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1.1 From hardware and software to kernels and
envelopes

At the beginning of robotics research, robots were seen as physical plat-
forms on which different behavioral programs could be run, like the
hardware and software parts of a computer. However, recent advances
in developmental robotics have permit to consider a reversed paradigm
in which a single software, called a kernel1, is capable of exploring and
controlling many different sensorimotor spaces, called envelopes. In this
chapter, we come back on studies we previously published about kernels
and envelopes to retrace the history of this concept shift and discuss its
consequences for robotic designs but also for developmental psychology
and brain sciences.

This chapter is based of previous other studies we published on vari-
ous aspects of this subject (Kaplan and Oudeyer, 2007b,a, 2008, 2009).
Its aim is to reframe these works into a coherent framework in order
to give a more global overview of this concept shift. The first section
1 The term kernel is currently used with different meanings in computer science.

The term is used here in a different way than in the machine learning community
(e.g. kernels of Support Vector Machines)
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of this chapter discusses in more details the epistemological transition
from the classical dualism that views a robot as fixed body on which
different programs can be plugged to the new dualism based on kernel
and envelopes. Each important conceptual steps in this evolution is il-
lustrated with concrete examples and experiments. The main point of
this first section is to introduce this concept shift and not to define pre-
cisely what kind of systems can be considered a kernel and what kind of
systems cannot. The kernel is simply generally defined as what is stable
across applications and independent of the particular trajectory of one
agent. Typically “metalearning” algorithms are good candidate to be
part of a kernel as long as they can be considered task and embodiment
independent. On the contrary, memory used by the learning systems
(weight of neural networks, list of prototypes, data in general) would
typically not be part of the kernel. The main goal of this first section
is to articulate how the kernel / envelop dichotomy opens the way to
new kind of experimental studies. In particular, we discuss the case of
generic algorithms capable of learning to control a robotic body without
knowing its characteristics beforehand. With such kind of algorithms
you can perform experiences where you can precisely characterize the
importance of the embodiment in the final behavior obtained, simply by
changing the embodiment and keeping the kernel stable.

This new kind of experiments opens different perspective on data ob-
tained by research in developmental science and neuroscience. In the fol-
lowing section, we argue why children development can indeed be seen
as a succession of temporary embodiment corresponding not necessarily
to physical changes but to the acquisition of new skills. A child learn-
ing how to walk or how to play the piano discovers whole new spaces
to explore. As he learns, he experiences a kind of metamorphosis. Like-
wise, to perform basic tasks, his body envelope literately extends itself
to include objects, clothes, tools or even vehicles. What stays the same
in this developmental and behavioral process is the kernel, origin of the
motivation and action of the child. We discuss how this view permits
to reinterpret developmental psychology data from the development of
sensorimotor dexterity to the acquisition of language.

Eventually, we review different hypotheses about the possible under-
lying neural substrate for kernels and envelopes. In particular we discuss
the putative role of subcortical systems in the process of envelope cre-
ation, the possible importance of tonic dopamine as a learning progress
signal and the kind of computation that could be performed by micro-
cortical circuits. The chapter ends with the discussion of an evolutionary
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scenario illustrating how an old brain circuitry optimized for specific ex-
trinsic needs could have evolved into a subcortical kernel, possibly at
the origins of the formidable cortical extension that characterizes the
human brain.

1.2 A concept shift for robotics

1.2.1 The reunited body

Between the 1950s and the 1980s, the classical gap between the builders
of robotic bodies and the researcher trying to model ”intelligence” has
some direct consequences on the performances of the machines pro-
duced. The AI algorithms, designed to manipulate predefined unam-
biguous symbols show clearly their inadequacy when it comes to deal
with the complexity and the unpredictability of the real world. Consider
for instance the problem of programming the walking behavior of a four-
legged robot using a classical AI algorithm. The set of joints of a robotic
body are not a set of abstract symbols but rather a complex system that
can easily end up being in out of equilibrium positions especially if it is
made of rigid parts, like most robots are. The type of ground and the
degrees of friction have a direct influence on the behavior of the machine.
With a symbolic AI approach, but also with many approaches in control
theory, it is important that the system is equipped with precise model of
the robot body but also on the environment in which the robot evolves.
It many cases this is just impossible. Viewed from this angle, walking
on four legs can reveal itself to be a harder problem than demonstrating
mathematical theorems.

To go out of this dead-end, a new school of thought emerged at the end
of the 1980s, with the work of researchers like Rodney Brooks, Luc Steels
and Rolf Pfeifer. The so-called embodied artificial intelligence, or new
AI, strongly criticized the disembodied and symbolic approach of the
”classical” artificial intelligence, claiming that intelligence could not be
considered without reference to the body and the environment (Pfeifer
and Scheier, 1999). Rodney Brooks added that bodies and environments
are impossible to model and that therefore research should not try to
build models of external reality but on the contrary concentrate on direct
situated interaction: “the world is its own best model” (Brooks, 1999;
Steels, 1994).

This change of perspective introduced a renewal of robotic exper-
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iments and in someway a return to conception and experimentation
methods that were characteristics of robotics before the advent of the
digital computer. Grey Walter’s cybernetic ”tortoises” built in 1948 are
taken as canonical example of what a good conception is, integrating
seamlessly the physical design of the machine to the targeted behavior.
These entirely analogical robots were capable of complex behavior, with-
out the need of any internal ”representation” (Grey Walter, 1953).Their
design was taking into account that they were physical machines, on
which many kinds of ”forces” had an influence, from gravity to frictions
and that perception itself was primarily the result of their own move-
ment and behavior (a concept later known as ”enaction” (Varela et al.,
1991)). The nature and positioning of their sensors enabled them to solve
complex tasks, like returning to their charging station, without the need
to make any kinds of complex “reasoning”.

Inspired by von Uexkull’s writings (von Uexkull, 1909), research of
the new AI defined the behavior of their robot taking into account their
“Umwelts: the very nature and structure of their body immersed them
in a specific ecological niche where certain stimuli are meaningful and
others not. This research was also supported by the reappraisal of a non-
dualistic philosophical trend which in the tradition of Merleau-Ponty
views cognition as being situated and embodied in the world (Merleau-
Ponty, 1942, 1945; Varela et al., 1991).

To try to convince the cognitivists to view intelligence only as a form
of sophisticated computation, researchers in embodied AI tried to define
the kind of morphological computation realized by the body itself (Pfeifer
and Bongard, 2007).To solve a problem like four-legged walking, it is
easier and more efficient to build a body with the right intrinsic physical
dynamics instead of building a more complex control system. One can
replace the rigid members and powerful motors of the robot by a systems
of elastic actuators inspired by the muscle-tendon dichotomy that is
typical of the anatomy of quadruped animals. With such a body, one
just needs a simple control system producing a periodic movement on
each leg to obtain a nice elegant and adapted walking behavior. Once
put on a given ground the robot stabilizes itself after a few steps and
converges towards its “natural” gait. With such a system, the walking
speed can not be arbitrary defined but corresponds instead to attractors
of this dynamical system. Only an important perturbation can enable
the robot to leave its natural walking gait and enter another attractor
corresponding for instance to ”trotting” (Pfeifer and Bongard, 2007).

Thus, in an attempt to suppress the gap inherited from the post-war
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field division, embodied artificial intelligence emphasized the crucial im-
portance of the body and illustrated its role for the elaboration of com-
plex behavior: body morphological structure and animation processes
must be thought as a coherent whole.

1.2.2 Stable kernels

In the beginning of the 1990s, robotic experiments from the new AI
perspective focused essentially on reenacting insect adaptive behavior,
examples strategically far from the classical AI programs playing chess.
In the following years, some researchers tried to extend this embodied
approach to build robots capable of learning like young children do.
The idea what not to address one particular step in children develop-
ment (like learning how to walk or how to talk), but to capture the
open-ended, versatile, nature of children learning. In just a few months
children incrementally learn to control their body, to manipulate objects,
to interact with peers and caregivers. They acquire everyday novel com-
plex skills that open them to new kinds of perception and actions. How
could a machine ever do something similar? The objective of children-
like general learning capabilities was not new as it was already clearly
articulated in one of Turing’s founding article of artificial intelligence
(Turing, 1950). However, the sensorimotor perspective developed by the
embodied approach gave to this challenge a novel dimension.

In asking how a machine could learn in an open-ended manner, re-
searchers in epigenetic or developmental robotics (Lungarella et al., 2003;
Kaplan and Oudeyer, 2006; Asada et al., 2009) partially challenged the
basis of the embodied artificial intelligence approach and introduced a
methodological shift. The importance of the body was still central as
the focus was on developing sensorimotor skills intrinsically linked with
a specific morphology and the structure of a given environment. How-
ever, while following an holistic approach, it seemed logical to identify
inside a robotic system, a process independent of any particular body,
ecological niche or task. Indeed, by definition, a mechanism that could
drive the learning of an open-ended set of skills, cannot be specific to a
particular behavior, environment or body. It must be general and dis-
embodied.

