Extent-based Incremental Identification of Reaction Kinetics from Spectroscopic Data

XIII Conference on Chemometrics in Analytical Chemistry (CAC 2012)
25 – 29 June 2012, Budapest – Hungary

Julien Billeter, Sriniketh Srinivasan
and Dominique Bonvin

Ecole Polytechnique Fédérale de Lausanne
Laboratoire d’Automatique
Switzerland
Kinetic investigation
From data to rate expressions

Experiments, measurements and required information

1. Computation of extents
2. Individual identification of rate expressions
3. Estimation of rate parameters

- Simultaneous approach
- Incremental approach rate-based
- Incremental approach extent-based

1. Computation of extents
2. Individual identification of rate expressions
3. Estimation of rate parameters

(number of measured species) = (number of computed extents)

(number of measured species) = (number of computed rates)
Homogeneous reaction systems
Balance equations

Homogeneous reaction system containing S species, R independent reactions, p inlets and 1 outlet

Mole balance for S species

\[
\dot{n}(t) = N^T V(t) \mathbf{r}(t) + \mathbf{W}_{in} \mathbf{u}_{in}(t) - \frac{u_{out}(t)}{m(t)} n(t), \quad n(0) = n_0
\]

\[
= N^T V(t) \mathbf{r}(t) + \mathbf{C}_{in} \mathbf{q}_{in}(t) - \frac{q_{out}(t)}{V(t)} n(t)
\]

$(S \times 1)$ $(S \times R)(R \times 1)$ $(S \times p)(p \times 1)$

Mass m, density ρ, volume V and concentrations c

\[
m(t) = 1^T_s M_w n(t), \quad \rho(t) = \phi(n(t), M_w, \rho_i), \quad V(t) = \frac{m(t)}{\rho(t)}, \quad c(t) = \frac{n(t)}{V(t)}
\]
Homogeneous reaction systems
4-way decomposition into extents

Assumption: $\text{rank} \left(\begin{bmatrix} N^T & W_{in} & n_0 \end{bmatrix} \right) = R + p + 1$

$$n \xrightarrow{\psi} \begin{bmatrix} x_r \\ x_{in} \\ \lambda \end{bmatrix} = \begin{bmatrix} S_0^T \\ M_0^T \\ q_0^T \end{bmatrix} n$$

Vessel extents of reaction x_r and of flow (x_{in} and x_{out})

$$\dot{x}_r = S_0^T N^T V r + S_0^T W_{in} u_{in} - \frac{u_{out}}{m} x_r$$

$$x_r(0) = 0_R$$

$$\dot{x}_{in} = M_0^T N^T V r + M_0^T W_{in} u_{in} - \frac{u_{out}}{m} x_{in}$$

$$x_{in}(0) = 0_p$$

$$\dot{\lambda} = q_0^T N^T V r + q_0^T W_{in} u_{in} - \frac{u_{out}}{m} \lambda$$

$$\lambda(0) = 1$$

$$x_{out} = 1 - \lambda$$

$$x_{out}(0) = 0$$

$$x_{iv} = 0_{S-R-p}$$
Homogeneous reaction systems
4-way decomposition into extents

Assumption: \(\text{rank} \left(\begin{bmatrix} N^T & W_{in} & n_0 \end{bmatrix} \right) = R + p + 1 \)

\[n \xrightarrow{\psi} \begin{bmatrix} x_r \\ x_{in} \\ \lambda \end{bmatrix} = \begin{bmatrix} S_0^T \\ M_0^T \\ q_0 \end{bmatrix} n \]

Vessel extents of reaction \(x_r \) and of flow \((x_{in} \text{ and } x_{out}) \)

\[
\dot{x}_r = V \, r - \frac{u_{out}}{m} \, x_r \\
\dot{x}_{in} = u_{in} - \frac{u_{out}}{m} \, x_{in} \\
\dot{\lambda} = -\frac{u_{out}}{m} \, \lambda \\
x_{out} = 1 - \lambda
\]

\(x_r(0) = 0_R \) \quad \(x_{in}(0) = 0_p \) \quad \(\lambda(0) = 1 \) \quad \(x_{out}(0) = 0 \)

Reconstruction:

\[n(t) = n_0 + N^T \, x_r(t) + W_{in} \, x_{in}(t) - n_0 \, x_{out}(t) \]
Homogeneous reaction systems
Reaction Variant (RV) form

