in particular, Ap g, = Mo (M) and at time t = ¢,
Xu(Q) = Fax (Ton) (2.66)
then we have that X, (§);), as defined in (2.62) satisfies, at each t € I,
Xn (%) = Fap (Ten) - (2.67)

Proof. We just note that the under the given hypothesis
X (Qo) = {Un: U = R| 4, € COQ), "Eh!Ko oM € P,(Kg) VKo €Ton} (2.68)

Then, by recalling the definition of X,{€);) given in (2.62), we have that a if a function
satisfies v, € A, (§2;) then

(¥n © Ane) |, © Mi® € Pu(Kp).

By recalling the definition of F;, x (7)., given in (2.64), and by exploiting the continuity of the
discrete ALE mapping, we finally obtain that

'wh. € -Fn,k (ﬁ,h) .

O
As a consequence of condition (2.65) it is easily verified that the appropriate finite element
function space for the discrete ALE mapping is the isoparametric space Fy x (75,4), since, by
definition, if ¢ € Fi g (To5) then @, © M € P,(Kpg), and condition (2.65) indeed implies
that
Antlg, o Mi® € Pe(Kg).

If we indicate by
{s, i€eNT}
the set of nodal basis function of Fy, the discrete ALE mapping would then provide the
following discretisation for the function x in (2.57) or (2.58)

za(Y,t) = A (Y) = 3 zi(t)u(Y). (2.69)

iENT
We can then proceed to the solution of (2.57) or (2.58) by standard finite element procedures.

- Remark 2.2. We may note that the construction of the discrete ALE mapping depends on

the degree k of the parametric mapping chosen for the finite element space where we wish
to solve our problem, not on the degree n of the finite element representation chosen for our
principal unknown u. For instance, if we decide to use quadratic element with an affine para-
metric mapping, the discrete ALE transformation should be build by using isoparametric linear
elements.

Remark 2.3. By construction, the discrete ALE mapping satisfies the required regularity
assumptions, and the mesh velocity field on {2y, can be expressed as
w= Y $w; in QoxI. (2.70)
1IENT
A further discussion on the finite element spaces in the ALE frame will be carried out in
the next section, with respect to a specific model problem.
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3. A LINEAR ADVECTION DIFFUSION PROBLEM
AND THE GEOMETRIC CONSERVATION LAWS

To analyze the properties of the discrete schemes resulting from the ALE formulation, we
consider in this Section a model problem consisting of a linear advection diffusion equation of

the type ,
Ou
— + V. (Bu) —pAu=f forxefy, tel

at
u=uy for ¢ €8y, t=tg 3.1
u=up forxed, tel

where B is a convection velocity, which is assumed to satisfy V ;-3 = 0, u a constant diffusiv-
ity, A indicates the Laplacian operator and up is an assigned boundary condition of Dirichlet
type (in the case 4 = 0, the boundary condition should be applied only on the inflow part of
the boundary). Here, we may note that equation (3.1) is a special case of (2.6), with

F,(u) = Bu, F,(u)=-uVu.

We will first investigate the stability analysis of the continuous problem. We will then
consider the discrete scheme and derive some necessary conditions by which the numerical
approximation satisfies the so called “Geometric Conservation Laws”. To do so, we will choose
the type of finite elements to be employed for the spatial discretisation and the mesh movement
law, and we will focus on the time discretisation aspects.

3.1. Stability analysis of the differential equation in ALE frame

We first verify that the differential equation written in the ALE frame maintains stability prop-
erties similar to those of an advection-diffusion problem on a fixed domain. We consider, in
the following, homogeneous Dirichlet boundary conditions, and, for the sake of completeness,
we will consider a general convective field 8, satisfying ||V -8)|1.q,) < 00. We write the
differential equation on the ALE frame in the form

ou

5t + Ve [(B—wlul —pAu+uVyw=f forzey, tel

Y
u=1uy forx €N t=t G2

u=0 for xed), tel.