Thus, the just reunited body must again be divided. But the division
is not the one inherited from the punch-cards and the digital computer,
the software/hardware gap. In this new methodological dualism, the
objective is to separate (1) a potentially changing body envelope corre-
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sponding to a sensorimotor space and (2) a kernel, defined as a set of
general and stable processes capable of controlling any specific embodied
interface. By differentiating a generic process of incorporation and fluid
body envelopes, the most recent advances in epigenetic/developmental
robotics permit to consider the body from a new point of view. Contrary
to the traditional body schemata, grounded in anatomical reality, body
envelopes are ephemeral spaces associated with a particular task or skill.
Contrary to easily changeable animation programs used in robotics, we
now consider a stable kernel, acting as an engine driving developmental
processes. It is not the body that stays and the programs that change. It
is precisely the contrary: the program stays, the embodiment changes.

Several kinds of kernels can be envisioned. Some of them lead to open
developmental trajectories, others don’t. Let’s imagine a control room
equipped with a set of measurement devices, a panel of control buttons,
and most importantly, no labels on any of these devices. Imagine now an
operator trying to guess how the whole system works despite the absence
of labels. One possible strategy consists in randomly pushing buttons
and observing the kind of signals displayed on the measurement devices.
However, finding blindly correlation between these inputs and outputs
could be very hard. For the operator a better strategy is to identify the
contexts in which he progresses in his understanding of the effects of
certain buttons and to explore further the corresponding actions.

It is possible to construct an algorithm that drives such kind of smart
exploration. Given a set of input and output channels, the algorithm
will try to construct a predictive model of the effect of the input on the
output, given its history of past interactions with the system. Instead of
trying random configuration, the algorithm detects situations in which
its predictions progress maximally and chooses the input signal in or-
der to optimize its own progress. Following this principle, the algorithm
avoids the subspaces where the outputs are too unpredictable or on the
contrary too predictable in order to focus on the actions that are most
likely to make it progress (figure 1.1). We call these zones: “progress
niches” 2. The use of such an algorithm results in an organized explo-
ration of an unknown space, starting with the simplest subspaces to
progressively explore zones more difficult to model. The term “kernel”

2 To discover these progress niches, the algorithm must explore regularly the entire
space of possible actions. For such exploration the classifical trade-off between
exploration and exploitation applies. The algorithm must be programmed to
balance the exploitation of the best progress niches and the constant exploration
to discover some new ones. Please refer to the appendix for a detailed
implementation
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is relevant for several reasons to describe the behavior of this algorithm.
It is a central process, stable, unaffected by the peripheral embodied
spaces. It is also the origin and the starting point of all the observed
behavior.

Details of one version of this progress-driven kernel can be found in
(Oudeyer et al., 2007) and also in the appendix of this chapter (see also
earlier version in (Kaplan and Oudeyer, 2003; Oudeyer et al., 2005)).
Many variants of such kind of intrinsic motivation systems have been
or are currently being explored (see (Oudeyer and Kaplan, 2007) for a
taxonomy). To our knowledge, the first computational system explor-
ing progress-driven exploration was described by Schmidhuber in 1991
(Schmidhuber, 1991). He suggested to give intrinsic reward to a rein-
forcement learning controller in proportion to the predictor’s error re-
ductions, to motivate the controller to create actions that provoke more
data that maximizes the predictor’s future cumulative expected learning
progress. In following papers, Schmidhuber described various techniques
to obtain a similar behavior of the controller (Storck et al., 1995; Schmid-
huber, 2006) 3. Recently, different types of intrinsic motivation systems
were explored, mostly in software simulations (Huang and Weng, 2002;
Marshall et al., 2004; Steels, 2004). The term “intrinsically motivated
reinforcement learning” has been used by Barto in this context (Barto
et al., 2004). Interestingly, the mechanisms developed in these papers
also show strong similarities with mechanisms developed in the field
of statistics, where it is called “optimal experiment design” (Fedorov,
1972).

Coming back to our walking case study, let us now consider an ex-
periment where a progress-driven kernel controls the movement of the
different motors. For each motor, it chooses the period, the phase and
the amplitude of a sinusoidal signal. The prediction system tries to pre-
dict the effect of the different set of parameters in the way the image
captured by a camera placed on the robot’s head is modified. This in-
directly reflects the movement of its torso. At each iteration the kernel
produces the values for the next parameter set in order to maximize the
reduction of the prediction error (figure 1.2).

When one starts an experiment like this one, several sets of parameters
are explored for a few minutes. The robot legs wobble in an apparently
disorganized manner. Most of these attempts have very predictable ef-
fects: the robot just doesn’t move. Errors in prediction stay at a minimal

3 see his website for a complete list http://www.idsia.ch/ juergen/interest.html



10 kernels and envelopes

1

1

2

3
4

2

4

3

time spent in each sensorimotor context 
based on the principle of maximizing error reduction

errors in prediction

time

time

Figure 1.1 Confronted with four sensorimotor contexts characterized
by different learning profiles, the exploration strategy of a progress-
driven kernel consists in avoiding situations already predictable (con-
text 4) or too difficult to predict (context 1), in order to focus first
on the context with the fastest learning curve (context 3) and even-
tually, when the latter starts to reach a “plateau” to switch to the
second most promising learning situation (context 2).
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level: these situation are not interesting for the kernel. By chance, after
thirty minutes or so, one movement leads the robots to make a slight
move, in most cases a step backward. This new situation results first
in an increase of the error in prediction but, as the robot experiences
similar movements again, this error tends to decrease: the kernel has
discovered a “progress niche”.

Figure 1.2 A robot can learn to walk just by exploring smartly a
sensorimotor space. In the experiment. a progress-driven kernel con-
trols the movement of the different motors of a four-legged robot. For
each motor, it chooses the period, the phase and the amplitude of a
sinusoidal signal. The prediction system tries to predict the effect of
the different set of parameters in the way the image captured by a
camera placed on the robot’s head is modified. This indirectly reflects
the movement of its torso. At each iteration the kernel produces the
values for the next parameter set in order to maximize the reduction
of the prediction error.

Then the robot will start exploring different ways to move backwards.
During this exploration, it is likely that it discovers that certain modifi-
cation of the parameters could lead to some sort of rotation movement,
at least from an external observer’s point of view. This is a new set of
progress niches that the robot will learn to exploit when the skills for
walking backwards will be essentially mastered.
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In most experiments, it takes typically three hours for the kernel to
find several subsets of parameters resulting in moving forward, back-
wards, sideways and to turn left and right. At no time in the process
the robot was given the objective of learning to walk. Guided by the
principle of maximizing the reduction of error in prediction, the robot
ends up developing versatile locomotion skills. Actually, this versatility
is the result of the unspecific nature of the kernel. A robot artificially
motivated to go towards a specific object may not have learnt to walk
backwards or to spin4 .

The fact that walking backwards revealed itself to be a parameter
subset easier to discover was not easy to foresee. Given the morpholog-
ical physical structure of the robot and the kind of ground the robot
was placed on during the experiments, the walking backward movement
happened to be the first to be discovered. To know whether this progress
niche is actually an attractor for most developmental trajectories, it is
necessary to set up a bench of experimental trials, changing systemati-
cally the initial conditions, including the morphology of the robot itself.
With such an experimental approach it becomes possible to study the
developmental consequences of a physical modification of the body. A
longer leg or a more flexible back can change importantly the structure of
the progress niches and therefore the trajectory explored by the kernel.
From a methodological point of view, the body becomes an experimental
variable.

These robotic experiments naturally lead to novel questions addressed
at other fields, including neurosciences (Can we identify the neural cir-
cuits that act as a kernel ? (Kaplan and Oudeyer, 2007a)), developmental
psychology (Can we reinterpret the developmental sequences of young
children as progress niches ? (Kaplan and Oudeyer, 2007c)) or in lin-
guistics (Can we reconsider the debate on innateness in the language
learning by reconsidering the role of the body in this process ?(Kaplan
et al., 2007)).

1.2.3 Fluid body envelopes

A simple way to change the body envelope of a robot is to equipped
it with a tool. Figure 1.3 a) shows how the body of four-legged robot
can be simply extended by a helmet that plays the role of a prosthetic
4 There exist many different gait patterns for four-legged robots. In the discussed

experiment only a ”walking” gait was discovered by the robot. We do not know
whether other gaits, like trotting, could be discovered using the same approach.
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finger.With this simple extension the robot can now push buttons, press
on hard surfaces, even switch on or off other devices. This is a new space
to explore.

a) b)

c) d)

Figure 1.3 a) A helmet-finger extension. Design : ECAL / Stephane
Barbier-Bouvet b) A pen holder extension. Design : ECAL / Meynet
Bndicte, Burgisser Olivier, Xavier Rui,Wildi Sbastien et Reymond
Simeon c) A scooter. Design : ECAL/ Clement Benoit and Moro
Nicolas d) A blanket with a special handle. Design : ECAL / Meynet
Benedicte, Burgisser Olivier, Xavier Rui,Wildi Sebastien et Reymond
Simeon Photo ECAL / Milo Keller

Figure 1.3 b) shows the same idea with a pen holder. With this simple
extension, the robot can now leave traces and use the environment as an
external memory. A drawing is the temporal integration on a paper of
a sequence of gestures. This simple pen holder opens a whole new space
of exploration where the machine can learn to predict the relationship
between a sequence of actions and particular kinds of representations.
Such kind of anticipation is likely to be a fundamental milestone on the
road towards higher-level cognition (Steels, 2003).

