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1 Introduction

In the experience of neutron scattering, the structure factor is a value that
can be almost directly measured (through the differential inelastic neutron
scattering cross section). Thus it can be interesting to have a calculation
which could give a theoretical point of view, even if the system used in the
calculation cannot be as complex as in the real case. Although this cal-
culation (of a simplified system) could be a bad representation of the real
system, it is already a point of comparison which yields finally to a better
understanding.

The present work has the aim to provide a useful matlab code for the com-
putation of the structure factor of small magnetic cluster in “spin-only” scat-
tering. A concrete exemple and the result for a special configuration will be
also given.

2 Structure factor

Before coming to the stucture factor, we have first to define the neutron
cross section. In the chapter 1 of the “Theory of neutron scattering from
condensed matter” [1], they give the differential cross section in the case of
elastic scattering :
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V is the interaction potential that causes the transition from the state \E)

of the neutron to the state \k_” ) at the same energy. In our case the interaction

between the incident neutron and the target sample. We can now include

inelastic scattering events, thus we have to take into account that the neutron

energy changes. This change is taken in the response of the target sample

through a rearrangement of its states. We have to introduce the eigenstate

of the target |\) and their energies associated F)\. The energy conservation
leads to :
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It means that the possible excitations are discretes. With that and the
fact that the states of the system are composed of the incident neutron and
target (described by a product state fuction |k)|A) =|k\)), we can give the
partial differential cross-section :
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The factor (k’/k) comes from the density of final neutron states divided
by the incident neutron flux. The ¢ function represent here the energy con-
servation. By association of a (normalized) weight p, with every state |\),
we obtain the Born approximation :
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This value gives the fraction of neutrons of incident energy E scattered
into an element of solid angle df2 with an energy between E’ and E' + dF'.
We will now focus our attention on magnetic scattering. Thus we are inter-
ested by the interaction of the neutrons with the magnetic field of the target
sample. Again in the reference [1] in the chapter 7, the partial differntial
cross-section is given after integration on the neutron coordinates by :
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We consider here unpolarized neutrons, rq is the classical electron radius
and the identity (6o — dacjg)QLQﬁ corresponds to the magnetic interaction.
We have also ¢ = ¢/ | ¢ | with ¢ : the scattering vector. As we are just
interested in spin-only scattering [2], we can write the interaction as follows
(neglecting the orbital part) :
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S, is the spin operator of site [, R, is the position of one of the sites in the
cristal considered as our target and F'(§) is the ionic form factor. Thus we
can obtain the partial differential cross-section for the magnetic scattering
by ions with only spin angular momentum :
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Where Sg, is the structure factor given by :
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The structure factor is the central element of this work, because it con-
tains in itself all the informations about the interactions, the structure and
the magnetic order of the target sample that we would like to study. It is a
link between the properties of the microscopic system and our observations
with the help of neutron probes. We can still specilise the structure factor in
an “exclusive structure factor”, because the function §(fw + Ey — E)y/) im-
poses discrete levels. The exclusive structure factor is a computation within
specific magnetic multiplets : |);) at energy E; and |\}) at energy Ey. This
yields to the following expression :
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We can see through this that the exclusive differential inelastic neutron
scattering cross section is proportional to the exclusive structure factor in
the following way (taken the form factor F'(¢), k and k' as constants) :
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The second remark about the structure factor is that we cannot compute

it without the eigenstates |\) of the system. The system in our calculation

is a small magnetic cluster of spin % At this point we define the interactions

between the spins of our cluster (the “plaquette” of our system) and then
compute the Heisenberg Hamiltonian associated :

H=>"1J;S:-5 (11)
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Where J;; corresponds to the interaction between the spin at site i and
the spin at site j. By diagonalisation on a convenient basis, more precisely
on the S* basis, we find the eigenvalues and the eigenstates which will be
used to compute the structure factor.

For neutron experiments on powder samples, it is also useful to compute an
average of the structure factor on all the directions. Thus we have :

S0 = [ Fis@ (12)

3 User’s guide

In this guide we first describe the different functions that contain the matlab
code which compute the structure factor and then we give an example of the
simple dimer calculation.

3.1 The functions

Initially we give the functions which lead to the operators hamiltonian, S¥*
and S2, in the S7 basis. After We need to diagonalise the system to find
its eigenstates and eigenvalues, for this purpose we have the function Qeig.
Then we have also a funtion which displays the spin and eigenvalue according
to every eigenstate. Finally we have the functions which give the structure

factor.