We multiply the equation by u and integrate over {2,. Using the Reynolds transport formula,
we have

d (uz) d 2 2
/ 5|, = glulm - fu Vow dQ. (3.3)
Qg nt
From (3.2) it may be derived that

1d 1
5-&2”’“”%’(9‘) +u ”V;‘U”iz(ng) + /Vz' [(ﬂ - UJ)U] udQ2 + '2‘ /U2V;'w dfl = /f’u de.
2 iy}

Q,
G4
Thanks to the homogeneous boundary conditions, we have

_ 1 2 _[.e2o .
({vz-[(g—w)u]udn_i [wv.-Ba0 /u V,wdQ 3.5)

Qg Qt
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and therefore relation (3.4) becomes:

1d 1
5 3oy + B IVatlE 0y = [fud~ 5 [u?V,-Ba0. (3.6)
Q

2

We may observe that all the terms containing a dependence on the grid velocity have been
canceled out. Integrating in time between ty and ¢, we have:

t ¢ t
(g +26 [ 1Voula ds = [ultllE,ap+2 [ ds [ fudt-[ ds [w?V,-Ba0.
to to Q0

to Q,
: _ GB.7D
By standard arguments [13], we deduce that
t 14+ Cq |
0
() Eaimg + 1 [ IVt 05 < luttn) gy + = [ 17 oy ds
o o (3.8)

t
+||Vz'ﬂHLw(mo)/||U||i,(rz.) ds
to

where Cp, is the Poincaré constant.

We have assumed, for sake of simplicity, that 8 is constant in time, and we have exploited
the equivalence between ||-||L..(aq and ||| L (,,) for all t € I. Using the Gronwall lemma
[13], we finally obtain

t
[6(8) sy + 1 [ 1Vl 0,y ds < K exp e (3.9)
to
where
t
1+C
K = [uta)lag + = [ 1110y ds (3.10)
to .
and
V= ||Vz'5HL°°(n‘O)- 3.1

If V-8 = 0 then the stability expression simplifies furtherly. At continuous level, then, the
stability properties of the problem are not affected by the domain velocity field. Clearly, we
may expect that this will not be anymore true for the discrete problem.

3.2. Finite element spaces in the ALE frame

We will use Lagrangian type finite elements and a discrete ALE mapping, as described in
Subection 2.5, and a Galerkin formulation. Our discrete function space on g, X,(Qy), will
then coincide with F, x (7o,4), defined in (2.59). The corresponding finite element space on §2;,
X (S2), will be formed by functions of Fy, x (T¢ ).

We will now indicate with AV the set of nodes of the finite element mesh, and with N, C N
the set of internal nodes. We also introduce the set of finite element nodal basis functions

{¥i, %€ (), ieN}
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which forms a basis of X},((2,). Here, 9; is the finite element function associated with node 3.
With X 5 (£2;) we indicate the discrete function space X, (§2;) N H (). The set

{Tf’i’ 1€ Mm}

forms a basis of &g 5 (£2;).
The numerical solution u, will then be sought in the space &,(f2;). In particular, we have
that u, will be expressed as linear combination of nodal finite element basis functions,

u(z,t) = Y iz, uilt) (3.12)
iEN
with time dependent coefficients u;(t). The set X A (§%) will be used as test function space.
For the sake of simplicity, we will drop the subscript A when it is clear from the context
that we are considering the discrete solution. This applies in particular to A s, which in the
following will be indicated by simply .A;. We wish to remind that, because of the ALE mapping,
functions in &) (£2;) depend both on  and ¢, even if the functions in X, () do not depend on
time. Thanks to relation (2.19) we may then write,

—1e). (3.13)

3.3. Some considerations on the significance of the Geometric Conservation Laws

Geometric Conservation Laws have been originally investigated in the context of finite differ-
ence and finite volume schemes for fluid dynamic problems. It stems from the basic idea that
the solution should be minimally affected by the domain movement law. Indeed, at the con-
tinuous level, the ALE formulation is formally equivalent to the original problem; yet this is
not generally true when the fully discrete system is considered. It has been proposed that some
‘simple’ solution of the differential problem should be also solutions of the discrete system.
In particular, the attention has been concentrated on the capability of the discrete system of
representing a constant solution, which is clearly a solution of the differential equation (in the
absence of the source term and with the appropriate boundary and initial conditions). Following
this approach we can state that a numerical scheme satisfy the Geometric Conservation Laws
if it is able to reproduce a constant solution. It is therefore, similar to the “patch test” often
used by finite element practitioners. As we will see, the GCL constraint gives a relation which
involves only mesh geometrical quantities and the domain velocity field. The significance of
this condition is still not clear. Recent results are available for special type of finite-volume
schemes in [7] where the GCL have been linked to convergence properties of the proposed
scheme. :

In the following analysis, the GCL for a finite element scheme will be investigated in more
detail and linked to the stability properties of some time evolution schemes.