Figure 1.3 c) presents a small scooter adapted to the morphology of
the robot. Learning how to move with this device is not very different
form learning how to walk. Like in all the other cases, the progress-driven
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kernel discussed in the previous section can be applied (Kaplan et al.,
2006). The body changes but the program stays the same.

The progress-driven kernel does only give a partial understanding of
the general process of incorporation. We illustrated how it could act on
a single space, a single body envelope, like the parameter space resulting
in versatile walking skills, but we have not shown how it could be used
to shift between them. Incorporation as we described in our introduction
involves complex sequences of body envelopes transformation. It involves
recursive and hierarchical processes. Typically, once a robot would have
learnt how to control its body to walk, it should be able to use these
newly discovered walking primitives as basic elements for performing
exploration of new spaces. A walking robot will certainly discover new
objects, new environment for learning. Let’s take for instance the case
of the graspable blanket of figure 1.3 d). This blanket is equipped with
a special handle adapted to the robot’s “mouth”. Learning to grasp the
blanket is pretty similar than learning to grasp the pen holder we just
mentioned. Once the robot would have learnt how to grasp this object, it
could explore the specific space corresponding to walking with a blanket.
This compositional process could continue endlessly.

Going from the exploration of a single envelope to a generic kernel
capable of easily switching between hierarchical envelops is a difficult
issue. In particular, it involves a mechanism permitting the formation
of habits. The possibility of implementing these different features in a
single generic kernel remains to be shown. However, several state of the
art methods permit to move towards this goal and envision how such a
kernel could work. Multilayer recurrent neural network architecture like
the ones considered in (Schmidhuber, 1992; Tani and Nolfi, 1999; Tani,
2007) or the option framework (Sutton et al., 1999) permit hierarchical
learning where chunks of behavior can be compiled and continuously
adapted to be used later on (see also (Dayan et al., 1993; Ring, 1994;
Wiering and Schmidhuber, 1997) for related methods). When a senso-
rimotor trajectory becomes easily predictable it becomes implicitly or
explicitly associated with a dedicated expert predictor, responsible for
both recognizing this specific sensorimotor situation and automatically
choosing what do do. In other words, when a part of the sensorimotor
space becomes predictable it is no longer necessary to explore it at a fine
grained level, a higher level control is sufficient. In our walking exam-
ple, routines for moving forward or backward, turning left or right could
likewise become higher-level habits. When this is the case, the progress-



1.3 A concept shift for developmental psychology 15

driven kernel could focus on other parts of the space, assuming these
basic behavior routines to be in place.

Many challenges remains to be faced to explore the potential of the
kernel/envelopes dichototomy. However, for the time being we would like
to explore how this distinction could be relevantly used in developmental
psychology and neuroscience.

1.3 A concept shift for developmental psychology

1.3.1 Incorporation: a misunderstood process

There is a long tradition of research that discusses the notion of body
schema, body map, body image as if it was some stable notion that
the child needs to discover or model. Such approach to the body does
not give a good account of the flexibility of our embodiment. The rele-
vance of considering the body not as a fixed, determined entity but as
a fluid perceptually changing space has been argued by several philoso-
phers (Merleau-Ponty, 1945), psychologists (Schilder, 1935), ethnogra-
phers (Warnier, 1999) and neuroscientists (Head and Holmes (1911) or
for instance Iriki et al. (1996) for more recent studies). However, we are
still far from having a precise model of this process and its relationship
with attention, memory and learning.

By many respects, our skin is not the limit of our body. When we
interact with tools and technical devices, our body extends its bound-
aries, changes shape. The stick, the hammer, the pen, the racket, the
sword extend our hand and become, after some training, integral parts
of our body envelope. Without thinking about it, we bend a bit more
when we wear a hat and change the way we walk when we wear special
shoes. This is also true for more complex devices. We are the car that
we are driving. It took us many painful hours of training to handle it
the right way. At the beginning it was an external body element, re-
acting in unpredictable ways. But once we got used to the dynamics of
the machine, the car became like our second skin. We are used to its
space occupation, the time necessary to slow down. Driving becomes as
natural as walking, an unconscious experience.

Compared to a fixed body, the concept of envelopes that would be
extensibles, stretchables, constantly changing, seems more relvant. If we
want to fix a nail on wall, we will first pick a hammer. At this stage, the
tool is abstracted from the environment. A few second later, when we pick
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the hammer, we temporally extend our body envelope to include the tool
in our hand. It disappears from our attention focus as a direct extension
of our hand. It is incorporated. Once our goal has been reached, we put
back the hammer and the tool becomes again an external object, ready
to be used, but separated. This is the fundamental and misunderstood
process of incorporation.

ABSTRACTED INCORPORATED

ERROR IN PREDICTION

Figure 1.4 Illustration of the incorporation process. Objects can ei-
ther be abstracted from the environment or incorporated as extension
of our body. The process of incorporation takes time. Surprise or fail-
ure causes an incorporated objet to be abstracted again. When one
learns to use an object, error in prediction corresponds to disincor-
poration of the object. The fewer the errors the more the object is
incorporated.

The first time we use a hammer, we fail to fail to control it perfectly.
Every time we fail to predict where the hammer will be, the tool becomes
again abstracted, back in our attention focus. It takes time until we can
successfully predict the consequences of our action with this ”extended”
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hand and it is only when prediction errors are very low that the object
is fully incorporated (figure 1.4).

Before picking a hammer, we must first choose it among the other
tools abstracted from our toolbox. Once picked, new objects, nails, be-
come relevant for the pursuit of our goal. We don’t think anymore of
our extended hand, we focus on these new abstracted objects. In gen-
eral, incorporation is a recursive process. At a given state of incorpora-
tion, certain objects are abstracted from the environment and become
affordants. When one of these objects starts to be controlled and there-
fore incorporated, our attentional space changes and new objects get
abstracted (figure 1.5).

Figure 1.5 Incorporation is a recursive process. At a given state of in-
corporation, certain objects are abstracted from the environment and
become affordants. When one of these objects start to be controlled
and therefore incorporated, new objects get abstracted

These processes can be understood in a rather simple way if we con-
sider the kernel/envelopes distinction. In the rest of this section we will
discuss the opportunity of assuming the existence of a kernel, playing
the role of an intrinsic motivation system, capable of driving the devel-
opmental and learning dynamics occuring for particular body envelopes.
First, we will see that altough the term ”kernel” was not used in this
context, such a construct has been discussed in various forms in psychol-
ogy literature. Then we will illustrate how some children developmental
milestones can be interpreted in this framework.
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1.3.2 A kernel for active exploration : history of a
construct

In psychology, an activity is characterized as intrinsically motivated
when there is no apparent reward except the activity itself (Ryan and
Deci, 2000). People seek and engage in such activities for their own sake
and not because they lead to extrinsic reward. In such cases, the per-
son seems to derive enjoyment directly from the practice of the activity.
Following this definition, most children playful or explorative activities
can be characterized as being intrinsically motivated. Also, many kinds
of adult behavior seem to belong to this category: free problem-solving
(solving puzzles, crosswords), creative activities (painting, singing, writ-
ing during leisure time), gardening, hiking, etc. Such situations are char-
acterized by a feeling of effortless control, concentration, enjoyment and
a contraction of the sense of time (Csikszenthmihalyi, 1991).

A first bloom of investigations concerning intrinsic motivation hap-
pened in the 1950s. Researchers started by trying to give an account of
exploratory activities on the basis of the theory of drives (Hull, 1943),
which are non-nervous-system tissue deficits like hunger or pain and that
the organisms try to reduce. For example, (Montgomery, 1954) proposed
a drive for exploration and (Harlow, 1950) a drive to manipulate. This
drive naming approach had many short-comings which were criticized
in detail by White in 1959 (White, 1959): intrinsically motivated ex-
ploratory activities have a fundamentally different dynamics. Indeed,
they are not homeostatic: the general tendency to explore is never sati-
ated and is not a consummatory response to a stressful perturbation of
the organism’s body. Moreover, exploration does not seem to be related
to any non-nervous-system tissue deficit.