Si(i,N) :

Gives the spin % operator for the site i. It is defined by the following
tensor product :

N
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Id is the identity tensor, S* corresponds to the pauli matrices divided
by 2 (A =1 in this calculation) and N the total number of sites.

SiSj(ij,N) :

Uses the function Si(i,N) to create the operators of the site i and of
the site j, then multiply these two operators by each other and returns
the result.

sumSiSj(plaquette, Js) :

Computes the hamiltonien (equation 11) following the different inter-
actions between the sites of the cluster used. “plaquette” is a matrix
which gives according to its indices (i,j) the interaction (more precisely
the element in Js) between the site i and the site j.

Sztot(N) :

Returns for N spins 5 the operator S%*, which is simply the sum of the

z component of the spin operator over all the sites.

Stotsq(N) :

Returns for N spins % the operator SZ, :
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Qeig(H,A) :

Diagonalizes the operator H with the function “eig” of matlab, then it
projects A on the different eigen-subspace of H and diagonlizes again
these projections, which leads also to the complete diagonalization of
A. At the end the function returns the eigenstates and eigenvalues
associated.

affichage(St,H,eval,evec) :

Takes in argument the operator S2,, the hamiltonian, the eigenvalues

and the eigenvectors. It shows the energy, the spin and the state of ev-

ery eigenstate. It uses the functions ket(i,N) and state2str(state) to
show the state in a readable manner and the function spincal(St,eval,evec)
to compute the spin for every eigenstate.

Structfac(sites,gs,ex,v,t,qx,qy,qz) :

Computes the structure factor S as it is given in the precedent
section (equation 9). “sites” is the configuration of the cluster used, gs
and ex select between which states the computation is done, (v,t) gives
the indices of the structure factor tensor and finally qx,qy and qz are
the components of the vector ¢. The code allows to put directly array
instead of value for qx, qy and qz. The function returns the structure
factor.

PowderSF (sites,gs,ex,v,t,r) :

Computes the structure factor powder average by using the function
Structfac(sites,gs,ex,v,t,qx,qy,qz). The value r corresponds to the
norm of ¢. More in details, we take an amount of points (about 200°000)
uniformly distributed on a sphere, they represent the orientation of the
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vector ¢, then we compute the structure factor for all these orientations.
The average is taken by summing all these structure factor divideb by
the number of contributions.

3.2 Example of a code

We give here the example of a calculation on a spin dimer to see how it works

% Defines geometry and topology of the cluster
sites=[1 0 0; 0 1 0];

plaquette =[0,1;1,0];

J=1;

N=size (plaquette ,1);

% Computes the operators in the S"z basis
H=sumSiSj (plaquette ,J);

St=Stotsq (N);

Sz=Sztot (N);

% Diagonalizes simultaneously H and St
[evec eval]=Qeig(H,St);

% Output eigenstates
affichage (St ,H,eval ,evec);

% g—space
q=1[0:0.002:1]%6;

[ax, qy]=meshgrid(q,q) ;
qz=zeros (size(qx));

% Selects ground state and excitation
gs=evec (:,1);
ex=evec (:,2:4);

% Computes the structure factor
StructF=Structfac(sites ,gs,ex,l,1,2xpixqx,2xpixqy,2*pixqz);

% Plots results

figure (1)

p=pcolor (gx,qy,abs(StructF));
set(p, 'LineStyle’, ’none’);
title(’Structure_.Factor’);
xlabel ("q_h[rlu] ’);

ylabel ('q_k[rlu]’);




Analytic=(1—cos (2xpixq)) /2;

figure (2)

hold on;

hl=plot(q, Analytic,’—’, linewidth’ ,1.2);
h2=plot(q,real (StructF (1,:)), xr’, linewidth’,1.2);
hold off;

title(’Structure_.Factor’);

xlabel ("q_h.(q-k=0)");

ylabel (’S_{11}"{GS—1"{st }Ex}’);

% Powder average
r=(0:0.1:15);
pwSF=PowderSF (sites ,gs,ex,1,1,1);

figure (3)

h3=plot (r ,pwSF, =’ , ’linewidth’ 1.2);

xlabel (’'r’,’FontSize’ ,20);

ylabel (’S(q)’, FontSize’ ,20);

title ({ ’Stucture_factor.:_Powder_average’}, FontSize’ ,24);