3.4. Discrete system employing conservative formulation (2.24)

The finite element semi-discrete approximation of (2.24) then reads as follows:

% / Drn dQ + 4 / Vo on Vaun dQ + / n V- [(B ~ w)us) dO
- o & (3.14)
- /f¢h 40 Von € Xoa(d), tel
Q
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with
Up = Up forz e 00, tel

U, = Ug forx € (Y, t =tp.

Equation (3.14) may be equivalently written in algebraic form as follows:

L (M) U)+ (H() - Alt,w)) U= F
Ui = Up, 1€N\Mm

where U = {u; }ien is the vector of the nodal values of the discrete solution:

M(t) = { [ dﬂ}
Q

is the mass matrix, while H and A are defined as

(3.15)

1.7 € N

’

{/w, Bz/),)dﬂ+ufv,,¢,- Vs dQ}

‘xj EMM

A(t,w) { / YV - (wi;) } .
1,5 ENim

~ In this context the space integrals may be substituted by numerical quadrature. In the following,
we will always assume that the numerical quadrature rules employed are able to integrate
exactly the terms involved.

3.4.1. Stability analysis of the semi-discrete conservative scheme

For the stability analysis of the semi-discrete scheme we cannot take, as it is instead done in
standard calculations for fixed domains, 1, = w, since the two functions have, in general, a
different time evolution. Anyway, we can express the solution u, as a linear combination of the
test functions with time dependent coefficients, as indicated in (3.12). We then take ¥, = ¢
and we multiply the equation for u;(t) obtaining:

wlt) g [ dQ+ [Var (B = whusl wlti+ 1 [ VaunValus(09) 40 = [ fusfeyan

Q2

(3.16)
The first term can be rewritten as
d ) _ d ' ' 'du,-(t)
o Q/ unh 40 = / s (£)ohs 402 n/ Ut =g, 02
‘ . ‘ et (3.17)
lu‘l
- /uhu,( Y, d€ — / YdQ.

Q,

Summing over : all the equations, we obtain

0
"‘”uhH%(Q)_ uhﬂ
dt e J ot
¢

A0+ [V (B~ w)unl un + 1 [ Vol = [ fundsd
Q

(3.18)
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[w%:

Q

The term

Y 0

dQ
Y

can be manipulated as in (3.3), leading to equation (3.4) written for the semi-discrete solution
uy, of the problem. We can then proceed as in Subsection 3.1, obtaining a stability inequality
that is not affected by the domain velocity field.

3.4.2. The discrete scheme

System (3.15) is a system of ODE' s which has to be integrated in time. In the following we
will consider the following time integration schemes:

M, Uy — M U, +INT, M [HU] - INT; o [AU] = F (3.19)

where ZN' T, and ZN'T, represent two quadrature formulae used to integrate numerically in
time the terms H U and AU:

tn 1

INT o [HU ~ / HU dt
tn
tas

INT, " [AU] ~ / AU dt.

tn

In particular, the unknown U in the these two terms may be taken equal to U™ (implicit
scheme) or U™ (explicit scheme).