Some researchers then proposed another conceptualization. Festinger’s
theory of cognitive dissonance (Festinger, 1957) asserted that organisms
are motivated to reduce dissonance, that is the incompatibility between
internal cognitive structures and the situations currently perceived. Fif-
teen years later a related view was articulated by Kagan stating that
a primary motivation for humans is the reduction of uncertainty in the
sense of the “incompatibility between (two or more) cognitive structures,
between cognitive structure and experience, or between structures and
behavior” (Kagan, 1972). However, these theories were criticized on the
basis that much human behavior is also intended to increase uncertainty,
and not only to reduce it. Human seem to look for some forms of opti-
mality between completely uncertain and completely certain situations.
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In 1965, Hunt developed the idea that children and adult look for
optimal incongruity (Hunt, 1965). He regarded children as information-
processing systems and stated that interesting stimuli were those where
there was a discrepancy between the perceived and standard levels of
the stimuli. For, Dember and Earl, the incongruity or discrepancy in
intrinsically-motivated behaviors was between a person’s expectations
and the properties of the stimulus (Dember and Earl, 1957). Berlyne
developed similar notions as he observed that the most rewarding sit-
uations were those with an intermediate level of novelty, between al-
ready familiar and completely new situations (Berlyne, 1960). Whereas
most of these researchers focused on the notion of optimal incongruity
at the level of psychological processes, a parallel trend investigated the
notion of optimal arousal at the physiological level (Hebb, 1955). As
over-stimulation and under-stimulation situations induce fear (e.g. dark
rooms, noisy rooms), people seem to be motivated to maintain an op-
timal level of arousal. A complete understanding of intrinsic motivation
should certainly include both psychological and physiological levels.

Eventually, a last group of researchers preferred the concept of chal-
lenge to the notion of optimal incongruity. These researchers stated
that what was driving human behavior was a motivation for effectance
(White, 1959), personal causation (De Charms, 1968), competence and
self-determination (Deci and Ryan, 1985).

In the recent years, the concept of intrinsic motivation has been less
present in mainstream psychology but flourished in social psychology
and the study of practices in applied settings, in particular in professional
and educational contexts. Based on studies suggesting that extrinsic re-
wards (money, high grades, prizes) actually destroy intrinsic motivation
(an idea actually articulated by Bruner in the 1960s (Bruner, 1962)),
some employers and teachers have started to design effective incentive
systems based on intrinsic motivation. However, this view is currently
at the heart of many controversies (Cameron and Pierce, 2002).

In summary, most psychological approaches of intrinsic motivation
postulate that ”stimuli worth investigating” are characterized by a par-
ticular relationship (incompatibility, discrepancy, uncertainly or on the
contrary predictability) between an internal predictive model and the
actual structure of the stimulus. This invites us to consider intrinsically
motivating activities not only at the descriptive behavioral level (no ap-
parent reward except the activity itself) but primarily in respect to par-
ticular internal models built by an agent during its own personal history
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of interaction and to postulate the existence of an intrinsic motivation
system, namely a kernel.

1.3.3 Reinterpretation of developmental patterns

How can we reinterpret particular developmental processes as being the
result of a kernel playing the role of an intrinsic motivation system driv-
ing the infant into situations expected to result in maximal learning
progress? Taking ground on preliminary experimental results, we dis-
cussed in (Kaplan and Oudeyer, 2007b) a scenario presenting the pu-
tative role of the progress drive for the development of early imitation.
We argue in particular that the kernel/envelope distinction could help
understanding why children focus on specific imitative activities at a
certain age and how they progressively organize preferential interactions
with particular entities present in their environment.

The kernel pushes the agent to discover and focus on situations which
lead to maximal learning progress. As we already mentioned, we call
these situations, neither too predictable nor too difficult to predict,
“progress niches”. Once discovered, progress niches progressively dis-
appear as they become more predictable. The notion of progress niches
is related to Vygotsky’s zone of proximal development, where the adult
deliberately challenges the child’s level of understanding. Adults push
children to engage in activities beyond their current mastery level, but
not too far beyond so that they remain comprehensible (Vygotsky, 1978).
We could interpret the zone of proximal development as a set of poten-
tial progress niches organized by the adult in order to help the child
learn. But it should be clear that independently of the adults’ efforts,
what is and what is not a progress niche is ultimately defined from
the child’s point view. Progress niches share also similarities with Csik-
szentmihalyi’s flow experiences (Csikszenthmihalyi, 1991). Csikszentmi-
halyi argues that some activities are autotelic when challenges are ap-
propriately balanced with the skills required to cope with them (see also
(Steels, 2004)). We prefer to use the term progress niche by analogy
with ecological niches as we refer to a transient state in the evolution
of a complex “ecological” system involving the embodied agent and its
environment.

The experiments we described with robots illustrated how an agent
can (1) separate its sensorimotor space into zones of different predictabil-
ity levels and (2) choose to focus on the one which leads to maximal
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learning progress, called a “progress niche”. With this kind of operant
models, it could be speculated that meaningful sensorimotor distinc-
tions (self, others and objects in the environment) may be the result
of discriminations constructed during a progress-driven process, where
different envelopes are constructed and actively explored.

More specifically we can offer an interpretation of several fundamental
stages characterizing infant’s development during their first year.

Simple forms of imitative behaviour have been argued to be present
just after birth. They could constitute a process of early identification.
Some totally or partially nativist explanations could account for this
early “like-me stance” (Meltzoff and Gopnick, 1993; Moore and Corkum,
1994). This would suggest the possibility of an early distinction between
persons and things. If an intermodal mapping facilitating the match be-
tween what is seen and what is felt exists, the hypothesis of a kernel for
active exploration would suggest that infants will indeed create a dis-
crimination between such easily predictable couplings (interaction with
peers) and unpredictable situations (all the other cases) and that they
will focus on the first zone of their sensorimotor space that constitutes
a “progress niche”. Neonates imitation (when it occurs) would be the
result of the exploitation of the most predictable coupling present just
after birth5.

During the first two months of their life, infants perform repeated
body motion. They kick their legs repeatedly, they wave their arms. This
process is sometimes referred as “body babbling”. However, nothing in-
dicates that this exploratory behaviour is randomly organised. Rochat
argues that children are in fact performing self-imitation, trying to imi-
tate themselves (Rochat, 2002). This would mean that children are struc-
turing their own behaviour in order to make it more predictable and
form this way “circular reactions” (Baldwin, 1925; Piaget, 1952). Such
self-imitative behaviours can be well explained by the progress drive
hypothesis. Sensorimotor trajectories directed towards the child’s own
body can be easily discriminated from trajectories directed towards other
people by comparing their relative predictability difficulty. By many re-
spects, making progress in understanding primary circular reactions is
easier than in the cases involving other agents: Self-centered types of be-

5 This particular interpretation of neotanal imitation shows an example on how
can the kernel/envelope approach may lead to rethinking the innate/learnt
distinction. In such a case, the ”innateness” of the behavior is not ”coded” in the
genes, but is a direct result of the coupling between a socially structured
environment and an innate bias towards behaviors leading to learning progress.
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haviour are “progress niches”. In such a scenario the “self” emerges as a
meaningful discrimination for achieving better predictability. Once this
distinction is made, progress for predicting the effects of self-centered
actions can be rapidly made.

After two months, infants become more attentive to the external world
and particularly to people. Parental scaffolding plays a critical role for
making the interaction with the child more predictable (Schaffer, 1977).
Parents adapt their own responses so that interactions with the child fol-
low the normal social rules that characterize communicative exchanges
(e.g. turn taking). Moreover, if an adult imitates an infant’s own ac-
tions, it can trigger continued activity in the infant. This early imitative
behaviour is referred as “pseudo-imitation” by Piaget (Piaget, 1962).
Pseudo-imitation and focus on scaffolded adult behaviour could be seen
as predictable effects of the progress drive. As the self-centered trajecto-
ries start to be well mastered (and do not constitute “progress niches”
anymore), the child’s focus shifts to another branch of the discrimination
tree, the “self-other” zone.

After five months, attention shifts again from people to objects. Chil-
dren gain increased control over the manipulation of some objects on
which they discover “affordances” (Gibson, 1986). Parents recognize
this shift and initiate interactions about those affordant objects. How-
ever, children do not alternate easily their attention between the object
and their caregiver. A progress-driven process can account for this dis-
crimination between affordant objects and unmastered aspects of the
environment. Although this stage is typically not seen as imitative, it
could be argued that the exploratory process involved in the discovery
of the object affordances shares several common features with the one
involved for self-centered activities: the child structures its world looking
for “progress niches”.

The concepts of kernel and envelope lead to robotic experiments that
can be used as a “tool for thoughts” in developmental psychology. In that
sense, it may help formulating new concepts useful for the interpretation
of the developmental dynamics underlying children’s development. For
example, the existence of a kernel could explain why certain types of im-
itative behaviour are produced by children at a certain age and stop to
be produced later on. It could also explain how discrimination between
actions oriented towards the self, towards others and towards the envi-
ronment may occur. However, we do not arge that a drive for maximizing
learning progress could be the only motivational principle driving chil-
dren’s development. The complete picture is likely to include a complex
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set of drives 6. Developmental dynamics are certainly the result of the
interplay between intrinsic and extrinsic forms of motivations, particular
learning biases, as well as embodiment and environmental constraints.
We believe that computational and robotic approaches can help specify-
ing the contribution of these different components in the overall observed
patterns and shed new light on the particular role played by intrinsic
motivation in these complex processes.