First we define our system with sites, plaquette and J, they are the
positions of copper atoms and their interactions. Every line of sites gives
the position of one atom in an orthogonal system. plaquette is a symmetric
square matrix, where every element (i,j) gives where in the array J is the
interaction between the site i and the site j. Secondly we compute some
operators : the hamiltonian, S¥* and S2,. Then we use the function Qeig
to calculate the eigenvalues and eigenstates, that we display in the matlab
terminal with the function affichage. we define also an array of vector ¢ with
meshgrid and plot the structure factor SY;~~“ in a color plot in function of
qn and g (see figure 1). “gs” is the ground state (singlet) and “ex” is an
excited multiplet (triplet). The second plot (figure 3) gives the structure
factor only in function of gh (¢k = 0) compared to the analytical solution
given below :

GS—1pz _ 1 -
ST = 5(1 — cos(q - @)) (15)

The vector d represents the diffence between the positions of the dimer.
We can see on figure 3 that our calcultion matches very well with the ana-
lytic solution. Finaly the last plot (figure 2) shows the structure factor for a
powder average.
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The color plot, like in the figure 1, is a nice way to represent the structure
factor in function of (g,,¢q,). We can see directly for exemple that there is
a symmetry in the structure factor (¢, <+ ¢,), which can be explain by
the symmetry of the system (where are placed the ion copper sites) we have
taken.

4 Result : Phase transition in quadrimer

We study here the configuration of SrCus(BO3)s (SCBO). We suppose
that it is a model with an intermediate phase between the dimer and the
antiferromagnetic phases [4]. The figures above show a model where the
limit cases (J/J' << 1 and J/J" >> 1) correspond to the dimer and to
the antiferromagnetic phases. The problem now is that we cannot take this
whole system for problem of computation (it would take to much time to
compute it), thus we approximate this system to an easier one : a quadrimer
with diagonal interaction as it is also shown above. We compute the neutron
scattering structure factor of this cluster and compare with two dimers in
the same configuration.

J=10-J (16)

The factor between J and J’ is not the real one, but the important point
is that J is bigger than J’. In fact we do not use the exact value because it
is not really helpful in our approximation. When we compute the structure
factor on the SCBO cluster it gives only a first approximation of the reallity,
first because it is only a tiny part of the whole system, then because the
interactions are more complex, for exemple we didn’t take into account the
correlations with the other plaquettes.
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M. Zayed in the chapter 5 of his thesis [3] analyses quantum phase transition
in SCBO induced by pressure. He pointed out 3 characteristics of the high
pressure phase:

- a non magnetic gapped ground state
- a low energy triplet with structure factor peaking at Q=(1,0)

- an other low energy excitation with structure factor indentical to the
singlet-triplet in the exact dimer phase.

The following tabular shows the energie and the spin of every eigenstate
of the plaquette and of the 2 dimers in the SCBO configuration. We can see
that the ground state in both case is isolated and has a spin equal to zero.
For the dimers, the first excited multiplet corresponds to two triplet. And
for the plaquette, the first excited multiplet is a triplet and the second one
is a quadruplet. The figure 4 gives the differential inelastic neutron scatter-
ing cross section using the structure factor. We can see that the transition
between the ground state and the second excited multiplet for the plaque-
tte corresponds to the transition for the dimers. The other transition for
the plaquette (GS — 1st excitation) is different, but it has a peak around
¢ = 1. Even though our results stay an approximation, they confirm these
three characteristics. Thus we are on the good way to say that the plaquette
with the diagonal bond is the best candidate for the SCBO configuration.
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Plaquette SCBO 2 dimers ‘

Energy ‘ Spin || Energy ‘Spin
1 || —1.9750 0 —1.5000| O
2 || —0.9750 1 —0.5000| 1
3 || —0.9750 1 —0.5000| 1
4 11 —0.9750 1 —0.5000| 1
5 || —0.0750 1 —0.5000| 1
6 || —0.0750 0 —0.5000 | 1
7 1l —0.0750 1 —0.5000| 1
8 || —0.0750 1 0.5000 0
9 || 0.0250 1 0.5000 2
10 || 0.0250 1 0.5000 2
11} 0.0250 1 0.5000 2
12 || 1.0250 2 0.5000 1
13| 1.0250 2 0.5000 1
14 || 1.0250 2 0.5000 1
15 1.0250 2 0.5000 2
16 || 1.0250 2 0.5000 2

5 Conclusion

The neutron scattering structure factor is a very important quantity to inter-
pret experiments with neutron scattering. The exemple of phase transition
in SCBO shows in a way the possibility of the structure factor code. Finally
I hope that we created a useful tool for those who need it.
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Differential Inelastic Neutron Scattering Cross Section

— Plaguette SCBO GS—>1st
— Plaquette SCBO GS->2nd
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Figure 4: This graph shows the differential inelastic neutron scattering cross
section in function of q.. The 8 curves represent different excitations and
configurations in the SCBO geometry.
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