3.4.3. The Geometric Conservation Laws

In case of F' = 0, if we substitute a constant function into the discrete system (3.19), it is
verified that a constant field is a solution of the numerical scheme if, for each time step interval
(tny tns1) C I, the following relations hold

Y. [9iVe(By) d0dt =0 Vie N (3.20)
JEN &,
S [ Vi Vay dQdt =0 Vi€ N (3.21)
JEN g,

and

[ i@t~ [ i@ t) 0= INT L7 | [$iVowd2| VieNo G2
Q, 2

Q¢n+1

Relation (3.20) and (3.21) are satisfied by the finite element shape functions, indeed they
satisfy the following expressions:

Z Yi(z)=1 Ve, (3.23)
IEN
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and consequently, being V v; € L%(%,),

D> Vo =0 in €. (3.24)
1EN
Remark 3.1. In a finite volume context, a relation equivalent to (3.20) would furnish a
condition for the computation of the normal of the moving control volumes. That condition is
often called surface conservation law [3]. The reader may refer to [10] for a discussion about
the relationship between Lagrangian finite element and finite volume schemes for conservation
laws.

Condition (3.22) expresses the Geometric Conservation Laws written for the FEM schemes
which employs formulation (3.19). It states that at each time step the identity

i

/ n d2 — /whdnzzNTz:;“ /th,,-wdQ Vi € Xoa()  (3.25)
Q¢ Q¢

n‘n-{—l

must hold for the time integration scheme used in the right hand side.

Remark 3.2. Relation (3.25) may also be interpreted as the finite element discretisation of
the weak form associated to relation (2.8). Indeed, we have already observed that relation (2.8)
must be identically satisfied in order that the differential equation (2.14) (of which relation
(2.24) is the weak form) is equivalent to the original differential problem (2.7). The GCL
enforce such condition at the discrete level.

Remark 3.3. In a finite element framework, it may be useful to consider another identity,
namely relation (2.23). Requiring its fulfillment at discrete level would lead to the following
relation:

/ Yi; dQ — / Ui, dQ = TN'T o+t / Vb, Vewdd| VijeNu (3.26)
Qi Q¢

Qipyy

This relation may be considered as another form of the GCL for scheme (3.19), suited for a
finite element approximation.

Proposition 3.1. A sufficient condition for the satisfaction of (3.25) and (3.26) is to use a
time integration scheme for the ALE term of degree d - s — 1, where d is the number of space
dimensions and s is the degree of the polynomial used to represent the time evolution of the
nodal displacement within each time step.

Proof. In order to find out the degree of exactness of the time integration scheme necessary
for the fulfillment of the GCL, we consider the time interval [t,, t ;] and we take 2, as the
reference configuration. In the following, we indicate with A, , ., the ALE mapping between
the two time levels, that is

‘Atnytr\‘f-l = Ath OA;l' ' (3.27)
The following identity holds for all 1, € &g 4 (€2):
[ enVewdd= [ (YT Vy) - 00 (3.28)
T Qn

where ¥, (Y) = 9, o Apptop and w = wo A, , ., while J isthe co-factor matrix of the
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ALE mapping Jacobian J Abn togr - If the domain displacement law is taken to be a piecewise
polynomial in time, then J ¢ would be a polynomial in time in [t,,t,4,], whose degree will
depend also on the number of space dimensions. Expression (3.28) allows to determine the
degree of the polynomial which has to be numerically integrated in time in the right hand side
of relation (3.25). Assuming that the space integral is computed exactly, the satisfaction of the
GCL conditions imposes some restrictions on the time integration rule employed for the ALE
convection term.

Function % is constant in time. If the nodal displacement is represented on each time step
by a polynomial in time of degree s then w is a polynomial of degree s — 1, and J ¢ of degree
(d — 1)s, being d the number of space dimensions. Consequently, a sufficient condition for
the fulfillment of the GCL is obtained by employing a time advancing scheme of exactness (at
least) d - s — 1. Similar arguments apply for formulation (3.26). O

For instance, if we assume a linear time variation for z(Y, t) on each time step (s = 1) the
GCL are satisfied 1n 2D if we use the mid-point rule, which exactly integrates a linear function.
These results are in agreement with what has been found by Leisoinne and Farhat in [8], in the
context of finite volume formulation.