1.4 A concept shift for neuroscience

1.4.1 Can we identify neural circuits coresponding to a
kernel in the human brain ?

Can we identifiy neural circuits that could play the role of a kernel ? Or
is it just a conceptual tool to understand how the brain learns ? In neu-
roscience, dominant views in behavioral neuropsychology have impeded
for a long time discussions about putative intrinsic causes to behav-
ior. Learning dynamics in brain systems are still commonly studied in
the context of external reward seeking (food, sex, etc) and very rarely
as resulting from endogenous and spontaneous processes. Actually, the
term “reward” has been misleading as it is used in a different manner
in neuropsychology and in machine learning (White, 1989; Wise, 1989;
Oudeyer and Kaplan, 2007). In behavioral neuropsychology, rewards are
primarily thought as objects or events that increased the probability and
intensity of behavioral actions leading to such objects: “rewards make
you come back for more” (Thorndike, 1911). This means the function
of rewards is based primarily on behavioral effects interpreted in a spe-
cific theoretical paradigm. As Schultz puts it “the exploration of neural
reward mechanisms should not be based primarily on the physics and
the chemistry of reward objects but on specific behavioral theories that
define reward function” ((Schultz, 2006) p. 91)

In computational reinforcement learning, a reward is only a numerical
quantity used to drive an action-selection algorithm so that the expected
cumulated value of this quantity is maximal in the future. In such con-
text, rewards can be thought primarily as internal measures rather than
external objects (as clearly argued by Sutton and Barto (Sutton and

6 The model we discuss in this chapter and present in more details in the Appendix
can be easily extended to account for this situation, just by transforming the
intrinsic reward function into a linear combination of several reward sources
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Barto, 1998)). This may explain why it is much easier from a machine
learning perspective to considerer the intrinsic motivation construct as a
natural extension of the reinforcement learning paradigm, whereas dom-
inant behavioral theories and experimental methodology in neuroscience
does not permit to consider such construct. This is certainly one reason
why complex behaviors that do not involve any consummatory reward
are rarely discussed.

In the absence of experimental studies concerning intrinsically moti-
vated behaviors, we can consider what ressembles the most: exploratory
behaviors. The extended lateral hypothalamic corridor, running from the
ventral tegmental area to the nucleus accumbens, has been recognized
as a critical piece of a system responsible for exploration. Pankseep calls
it the SEEKING system (Panksepp, 1998) (different terms are also used
as for instance behavioral activation system (Gray, 1990) or behavioral
facilitation system (Depue and Iacono, 1989)). “This harmoniously oper-
ating neuroemotional system drives and energizes many mental complex-
ities that humans experience as persistent feelings of interest, curiosity,
sensation seeking and, in the presence of a sufficiently complex cortex,
the search for higher meaning.” ((Panksepp, 1998) p.145). This system,
a tiny part compared to the total brain mass, is where one of the major
dopamine pathway initiates (for a discussion of anatomical issue one can
refer for instance to (Stellar, 1985; Rolls, 1999)).

The roles and functions of dopamine are known to be multiple and
complex. Dopamine is thought to influence behavior and learning through
two, somewhat decoupled, forms of signal: phasic (bursting and pausing)
responses and tonic levels (Grace, 1991). A set of experimental evidence
shows that dopamine activity can result from a large number of arousing
events including novel stimuli and unexpected rewards (Hooks and Kali-
vas, 1994; Schultz, 1998; Fiorillo, 2004). On the other hand, dopamine
activity is suppressed by events that are associated with reduced arousal
or decreased anticipatory excitement, including the actual consumption
of food reward and the omission of expected reward (Schultz, 1998).
More generally, dopamine circuits appear to have a major effect on our
feeling of engagement, excitement, creativity, our willingness to explore
the world and to make sense of contingencies (Panksepp, 1998). More
precisely, growing evidence currently supports the view of dopamine as a
crucial element of incentive salience (“wanting processes”) different from
hedonic activation processes (“liking processes”) (Berridge, 2007). Injec-
tions of GABA in the ventral tegmental area and of a dopamine receptor
agonistic in the nucleus accumbens cause rats to stop searching for a su-
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crose solution, but still drink the liquid when moved close to the bottle
(Ikemoto and Panksepp, 1999). Parkinsonian patients who suffer from
degeneration of dopaminergic neurons experience not only psychomotor
problems (inability to start voluntary movement) but more generally an
absence of appetite to engage in exploratory behavior and a lack of in-
terest for pursuing cognitive tasks (Bernheimer et al., 1973). When the
dopamine system is artificially activated via electrical or chemical means,
humans and animals engage in eager exploration of their environment
and display signs of interest and curiosity (Panksepp, 1998). Likewise,
the addictive effects of cocaine, amphetamine, opioids, ethanol, nicotine
and canabinoid are directly related to the way they activate dopamine
systems (Carboni et al., 1989; Pettit and Justice Jr., 1989; Yoshimoto
et al., 1991). Finally, too much dopamine activity are thought to be at
the origins of uncontrolled speech and movement (Tourette’s syndrome),
obsessive-compulsive disorder, euphoria, overexcitement, mania and psy-
chosis in the context of schizophrenic behavior (Bell, 1973; Weinberger,
1987; Grace, 1991; Weiner and Joel, 2002).

Things get even more complex and controversial when one tries to
link these observation with precise computational models. Hypotheses
concerning phasic dopamine’s potential role in learning have flourished
in the last ten years. Schultz and colleagues have conducted a series of
recording of midbrain dopamine neurons firing patterns in awake mon-
keys under various behavioral conditions which suggested that dopamine
neurons fire in response to unpredicted reward (see (Schultz, 1998) for a
review). Based on these observations, they develop the hypothesis that
phasic dopamine responses drive learning by signalling an error that
labels some events as “better than expected”. This type of signalling
has been interpreted in the framework of computational reinforcement
learning as analogous to the prediction error signal of the temporal dif-
ference (TD) learning algorithm (Sutton, 1988). In this scheme, a phasic
dopamine signal interpreted as TD-error plays a double role (Houk et al.,
1995; Barto, 1995; Montague et al., 1996; Schultz et al., 1997; Suri and
Schultz, 2001; Doya, 2002; Baldassarre, 2002; Khamassi et al., 2005).
First, this error is used as a classical training signal to improve future
prediction. Second, it is used for finding the actions that maximize re-
ward. This so-called actor-critic reinforcement learning architecture have
been presented as a relevant model to account for both functional and
anatomical subdivisions in the midbrain dopamine system. However,
most of the simple mappings that were first suggested, in particular the
association of the actor to matrisome and the critic to the striosome part



26 kernels and envelopes

of the striatum are now seriously argued to be inconsistent with known
anatomy of these nuclei (Joel et al., 2002).

Computational models of phasic dopamine activity based on the er-
ror signal hypothesis have also raised controvery for other reasons. One
of them, central to our discussion, is that several stimuli that are not
associated with reward prediction are known to activate the dopamine
system in various manner. This is in particular the case for novel, un-
expected ’never-rewarded’ stimuli (Hooks and Kalivas, 1994; Ikemoto
and Panksepp, 1999; Horvitz, 2000, 2002; Fiorillo, 2004). The classic
TD-error model does account for novelty responses. As a consequence,
Kakade and Dayan suggested to extend the framework including for in-
stance “novelty bonuses” (Kakade and Dayan, 2002) that distort the
structure of the reward to include novelty effects (in a similar man-
ner that ”exploration bonuses” permit to ensure continued exploration
in theoretical machine learning models (Dayan and Sejnowski, 1996)).
More recently, Smith and colleagues presented another TD-error model
model in which phasic dopamine activation is modeled by the combi-
nation of “Surprise” and “Significance” measures (Smith et al., 2006).
These attempts to reintegrate novelty and surprise components into a
model elaborated in a framework based on extrinsic reward seeking may
successfully account for a larger number of experimental observations.
However, this is done in the expense of a complexification of a model
that was not meant to deal with such type of behavior.

Some authors developed an alternative hypothesis to the reward pre-
diction error interpretation, namely that dopamine promotes behavioural
switching (Oades, 1985; Redgrave et al., 1999). In this interpretation,
dopaminergic-neuron firing would be an essential component for direct-
ing attentional processes to unexpected, behaviorally important stimuli
(related or unrelated to rewards). This hypothesis is supported by sub-
stantial evidence but stays at a very general explanation level. Actually,
Kakade and Dayan argued that this interpretation is not incompatible
with reward error-signaling hypothesis provided that the model is mod-
ified to account for novelty effect (Kakade and Dayan, 2002).