When \(\text{rank} \left(\begin{bmatrix} N^T & W_{in} & n_0 \end{bmatrix} \right) < R + p + 1 \)

- Compute \(x_{in} \) and \(x_{out} \) using \(u_{in}, u_{out} \) and \(m \)

\[
\dot{x}_{in} = u_{in} - \frac{u_{out}}{m} x_{in} \quad x_{in}(0) = 0_p \\
\dot{x}_{out} = \frac{u_{out}}{m} (1 - x_{out}) \quad x_{out}(0) = 0
\]

- Compute \(n^{RV} \) (RV-form of \(n \))

\[
n^{RV}(t) = n(t) - n_0 - W_{in} x_{in}(t) + n_0 x_{out}(t) = N^T x_r(t)
\]

- Compute \(x_r \) from \(n^{RV} \)

\[
x_r(t) = N^{T^+} n^{RV}(t) = N^{T^+} (n(t) - n_0 - W_{in} x_{in}(t) + n_0 x_{out}(t))
\]
Gas-liquid reaction systems

Assumptions:

- the gas and liquid phases are homogeneous
- the reactions take place in the liquid bulk
- the mass transfer is described by the two-film theory with no accumulation in the boundary layer
Gas-liquid reaction systems
Balance equations

Mole balance in the **Liquid phase**

\[\dot{n}_\ell(t) = N^T V_\ell(t) r(t) + W_{m,\ell} \zeta(t) + W_{in,\ell} u_{in,\ell}(t) - \frac{u_{out,\ell}(t)}{m_\ell(t)} n_\ell(t), \quad n_\ell(0) = n_{\ell 0} \]

Mole balance in the **Gas phase**

\[\dot{n}_g(t) = - W_{m,g} \zeta(t) + W_{in,g} u_{in,g}(t) - \frac{u_{out,g}(t)}{m_g(t)} n_g(t), \quad n_g(0) = n_{g 0} \]

Mass \(m_\ell \), density \(\rho_\ell \), volumes \(V_\ell \) and \(V_g \), and concentrations \(c_\ell \)

\[
m_\ell(t) = 1_S^T M_{w,\ell} n_\ell(t), \quad V_\ell(t) = \frac{m_\ell(t)}{\rho_\ell(t)}, \quad c_\ell(t) = \frac{n_\ell(t)}{V_\ell(t)}
\]

\[
\rho_\ell(t) = \phi(c_\ell(t), M_{w,\ell}, \rho_{\ell i}) \quad V_g(t) = V_{\text{tot}} - V_\ell(t)
\]
Gas-liquid reaction systems
5-way decomposition into extents

Assumption: \(\text{rank} \left(\begin{bmatrix} N^T & W_{m,\ell} & W_{in,\ell} & n_{\ell_0} \end{bmatrix} \right) = R + p_m + p_\ell + 1 \)

Vessel extents of reaction \(x_r \) and of flow (\(x_{in} \) and \(x_{out} \))

\[
\begin{align*}
\dot{x}_r &= V_\ell r - \frac{u_{out,\ell}}{m_\ell} x_r \\
\dot{x}_m,\ell &= \zeta - \frac{u_{out,\ell}}{m} x_{m,\ell} \\
\dot{x}_{in,\ell} &= u_{in,\ell} - \frac{u_{out,\ell}}{m} x_{in,\ell} \\
\dot{\lambda}_\ell &= -\frac{u_{out,\ell}}{m_\ell} \lambda_\ell \\
x_{out,\ell} &= 1 - \lambda_\ell
\end{align*}
\]

Reconstruction: \(n_\ell (t) = n_{\ell_0} + N^T x_r (t) + W_{m,\ell} x_{m,\ell} (t) + W_{in,\ell} x_{in,\ell} (t) - n_{\ell_0} x_{out,\ell} (t) \)
Gas-liquid reaction systems
Reaction & Mass-transfer Variant (RMV) form

When \(\text{rank}\left(\begin{bmatrix} N^T & W_{m,\ell} & W_{in,\ell} & n_{\ell,0} \end{bmatrix}\right) < R + p_m + p_{\ell} + 1 \)