Remark 3.4. It may be noted that the condition on the time advancing scheme just found for
the satisfaction of the Geometry Conservation Laws involves only the numerical discretisation
of the ALE convective tertn, without any direct involvement of u. Indeed, only terms related
to the mesh movement are present. Consequently, as suggested in [8], we may in principle use
a separate (possibly less accurate) time-integration rule for the other terms. For example, for a
two dimensional problem and piecewise linear time evolution of mesh displacement, we may
adopt an explicit treatment for the term HU, using, for instance, a first-order forward Euler
scheme, while adopting a mid-point rule just for the time integral of the ALE term.

Remark 3.5. Since there is no one-point integration scheme of exactness 2, in three dimen-
sional problems the mesh quantities should be evaluated at (at least) two intermediate points.
For example, we may use a 2 points Gauss quadrature formula for the ALE convective term.

Remark 3.6. For the case of linear finite elements, B. Nkonga and H. Guillard [11] have ex-
- ploited the equivalence between Galerkin finite element discretisation and finite volumes on the
dual grid in order to integrate exactly the ALE convection term, thus assuring the satisfaction
of the GCL for their three dimensional numerical scheme.

Remark 3.7. The GCL formula for a finite volume scheme is readily inferred by noting
that if we take ¢ = 1 on a patch of elements {2;(t) expression (3.25) becomes

/ 0 — /dQ:INTzi;“ /v,,-wdn — INT fw-ndr (3.29)

Qi(tn+1) (ta) %(t) 99(¢)

which is the form which has been proposed in [4, 8].

3.4.4. A stability result for the implicit Euler method applied to the conservative scheme

Let us consider the following time discretisation of the semi-discrete problem (2.24) for a two
dimensional problem. We assume a piecewise constant in time mesh velocity field and we
adopt a mid-point time integration rule, thus satisfying the GCL. Yet, we will adopt an implicit
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Euler time discretisation for u;. We obtain the following expression

/ up ™y dY — / w ", dQ + At / UV "V, A
Qen

Qynt1 Qinv1/2

+ AL / Dn Vo [(B — w)ua™1]d0 = At / FrrV20,d0 Y gy € Xpa(Q)

n‘n+l/2 . n,n“/z
with
up' =0 on 0%, 1=1,2,...

up =up  in §.

(3.30)

Taking v, = u;"! it can be shown, integrating by parts the convective terms as in (3.5), that

1
HuhnH“%,(n,,.H) + At#||Vzuh"+l||i,(n‘,,+l,,) - EAt / |ua™*V prw dQ

Qnt1/2

1
< upup "t dQ + At / ,f'H'l/zuth1 d2 < §||uh"+1“ig(n,n)
an Qtn-{-l/?

14 Cq
2p

1 ©
+ -i'luhn"ig(n‘n) + At 5’|Vzuhn+] ||iz(ntn+1/2) + At

(3.31)

+1/22
L -1 000

Since this scheme satisfies the GCL, the following equality holds (we exploit equation (3.26),

where we set ¥; = p; = u,"t):

tn-}-l

™ Mg (@) — lun™ 12 50y = / /’Uh"+l|2vz'w df2 dt
tn Qg

= At / up™ 2V 4w Q.

Qnt1/2

Substituting this equation in the previous inequality, we obtain the stability result:

an™ 2 ey + AL [ V™ [0

14+ Cq

¢n+1/2 )

< Huh"H%,(Qm) + At ||f"+1/2||§1—1(n‘,‘+1,,)-

Finally, summing over all the time steps:

n
“uhn+1 ||iz(ﬂgn+1) + Aty Z ”Vzuh'-H “23(0‘.4.1/2)

§=0
1+Cq & :
< Huhoﬂi,(n,o) + At P > |’f‘+1/2|l§1—1(n‘,-+,,,)-
=0

(3.32)

(3.33)

(3.34)

In this case, one may observe that the stability result does not depend on the domain velocity
field and that this property has been obtained thanks to the fulfillment of the GCL condition

written in the form (3.26).
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3.5. Discrete system employing formulation (2.18)

The semi-discrete counterpart of (2.18), based on the pure Galerkin finite element method,
reads as follows:

5,

s{ o ,,w,,dm/wh(ﬂ w)Vuth+#/ Vaun Vot df2 = /M‘m Vo € Aon(f)
(3.39)

with

Up = Up for x € 0, tel
Up = U for z €y, t=1g

where we have written 8V uy, instead of V 5-(Bu,) thanks to the hypothesis of incompress-
ibility of the convective field 8. System (3.35) may be equivalently written in algebraic form
as we have done for the conservative scheme:

M(t)%—(tj H(E)U - B(t, w)U = F (3.36)
and
ug(to) ’u(:l:,(to) to) 1€ N (337)
ui(t) = up(x;, t) i€ N\ M (3.38)
Here,
B(t, w) {/¢ w- V), dQ} (3.39)
4 ENipy

If the space integrals are computed exactly, it is immediately verified that a constant func-
tion will satisfy (3.36) (in the absence of forcing terms) independently of the numerical time
integration formula adopted. Indeed,

Y. [tilw-Va)p;d2 =0 Vi€ N (3.40)

JEN @,

because of relation (3.24). Therefore, this scheme automatically satisfies the GCL since it is
able to represent a constant solution. Unfortunately, while the discrete system (3.14), maintains
the conservation property of the original problem this is not immediately true for relation (3.35).

3.5.1. Stability analysis of the semi-discrete scheme

As for the conservative scheme (3.14) analyzed in the previous section, we cannot take 1, =
up. Since each term in (3.35) is linear in v, if we take ¥, = 1;, we multiply each term for
u;(t) and sum over the index i, we get:

[%

Q,

uth+/ﬂ w) ,u,,u,,dQ+p/|v,,u,,|2dQ /fu,,dQ (3.41)

Y Qe

The first term can be transformed exploiting (3.3) and obtaining:

Oun
% Iy

1d 1
updQ = —2—a—t|]uh||%2(m) - En/-uﬁv,,-w dn (3.42)

Q
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while the second one becomes:

/(ﬁ —w) Vaupu, d = %/(ﬁ — w) V|u, 2 dQ
2. 0,

) 2 . (3.43)
e —— - —_— == — a 2
= 2n[vz (8 — w)|ual?d) = ,Zn/v,c wlup |2 6.

Combining these two results into equation (3.41), we obtain exactly equation (3.6) written for
the solution uy, of the semi-discrete problem at hand. Also in this case, we can proceed as in
Subsection 3.1, obtaining stability inequality without any intervention of the domain velocity
field.

3.5.2. Stability result for the implicit Euler method

Let us consider the implicit Euler discretisation of problem (3.35):

/ uhn+l'|/)h a0 — / uhnwh dQ + At / [wh(ﬂ _ w)vzuhn-ﬂ + uvzuhﬂ-HVzth df2

ntﬁ+1 ngn-{»—l Q‘"+1

— At / Fo Y dQ Y gy € Xon(Q)

ngn-{—\

(3.44)
with
up, =0 on 0, 1=1,2,...
up® = ug in Q.
Again, we take ¥, = u,"t!; by exploiting equation (3.43) for the treatment of the convective
terms, we obtain

™ [ty + At Vo™

S—%At / Vewu," T2 dQ + At / At dQ + / uy"u, 1 dQ

Qent ot int!
) 1+ Cq (3.45)
S ~§At / Vz'wluhn+llz dQ2 + At—z—;—— “f,H-l “%f“‘l(ﬂtn-n)
an-o—-l

U 1 1
+ At 5 HVzuh"H”i,(an) + 5 Huh"H”i,(n,nH) + 5 ”“hn“i,(nem)

where the last term is evaluated on the configuration at time ¢t"**!; such term can be modified as
in (3.32):

t"+l

”“h"“i,(n,wl) = ““h"“i,(n,n) + / /|uhnlzvz-w dQ dt. (3.46)
t"
Consequently we have

Iluhn+1“iz(ﬂm+x) + At I ”Vzuhn+l “%‘Z(Qz"“)

t"+1
< / /V,»wluh"}2dﬂdt—At / Ve wluy ™2 d0 (347
LA 9 7% nt""’l

1+ Cq

+ ™2 (0 + At 1 W -2,)-
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In this case we cannot obtain a stability result independent on w, because of the presence of
the term

1
/ /V,,-w[u,,"[’det—At / Vo wlug2da | . (3.48)
tn Q, Qnt1

Remark 3.8. We may note that even if the scheme satisfies condition (3.26), i.e. in the 2D
case we compute the second integral in the mid-configuration and consequently we can write:

¢n+l

At / Vw12 d0 = / / Vo wlu, 2 dQ dt (3.49)
ﬂ,n+1/2 LA ¢ 7}
the term (3.48) is equal to
tn+—l
[ [erw(u™? ~ s ) a2 (3.50)
™

which is, in general, different than zero.