The incentive salience hypotheses, despite their psychological founda-
tions, are not yet supported by many computational models. But they
are some progress in this direction. In 2003, McClure and colleagues ar-
gued that incentive salience interpretation is not incompatible with the
error signal hypothesis and presented a model where incentive salience
is assimilated to expected future reward (McClure et al., 2003). Another
recent interesting investigation can be found in (Niv et al., 2006) con-
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cerning an interpretation of tonic responses. In this model, tonic levels
of dopamine is modeled as encoding “average rate of reward” and used
to drive response vigor (slower or faster responding) into a reinforce-
ment learning framework. With this dual model, the authors claim that
their theory “dovetails neatly with both computational theories which
suggest that the phasic activity of dopamine neurons reports appetitive
prediction errors and psychological theories about dopamine’s role in
energizing responses” (Niv et al., 2006).

In summary, despite many controversies, converging evidence seems
to suggest that (1) dopamine plays a crucial role in exploratory and
investigation behavior, (2) the meso-accumbens dopamine system is an
important brain component to rapidly orient attentional resources to
novel events. Moreover, current hypotheses may favor a dual interpre-
tation of dopamine’s functions where phasic dopamine is linked with
prediction error and tonic dopamine involved in processes of energizing
responses.

1.4.2 Tonic dopamine as a signal of expected prediction
error decrease

We just reviewed several elements of the current complex debate on the
role and function of dopamine in action selection and learning. Based
on the investigation we conducted using the kernel/envelop dichotomy,
we would like to introduce yet another interpretation of the potential
role of dopamine by formulating the hypothesis that tonic dopamine
acts as a signal of “progress niches”, i.e. states where prediction error of
some internal model is expected to decrease. As experimental researches
in neuroscience have not really studied intrinsically motivated activities
per se, it is not clear at this stage to decide whether this hypothesis is
compatible or incompatible with the other interpretation of dopamine we
have reviewed. Nevertheless, we can discuss how this interpretation fits
with existing hypotheses and observations of the dopamine’s functions.

We have just discussed the interpretation of tonic dopamine as a
‘wanting’ motivational signal (incentive salience hypothesis). In the con-
text of intrinsically motivated behavior, we believe this view is com-
patible with the hypothesis of dopamine as signal of “progress niches”.
Dopamine acts as an invitation to investigate these “promising” states.
This interpretation is also coherent with investigations that were con-
ducted concerning human affective experience during stimulation of the
dopamine circuits. When the lateral hypothalamus dopamine system is
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stimulated (part of the SEEKING system previously discussed), people
report a feeling that “something very interesting and exciting is going
on” ((Panksepp, 1998), p.149 based on experiments reported in (Heath,
1963; Quaade et al., 1974)). This corresponds to subjective affective
states linked with intrinsically motivating activities (Csikszenthmihalyi,
1991).

In addition, Berridge articulates the proposition that “dopamine neu-
rons code an informational consequence of learning signals, reflecting
learning and prediction that is generated elsewhere in the brain but do
not cause any new learning themselves” ( (Berridge, 2007), p.405). In
this view, dopamine signals are a consequence and not a cause of learn-
ing phenomena happening elsewhere in the brain. This is consistent with
the fact that dopamine neurons originating in the midbrain are recog-
nized to have only sparse direct access to the signals information that
needs to be integrated by an associative learning mechanism. All the
signals that they receive are likely to be “highly processed already by
forebrain structures before dopamine cells get much learning-relevant
information” ((Berridge, 2007), p.406, see also (Dommett et al., 2005)).

In the model of a kernel presented in the appendix of this chapter,
this progress signal is used as a reinforcement to drive action-selection
and behavioral switching. This aspect of our architecture could lead to
a similar interpretation of the role of dopamine in several previous (and
now often criticized) actor-critic models of action-selection occurring in
the basal ganglia (Houk et al., 1995; Barto, 1995; Montague et al., 1996;
Schultz et al., 1997; Suri and Schultz, 2001; Doya, 2002; Baldassarre,
2002; Khamassi et al., 2005). Let’s recall that the dorsal striatum re-
ceives glutamate inputs from almost all regions of the cerebral cortex.
Striatal neurons fire in relation to movement of a particular body part
but also to preparation of movement, desired outcome of a movement,
to visual and auditory stimuli and to visual saccades toward a particular
direction. In most actor-critic computational models of the basal gan-
glia, dopamine responses originating the substantia nigra is interpreted
as increasing the synaptic strength, between currently active striatal in-
put and output elements (thus shaping the policy of the actor in an
actor-critic interpretation). With this mechanism, if the striatal outputs
corresponds to motor responses and that dopamine cells become active
in the presence of an unexpected reward, the same pattern of inputs
should elicit the same pattern of motor outputs in the future. One of
the criticism to this interpretation is that “if dopamine neurons respond
to surprise/arousing events, regardless of appetitive or aversive values,
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one would postulate that dopamine activation does not serve to increase
the likelihood that a given behavioral response is repeated under sim-
ilar input conditions” ((Horvitz, 2002) p. 70). Progress niches can be
extrinsically rewarding (i.e progress in playing poker sometimes result
in gaining some money) or aversive (i.e. risk-taking behavior in extreme
sports). Therefore, we believe our hypothesis is compatible with interpre-
tations of the basal-ganglia based action-selection circuits that control
the choice of actions during cortico-striato-thalamo-cortical loops.

However, the precise architecture of this reinforcement learning archi-
tecture is at this stage very open. A seducing hypothesis would be that
the much studied reinforcement learning architectures based on short
prediction error phasic signals could be just reused with an internal
self-generated reward, namely expected progress. This should lead to a
complementary interpretation of the role of phasic and tonic dopamine
in intrinsically motivated behavior in reinforcement. An alternative hy-
pothesis is that tonic dopamine is directly used as a reinforcement signal.
As previously discussed, Niv and colleagues assimilated the role of tonic
dopamine to an average reward signal in a recent computational model
(Niv et al., 2006), a view which seems to contradict the hypothesis ar-
ticulated a few years ago that tonic dopamine signal reports a long-run
average punishment rate (Daw et al., 2002). Our hypothesis is based on
the difference of two long-run average prediction error rate (equation 1.3
of the model presented in the Appendix). We will now discuss how and
where this progress signal could be measured.

1.4.3 Cortical microcircuits as both prediction and
metaprediction systems

Following our hypothesis that tonic dopamine acts as signal of prediction
progress, we must now guess where learning progress could be computed.
For this part, our hypothesis will be that cortical microcircuits acts
as both prediction and metaprediction systems and therefore have the
possibilty of directly computing regional learning progress, through an
unsupervised regional assignment as this is done in the computational
model we have presented.

However, before considering this hypothesis let us briefly explore some
alternative ones. The simpler one would be that progress is evaluated
in some way or another in the limbic system itself. If indeed, as many
authors suggests, phasic responses of dopamine neurons report predic-
tion error in certain contexts, their integration over time could be easily



30 kernels and envelopes

performed just through the slow accumulation of dopamine in certain
part of neural circuitry (hypothesis discussed in (Niv et al., 2006)). By
comparing two running average of the phasic signals one could get an
approximation of equation 1.1 of the model presented in the appendix.
However, to be appropriately measured, progress must be evaluated in
regional manner, by local “expert” circuits. Although it is not impossi-
ble to imagine an architecture that would maintain such type of regional
specialized circuitry in the basal ganglia (see for instance the multiple
expert actor-critic architectures described (Khamassi et al., 2005)), we
believe this is not the most likely hypothesis.

As we argued, scalability considerations in real-world structured in-
homogeneous spaces favor architectures in which neural resources can
be easily recruited or built for different kinds of initially unknown ac-
tivities. This still leaves many possibilities. Kawato argues that, from
a computational point of view, “it is conceivable that internal models
are located in all brain regions having synaptic plasticity, provided that
they receive and send out relevant information for their input and out-
put” (Kawato, 1999). Doya suggested broad computational distinction
between the cortex, the basal ganglia and the cerebellum, each of those
associated with a particular type of learning problems, unsupervised
learning, reinforcement learning and supervised learning, respectively
(Doya, 1999). Another potential candidate location, the hippocampus
has often been described as a comparator of predicted and actual events
(Gray, 1982) and fMRI studies revealed that its activity was correlated
with the occurrence of unexpected events (Ploghaus et al., 2000). Among
all these possibilities, we believe the most promising direction of explo-
ration is the cortical one, essentially because the cortex offers the type
of open-ended unsupervised“expert circuits” recruitment that we believe
are crucial for the computation of learning progress.