• Compute \(x_{in,\ell} \) and \(x_{out,\ell} \) using \(u_{in,\ell}, u_{out,\ell} \) and \(m_{\ell} \)
 \[
 \dot{x}_{in,\ell} = u_{in,\ell} - \frac{u_{out,\ell}}{m_{\ell}} x_{in,\ell} \quad x_{in,\ell}(0) = 0_{p_{\ell}}
 \]
 \[
 \dot{x}_{out,\ell} = \frac{u_{out,\ell}}{m_{\ell}} (1 - x_{out,\ell}) \quad x_{out,\ell}(0) = 0
 \]

• Compute \(n_{\ell}^{RMV} \) (RMV-form of \(n_{\ell} \))
 \[
 n_{\ell}^{RMV}(t) = n_{\ell}(t) - n_{\ell,0} - W_{in,\ell} x_{in,\ell}(t) + n_{\ell,0} x_{out,\ell}(t) = N^T x_r(t) + W_{m,\ell} x_{m,\ell}(t)
 \]

• Compute \(x_r \) and \(x_{m,\ell} \) from \(n_{\ell}^{RMV} \)
 \[
 \begin{bmatrix} x_r(t) \\ x_{m,\ell}(t) \end{bmatrix} = \left[N^T \quad W_{m,\ell} \right]^+ n_{\ell}^{RMV}(t) = \left[N^T \quad W_{m,\ell} \right]^+ (n_{\ell}(t) - n_{\ell,0} - W_{in,\ell} x_{in,\ell}(t) + n_{\ell,0} x_{out,\ell}(t))
 \]
Individual identification of reaction rates from the extents of reaction

Identification of the rate expression r_i and estimation of the associated kinetic parameters θ_i for each i-th reaction by comparing the computed extents $x_{r,i}(t)$ and the simulated extents $\tilde{x}_{r,i}(t)$ of reaction

$$\dot{x}_{r,i} = \nabla_\ell(t) r_i(\theta_i, c_\ell(t)) - \frac{u_{out,\ell}(t)}{m_\ell(t)} \tilde{x}_{r,i}(t) \quad \tilde{x}_{r,i}(0) = 0$$
Incremental identification using spectroscopic data

Homogeneous reaction systems

Calibration step

\[F_{\text{prog}} = \varphi(C_c, Y_c) \]

Numbers of moles

\[\hat{n}(t) = F_{\text{prog}} a_v(t) \]

Extents using \(\hat{n} \)

\[x_r(t) = S_0^T \hat{n}(t) \]

using \(\hat{n}^{RV} \) or \(\hat{n}_{\ell}^{RMV} \)

\[x_r(t) = N^T \hat{n}^{RV}(t) \]

Gas-liquid reaction systems

Calibration step

\[F_{\text{prog}} = \varphi(C_{\ell,c}, Y_{\ell,c}) \]

Numbers of moles

\[\hat{n}_\ell(t) = F_{\text{prog}} a_v(t) \]

Extents using \(\hat{n}_\ell \)

\[x_r(t) = S_{\ell 0}^T \hat{n}_\ell(t) \]

\[x_{m,\ell}(t) = M_{m,\ell 0}^T \hat{n}_\ell(t) \]

\[x_r(t) = N^T W_{m,\ell}^T \hat{n}_{\ell}^{RMV}(t) \]

Extents can subsequently be used for model identification

\(F_{\text{prog}} \) is the prognostic matrix \((S \times L)\) from calibration, \(a_v(t) = a(t)V_\ell(t) \) with dimension \((L \times 1)\)
Homogeneous reaction systems
Acetoacetylation of pyrrole

The acetoacetylation of Pyrrole (A) with Diketene (B) catalyzed by Pyridine (K) involves seven species \((S = 7) \). Four reactions \((R = 4) \) produce 2-acetoacetyl pyrrole (C), Dehydroacetic acid (D), Oligomers (E) and a By-product (F).

\[
\begin{align*}
\text{R1:} & \quad A + B \xrightleftharpoons[K]{K} C \\
\text{R2:} & \quad B + B \xrightleftharpoons[K]{K} D \\
\text{R3:} & \quad B \xrightarrow{K} E \\
\text{R4:} & \quad C + B \xrightleftharpoons[K]{K} F
\end{align*}
\]

\[
\begin{align*}
r_1 &= k_1 c_A c_B c_K \\
r_2 &= k_2 c_B^2 c_K \\
r_3 &= k_3 c_B \\
r_4 &= k_4 c_c c_B c_K
\end{align*}
\]

\[
N = \begin{bmatrix}
-1 & -1 & 1 & 0 & 0 & 0 & 0 \\
0 & -2 & 0 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 1 & 0 & 0 \\
0 & -1 & -1 & 0 & 0 & 1 & 0
\end{bmatrix}
\]