We can finally obtain a stability inequality, which depends on w, from (3.47):

™ sy + At 1 [ Vet 000)
1+ Cq
Joi

< At”Vz'w(tn+l)"Loo(Q‘n+l)”uhﬂ+1 ”i'l(nzn+l) + At “fn+1”?-7_1(ﬂt,.+1) (35 1)

+(1+At sup tlJmn,,n+,vz-w||Lm<n¢)) RN

tE(l" ,gn+l)

Using the notations
% = | Vaw(t)|rag,)
7; - SUP H']Aci,e
te(ti’tr{bl)

o1 Vel (o)

we can rewrite the previous inequality as

|['L‘hn+1 ||i2(ﬂen+1) + At p ”vzﬁuhn+1 Hi?(nuﬂ-l)

< AtyPH|up™ ”%,(n,,m) + (L + At [unl| 2, (0 + At 1+Ca ||fn+l||§1—l(n,,.+,)-
# (3.52)
Summing over the index n we obtain:
n+1
“Uh"H“i,(n,,.H) +Atp Z} “VzuhiHi,(n,i)
i=

n
< At 7?+1||Uh"+1||%,(nw+x) +AtY (i + ’75)||“h"|%,(n‘.-) + (1 + At’Yg)”UhOHi,(nto)
t=1

1+ Cq n+l ;
+ At PR FAllF -1(0,)
=1
n+1 1+ Cﬂ n+1

< At Z(’Y{ + 7;)'|uhi||2L,(n,.~) + (1 + At 72)”“):0“%,(9,0) + At > ||fi||§7-1(n,;)-
i1 1=1
' (3.53)
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Let us recall the following discrete Gronwall lemma (for the proof see for instance [13]).

Lemma 3.1. Given 6, gg, Gn, by, Cn, Y Sequences of non negative numbers for n > 0, if the
following inequality holds:

an+52b]‘ < 6Z7jaj+5ch + go
7=0 =0 7=0
then, for alln > 0

an+5Zb < exp (6201')']) léZCj+go

J= j=0 3=0
where 0 = 1—:17—’5 and ;8 < 1 forall j.

Then we conclude that
n+l1

”uhn+1“%n(ﬂm+\) + At Z “V"’uhi“%"’(n )

=1

(3.54)

> 1 F -0,

=1

1+C n+1
< ((1 + At ) lun’ Ly a,) + At -

n+1 i i
X exp Atz 7l+.72 A

provided that:
1

At < ——
Nt

i+1

-1
= (”Vzw )”Lou Q‘_) + sup HJA‘ " Vz"UJHLw(Q‘)) Vi= 1, w4+ 1.

te(ti 5+

According to this stability analysis, we conclude that the scheme is only conditionally stable
even if it is based on an implicit Euler method. Moreover, the maximum allowable time step
will depend on the speed at which the domain is deforming.

4. CONCLUSIONS

We have presented some results for Arbitrary Lagrangian Eulerian finite element formulations.
We have developed a general set-up for the finite element discretisation together with investi-
gating the required regularity for the mapping. Some analysis on a linear convection diffusion
equation has been carried out. We have assessed that the so-called geometric conservation laws,
yet far for furnishing a general stability result, do provide a sufficient condition for stability in-
dependently of the domain movement law for a specific approximation scheme. It is believed
that this result may be extended to other classes of schemes as well, such as those based on the
conservative weak form and backward difference time integration formulae.

In a follow-up report, we plan to extend the analysis to the incompressible Navier-Stokes
equations in the context of fractional step projection schemes, where the problem is furtherly
complicated by the equation splitting and the possible presence of different approximation
spaces. '
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