A single neural microcircuit forms an immensely complicated net-
work with multiple recurrent loops and highly heterogeneous compo-
nents (Mountcastle, 1978; Shepherd, 1988; Douglas and Martin, 1998).
Finding what type of computation could be performed with such a high
dimensional dynamical system is a major challenge for computational
neuroscience. To explore our hypothesis, we must investigate whether
the computational power and evolutionary advantage of columns can be
unveiled if these complex networks are considered not only as predictors
but performing both prediction and metaprediction functions (by not
only anticipating future sensorimotor events but also its own errors in
prediction and learning progress).
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In recent years, several computational models explored how cortical
circuits could be used as prediction devices. Maas and Markram sug-
gested to view a column as a liquid state machine (LSM) (Maas et al.,
2002) (which is somewhat similar to Echo State Networks described by
Jaeger (Jaeger, 2001; Jaeger and Haas, 2004)). Like the Turing machine,
the model of a LSM is based on a rigorous mathematical framework that
guarantees, under idealized conditions, universal computing power for
time series problems. More recently, Deneve, Duhamel and Pouget pre-
sented a model of a Kalman filter based on recurrent basis function net-
works, a kind of model that can be easily mapped onto cortical circuits
(Deneve et al., 2007). Kalman filters share some similarity with the kind
of metaprediction machinary we have discussed in this article, as they
also deal with modeling errors made by prediction of internal models.
However, we must admit that there is not currently any definitive ex-
perimental evidence or computational model that support precisely the
idea that cortical circuit actually compute their own learning progress.

If indeed we could show that cortical microcircuits can signal this
information to other parts of the brain, the mapping with our model
based on a stable kernel for the active exploration of many different en-
velopes would be rather straighforward. Lateral inhibition mechanisms,
specialization dynamics and other self-organizing processes that are typ-
ical of cortical plasticity should permit without problems to perform the
type of regionalization of the sensorimotor space that an architecture
like the one presented in the appendix features. Moreover, hierarchical
organization that has been identified in the neocortical dynamics would
naturally extend one of the main weakness of the present computational
architecture: its difficulty to deal with hierarchical forms of learning. As
previously argued, action-selection could then be realized by some form
of subcortical actor-critic architecture, similar to the one involved in the
optimization of extrinsic forms of rewards.

We believe this hypothesis is consistent from an evolutionary perspec-
tive, or at least that an “evolutionary story” can be articulated around
it. The relatively “recent” invention of the cortical column circuits corre-
lates roughly with the fact that only mammals seems to display intrinsi-
cally motivated behavior. Once discovered by evolution, cortical columns
have multiplied themselves leading to the highly expanded human cor-
tex (largest number of cortical neurons (1010) among all animals, closely
followed by large cetaceans and elephants (Roth and Dicke, 2005), over
thousandfold expansion from mouse to man to provide 80% of the hu-
man brain). What can make them so advantageous from an evolutionary
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point of view? It is reasonable to suppose that the kernel responsible of
intrinsically motivated exploration appeared after (or on top of) an exist-
ing machinery dedicated to the optimization of extrinsic motivation. For
an extrinsically-motivated animal, value is linked with specific stimuli,
particular visual patterns, movement, loud sounds, or any bodily sen-
sations that signal that basic homeostatic physiological needs like food
or physical integrity are (not) being fulfilled. These animals can develop
behavioral strategies to experience the corresponding situations as often
as possible. However, when an efficient strategy is found, nothing pushes
them further towards new activities. Their development stops there.

The apparition of a basic cortical circuit that could not only acts as
predictor but also as metapredictor capable of evaluating its own learn-
ing progress can be seen as a major evolutionary transition. The brain
manages now to produce its own reward, a progress signal, internal to
the central nervous system with no significant biological effects on non-
nervous-system tissues. This is the basis of an adaptive internal value
system for which sensorimotor experiences that produce positive value
evolve with time. This is what drives the acquisition of novel skills, with
increasing structure and complexity. This is a revolution, yet it is essen-
tially based on the old brain circuitry that evolved for the optimisation
of specific extrinsic needs. If we follow our hypothesis, the unique human
cortical expansion has to be understood as a coevolutionary dynamical
process linking larger ”space” for learning and more things to learn. In
some way, it is human culture, as a huge reservoir of progress niches,
that has put pressure in having more of these basic processing units.

The attentive reader should have noticed that there is something pe-
culiar about the hypotheses we present here. We hypothesize that the
cortical circuits offer the neural substrate for representing a very large
number of sensorimotor spaces corresponding to our concept of body
envelope. Additionaly we suppose that they can perform the local com-
putation necessary to the evalutation of learning progress that is then
relayed by subcortical structures. This means that in this view it would
be wrong identify the subcortical structure to the stable kernel and the
cortical ones to the fluid envelopes, as some of the crucial computa-
tional operations of the kernel are supposed to be performed locally by
the cortical areas.
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1.5 Concluding remarks

Recent research in robotics sets the stage, both theoretically and exper-
imentally, for a new conception of the embodiment process that views
the experience of the body as a fluid, constantly changing space. By
extracting, on the one hand, the concept of generic and stable kernel,
origin of the movement and action, and, on the other hand, the notion
of changing body envelopes, robotics offers a novel framework for con-
sidering deep and complex issues linked with development and innate-
ness. Indeed, what is development if not a succession of embodiment:
not only a body that changes physically but the discovery of novel em-
bodied spaces. Each new skill acquired changes the space to explore.
Through incorporation, the body extends temporally including objects,
tools, musical interfaces or vehicles as novel envelopes to explore with
no fundamental differences with their biological counterpart (Warnier,
1999; Clark, 2004).

By pushing further this notion of fluid body envelopes, couldn’t we
consider symbolic reasoning and abstract thought as merely special forms
of body extension? Lakoff and Nunez suggested very convincingly that
there is a direct correspondence between sensorimotor manipulation
and very abstract notion in mathematics (Lakoff and Nunez, 2001).
Metaphorical transfer, one of most fundamental process to bootstrap
higher-level of cognition, can be relevantly considered as a process of in-
corporation (Lakoff and Johnson, 1998). Eventually, couldn’t we consider
linguistic communication itself as just one particular case of embodied
exploration (Oudeyer and Kaplan, 2006)? All these spaces could be ex-
plored relevantly by progress-driven kernel like the one we discussed in
this chapter.

Robots have always introdued technological and philosophical ques-
tions (Kaplan, 2004, 2005; Asada et al., 2009). They help us think about
ourselves by difference. Studying the development of robots with embod-
ied spaces very different from our own, is probably the most promising
way to study the role of our body in our own developmental processes.
In that sense. robots are not models. They are physical thought exper-
iments. That’s why they can permit to consider apparently impossible
splits, like the ones separating the body from the animation processes
or, more recently, the distinction between a stable kernel and fluid body
envelopes.
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Appendix : a kernel for progress-driven exploration
of sensorimotor envelopes

Building a kernel permitting a continuous search for learning progress
implies complicated and deep issues. The idealized problem illustrated
on figure 1.1 allowed us to make more concrete the intuition that fo-
cusing on activities where prediction errors decrease most can generate
organized developmental sequences. Nevertheless, the reality is in fact
not as simple. Indeed, in this idealized problem, four different sensori-
motor situations/activities were predefined. Thus it was assumed that
when the idealized machine would produce an action and make a pre-
diction about it, it would be automatically associated with one of the
predefined kinds of activities. Learning progress would then be simply
computed by for example comparing the difference between the mean of
errors in prediction at time t and at time t−θ. On the contrary, infants do
not come to the world with an organized predefined set of possible kinds
of activities. It would in fact be contradictory, since they are capable of
open-ended development, and most of what they will learn is impossible
to know in advance. It also occurs for a developmental robot, for which
the world is initially a fuzzy blooming flow of unorganized sensorimotor
values. In this case, how can we define learning progress? What meaning
can we attribute to “maximizing the decrease of prediction errors”?.

A first possibility would be just to compute learning progress at time t
as the difference between the mean prediction errors at time t and at time
t− θ. But implementing this on a robot quickly shows that it is in fact
nonsense. For example, the behavior of a robot motivated to maximize
such a progress would be typically an alternation between jumping ran-
domly against walls and periods of complete immobility. Indeed, passing
from the first behavior (highly unpredictable) to the second (highly pre-
dictable) corresponds to a large decrease in prediction errors, and so to a
large internal reward. So we see that there is a need to compute learning
progress by comparing prediction errors in sensorimotor contexts that
are similar, which leads us to a second possible approach.