The experiment is performed in a CSTR, assuming a constant density, with one inlet \((p = 1) \) and one outlet.
Homogeneous reaction systems
Acetoacetylation of pyrrole

Pure Component Spectra: $F_{prog} = E^+ \left(S = 7 \times L = 1000 \right)$

Calibration set (10 spectra):

A: Pyrrole
B: Diketene
C: 2-acetoacetyl pyrrole
D: Dehydroacetic acid
E: oligomer

F: By-product
K: Pyridine

A_c

$noise = N\left[0, 0.1\% \max(E) \right]$

$noise = N\left[0, 0.1\% \max(C_c) E \right]$
Homogeneous reaction systems
Acetoacetylation of pyrrole

\[\text{rank} \left(\begin{bmatrix} N^T & C_{in} & n_0 \end{bmatrix} \right) = 6 = R + p + 1 \]

\[a_v(t) = a(t) V(t) \]

noise = \[N \begin{bmatrix} 0, 3\% \max(c(t)) \end{bmatrix} \]
Homogeneous reaction systems
Acetoacetylation of pyrrole

Fitting of each extent individually

<table>
<thead>
<tr>
<th></th>
<th>Simulation</th>
<th>Fitting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Model</td>
</tr>
<tr>
<td>R1</td>
<td>M1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLS : M1</td>
</tr>
<tr>
<td>R2</td>
<td>M2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLS : M2</td>
</tr>
<tr>
<td>R3</td>
<td>M3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLS : M3</td>
</tr>
<tr>
<td>R4</td>
<td>M4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLS : M4</td>
</tr>
</tbody>
</table>

M1: $r = k c_A c_B c_K$, M2: $r = k c_B^2 c_K$, M3: $r = k c_B$, M4: $r = k c_c c_B c_K$

PCR and PLS calibrations performed with 7 factors

<table>
<thead>
<tr>
<th></th>
<th>r_1</th>
<th>$kc_B c_K$</th>
<th>$kc_A c_K$</th>
<th>$kc_A c_B$</th>
<th>$kc_A c_B c_K$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssq</td>
<td>2.802</td>
<td>0.114</td>
<td>0.100</td>
<td>0.064</td>
<td></td>
</tr>
</tbody>
</table>

Model $x_{r,1}(t)$ [mol]
Gas-liquid reaction systems
Chlorination of butanoic acid

The reaction of Butanoic acid (BA) with chlorine (Cl₂) involves seven species ($S = 7$). Two reactions ($R = 2$) produce α-mono-chloro-butanoic acid (MBA), α-di-chloro-butanoic acid (DBA) and Hydrochloric acid (HCl). Ethanol ($EtOH$) is used as liquid solvent and Air is initially present in the reactor.

R1: $BA + Cl_2 \xrightarrow{in \ EtOH} MBA + HCl$

$R2: BA + 2 \ Cl_2 \xrightarrow{in \ EtOH} DBA + 2 \ HCl$

$$r_1 = k_1 c_{\ell,BA} c_{\ell,Cl_2} \sqrt{c_{\ell,MBA}}$$

$$r_2 = k_2 r_1 c_{\ell,Cl_2}$$

$$N = \begin{bmatrix} -1 & -1 & 1 & 1 & 0 & 0 & 0 \\ -1 & -2 & 0 & 2 & 1 & 0 & 0 \end{bmatrix}$$

Species in the Liquid phase ($S_\ell = 6$): BA, Cl_2, MBA, HCl, DBA and $EtOH$

Species in the Gas phase ($S_g = 3$): $Cl_2, HCl, (Air)$

Transferring species ($p_m = 2$): Cl_2, HCl
Gas-liquid reaction systems
Chlorination of butanoic acid

Liquid phase
One inlet of BA ($p_\ell = 1$) and one outlet
The density changes with the composition
The outlet is regulated to maintain the mass of the liquid constant

Gas phase
One inlet of Cl_2 ($p_g = 1$) and one outlet
The outlet is regulated to maintain the total pressure at 10 bar

\[
\begin{bmatrix}
0 \\
0 \\
10^{-5} \\
0 \\
0 \\
100
\end{bmatrix}
= n_{\ell0}
\]

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
= W_{m,\ell}
\]

\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0.095 \\
0 & 0 & 0
\end{bmatrix}
= n_{g0}
\]

\[
\begin{bmatrix}
0.0141 \\
0 \\
0
\end{bmatrix}
= W_{in,g}
\]

\[
\begin{bmatrix}
1 & 0 \\
0 & 1 \\
0 & 0
\end{bmatrix}
= W_{m,g}
\]
Gas-liquid reaction systems
Chlorination of butanoic acid

Pure Component Spectra: $F_{prog} = E^+ \left(S_a = 5 \times L = 1000 \right)$

The pure spectrum of EtOH is treated as background spectrum
Air does not absorb

Calibration set (10 spectra):
Gas-liquid reaction systems
Chlorination of butanoic acid

\[\text{rank}(N^T W_{m,\ell} W_{in,\ell} n_{\ell0}) = 5 < R + p_m + p_\ell + 1 = 6 \times \]

\[a_v(t) = a(t)V(t) \]

\[\text{noise} = N[0, 3\% \max(c(t))] E \]
Gas-liquid reaction systems
Chlorination of butanoic acid

Fitting of each extent individually

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Fitting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model</td>
</tr>
<tr>
<td></td>
<td>Model</td>
</tr>
<tr>
<td>R1</td>
<td>M1</td>
</tr>
<tr>
<td>R2</td>
<td>M2</td>
</tr>
<tr>
<td></td>
<td>PLS : M1</td>
</tr>
<tr>
<td></td>
<td>M2</td>
</tr>
<tr>
<td></td>
<td>PLS : M2</td>
</tr>
</tbody>
</table>

M1: \(r = k c_{\text{BA}} c_{\text{Cl}_2} \sqrt{c_{\text{MBA}}} \), M2: \(r = k c_{\text{BA}}^2 c_{\text{Cl}_2} \sqrt{c_{\text{MBA}}} \)

PCR and PLS calibrations performed with 5 factors

<table>
<thead>
<tr>
<th>(r_1)</th>
<th>(k c_{\text{BA}} c_{\text{Cl}_2})</th>
<th>(k c_{\text{BA}}^2 c_{\text{Cl}_2})</th>
<th>(k c_{\text{Cl}_2})</th>
<th>(k c_{\text{BA}} c_{\text{Cl}2} \sqrt{c{\text{MBA}}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssq</td>
<td>159.4</td>
<td>147.4</td>
<td>11.6</td>
<td>8.1</td>
</tr>
<tr>
<td>line</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

21/23
Conclusions

Extent-based incremental identification
• decouples each reaction from other reactions and mass transfers
• allows investigating each reaction individually
• leads to model reduction:
 Homogeneous reaction systems: \(S \rightarrow R + p + 1 \)
 Gas-liquid reaction systems: \(S_\ell \rightarrow R + p_m + p_\ell + 1 \)

Extension to spectroscopic data with calibration
• requires computing a minimum number of concentrations (liquid phase)
 Homogeneous reaction systems: \(R \)
 Gas-liquid reaction systems: \(R + p_m \)
or requires an additional source of measurements in the liquid/gas phase

Outlook: is a calibration-free approach possible?
Thank you for your attention

References

• S. Srinivasan, J. Billeter and D. Bonvin
 Extent-based Incremental Identification of Reaction Systems using Concentration and Calorimetric Measurements
 Chemical Engineering Journal, in revision, 2012

• N. Bhatt, M. Amrhein and D. Bonvin,
 Incremental Identification of Reaction and Mass-Transfer Kinetics using the Concept of Extents
 Industrial & Engineering Chemistry Research, 50 (23), 12960-12974, 2011

• N. Bhatt, M. Amrhein and D. Bonvin,
 Extents of Reaction, Mass Transfer and Flow for Gas-Liquid Reaction Systems
 Industrial & Engineering Chemistry Research, 49 (17), 7704-7717, 2010

• M. Amrhein, N. Bhatt, B. Srinivasan and D. Bonvin
 Extents of Reaction and Flow for Homogeneous Reaction Systems with Inlet and Outlet Streams
 AIChE Journal, 56 (11), 2873-2886, 2010