In order to describe this second possibility, we need to introduce a
few formal notations and precisions about the computational architec-
ture that will embed intrinsic motivation. Let us denote a sensorimotor
situation with the state vector x(t) (e.g. a given action performed in
a given context), and its outcome with y(t) (e.g. the perceptual conse-
quence of this action). Let’s call M a prediction system trying to model
this function, producing for any x(t) a prediction y′(t). Once the actual
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evolution y(t) is known, the error ex(t) = |y(t)−y′(t)| in prediction can
be computed and used as a feedback to improve the performances of M .
At this stage, no assumption is made regarding the kind of prediction
system used in M . It could be for instance a linear predictor, a neural
network or any other prediction method currently used in machine learn-
ing. Within this framework, it is possible to imagine a first manner to
compute a meaningful measure of learning progress. Indeed, one could
compute a measure of learning progress px(t) for every single sensori-
motor situation x through the monitoring of its associated prediction
errors in the past, for example with the formula:

px(t) =< ex(t− θ) > − < ex(t) > (1.1)

where < ex(t) > is the mean of ex values in the last τ predictions.
Thus, we here compare prediction errors in exactly the same situation
x, and so we compare only identical sensorimotor contexts. The problem
is that, whereas this is an imaginable solution in small symbolic sensori-
motor spaces, this is inapplicable to the real world for two reasons. The
first reason is that, because the world is very large, continuous and noisy,
it never happens to an organism to experience twice exactly the same
sensorimotor state. There are always slight differences. A possible solu-
tion to this limit would be to introduce a distance function d(xm,xn)
and to define learning progress locally in a point x as the decrease in
prediction errors concerning sensorimotor contexts that are close under
this distance function:

px(t) =< eδ
x(t− θ) > − < eδ

x(t) > (1.2)

where < eδ
x(t) > denotes the mean of all {exl |d(x,xl) < δ} values

in the last τ predictions, and where δ is a small fixed threshold. Using
this measure would typically allow the machine to manage to repeatedly
try roughly the same action in roughly the same context and identify
all the resulting prediction errors as characterizing the same sensorimo-
tor situation (and thus overcoming the noise). Now, there is a second
problem which this solution does not solve. Many learning machineries,
and in particular the one used by infants, are fast and characterized
by “one-shot learning”. In practice, this means that typically, an infant
who observes the consequence of a given action in a given context will
readily be able to predict very well what happens if exactly the same
action happens in the same context again. Learning machines such as
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memory-based algorithms also show this feature. As a consequence, if
learning progress is defined locally as explained above, a given sensori-
motor situation will be typically interesting only for a very brief amount
of time, and will hardly direct further exploration. For example, using
this approach, a robot playing with a plastic toy might try to squash it
on the ground to see the noise it produces, experiencing learning progress
in the first few times it tries, but would quickly stop playing with it and
typically would not try to squash it for example on the sofa or on a
wall to hear the result. This is because its measure of potential learning
progress is still too local.

Thus, we conclude that there really is a need to build broad cate-
gories of activities (e.g. squashing plastic toys on surfaces or shooting
with the foot in small objects) as those pre-given in the initial idealized
problem. The computation of learning progress will only become both
meaningful and efficient if an automatic mechanism allows for the men-
tal construction of these categories of activities, typically corresponding
to not-so-small regions in the sensorimotor space. We have presented
a possible solution, based on the iterative splitting of the sensorimotor
space into regions Rn. Initially, the sensorimotor space is considered as
one big region, and progressively regions split into sub-regions contain-
ing more homogeneous kinds of actions and sensorimotor contexts (the
mechanisms of splitting are detailed in (Oudeyer et al., 2007)). In each
region Rn, the history of prediction errors {e} is memorized and used to
compute a measure of learning progress that characterizes this region:

pRn(t) =< eRn(t− θ) > − < eRn(t) > (1.3)

where < eRn(t) > is the mean of {ex|x ∈ Rn} values in the last τ
predictions.

Given this iterative region-based operationalization of learning progress,
there are two general ways of building a neural architecture that uses
it to implement intrinsic motivation. A first kind of architecture, called
monolithic, includes two loosely coupled main modules. The first mod-
ule would be the neural circuitry implementing the prediction machine
M presented earlier, and learning to predict the x → y mapping. The
second module would be a neural circuitry metaM organizing the space
into different regions Rn and modelling the learning progress of M in
each of these regions, based on the inputs (x(t), ex(t)) provided by M .
This architecture makes no assumption at all on the mechanisms and
representations used by the learning machine M . In particular, the split-
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ting of the space into regions is not informed by the internal structure
of M . This makes this version of the architecture general, but makes the
scalability problematic in real-world structured inhomogeneous spaces
where typically specific neural ressources will be recruited/built for dif-
ferent kinds of activities.

This is why we have developed a second architecture, in which the
machines M and metaM are tightly coupled. In this version, each region
Rn is associated with a circuit MRn , called an expert, as well as with
a regional meta machine metaMRn . A given expert MRn is responsible
for the prediction of y given x when x is a situation which is covered
by Rn. Also, each expert MRn is only trained on inputs (x,y) where x
belongs to its associated region Rn. This leads to a structure in which
a single expert circuit is assigned for each non-overlapping partition
of the space. The meta-machine metaMRn associated to each expert
circuit can then compute the local learning progress of this region of the
sensorimotor space (See Figure 1.6 (b) for a symbolic illustration of this
splitting/assignment process). The idea of using multiple experts has
been already explored in several works including for instance (Jordan
and Jacobs, 1994; Tani and Nolfi, 1999; Kawato, 1999; Doya et al., 2002;
Baldassarre, 2002; Khamassi et al., 2005)

The basic circuits we just described permit to compute an internal
reward r(t) = pRn(t), each time an action is performed in a given sen-
sorimotor context, depending on how much learning progress has been
achieved in a particular region Rn. An intrinsic motivation to progress
corresponds to the maximization of the amount of this internal reward.
Mathematically, this can be formulated as the maximization of future
expected rewards (i.e. maximization of the return), that is

E{r(t + 1)} = E{
∑

t≥tn

γt−tnr(t))}

where γ (0 ≤ γ ≤ 1) is the discount factor, which assigns less weight on
the reward expected in the far future. We can note that at this stage, it is
theoretically easy to combine this intrinsic reward for learning progress
with the sum of other extrinsic rewards re(t) coming from other sources,
for instance in a linear manner with the formula r(t) = α.pRn(t) + (1−
α)re(t) (the parameter α measuring the relative weight between intrinsic
and extrinsic rewards).

This formulation corresponds to a reinforcement learning problem
(Sutton and Barto, 1998) and thus the techniques developed in this
field can be used to implement an action selection mechanism which
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Figure 1.6 (a) An intrinsic motivation system is based on a popu-
lation of regional units, each comprising an expert predictor MRn

that learns to anticipate the consequence y of a given sensorimotor
context x belonging to its associated region of expertise Rn, and
a metapredictor metaMRn modelling the learning progress of MRn

in the close past. The learning progress defines the interestingness
of situations belonging to a given context, and actions are chosen
in order to reach maximally interesting situations. Once the actual
consequence is known, MRn and metaMRn get updated. metaMRn

re-evaluates the error curve linked with this context and computes an
updated measure of the learning progress (local derivative of curve).
(b) Illustration of the splitting/assignment process based on self-
organized classification system capable of structuring an infinite con-
tinuous space of particular situations into higher-level categories (or
kinds) of situations. An expert predictor/metapredictor circuit is as-
signed to each region.
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will allow the system to maximize future expected rewards efficiently
(e.g. Q-learning (Walkins and Dayan, 1992), TD-learning (Sutton, 1988),
etc.). However, predicting prediction error reduction is, by definition, a
highly non-stationary problem (progress niches appear and disappear in
time). As a consequence, traditional “slow” reinforcement learning tech-
niques are not well adapted in this context. In (Oudeyer et al., 2007),
we describe a very simple action-selection circuit that avoids problems
related to delayed rewards and makes it possible to use a simple pre-
diction system which can predict r(t + 1), and so evaluate E{r(t + 1)}.
Let us consider the problem of evaluating E{r(t + 1)} given a sensory
context S(t) and a candidate action M(t), constituting a candidate sen-
sorimotor context SM(t) = x(t) covered by region Rn. In our archi-
tecture, we approximate E{r(t + 1)} with the learning progress that
was achieved in Rn with the acquisition of its recent exemplars, i.e.
E{r(t + 1)} ≈ pRn(t− θRn) where t− θRn is the time corresponding to
the last time region Rn and the associated expert circuit processed a
new exemplar. The action-selection loop goes as follows:

• in a given sensory S(t) context, the robot makes a list of the possible
values of its motor channels M(t) which it can set; If this list is infi-
nite, which is often the case since we work in continuous sensorimotor
spaces, a sample of candidate values is generated;

• each of these candidate motor vectors M(t) associated with the sen-
sory context S(t) makes a candidate SM(t) vector for which the robot
finds out the corresponding region Rn; then the formula we just de-
scribed is used to evaluate the expected learning progress E{r(t+1)}
that might be the result of executing the candidate action M(t) in
the current context;

• the action for which the system expects the maximal learning progress
is chosen with a probability 1 − ε and executed, but sometimes a
random action is selected (with a probability ε), typically 0.35 in the
following experiments).

• after the action has been executed and the consequences measured,
the system is updated.

More sophisticated action-selection circuits could certainly be envi-
sioned (see for example (Sutton and Barto, 1998)). However, this one
revealed to be surprisingly efficient in the real-world experiments we
conducted.
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