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Factorisation is not unique for higher dimensional knots

Eva BAYER*

0. Introduction

An n-knot will be a smooth oriented submanifold K of the (n+2)-sphere $"*2,
where K is homeomorphic to S". A knot is irreducible if it cannot be written as a
connected sum of two non-trivial knots. Schubert has shown that every 1-knot can
be written uniquely as a connected sum of finitely many irreducible knots (see [S]
or [K1, Section 1]). For n>?2, Sosinskii has proved that it is still possible to
factorise every n-knot into finitely many irreducible knots (cf. [So Theorem 5. 1]
or [K 1, Section 2]) but Kearton has shown that this factorisation is not necessarily
unique for n =3 [K]. In the present note we shall prove the non uniqueness of the
factorisation for (2q — 1)-knots, g =3 and for (2q)-knots, g =4.

I would like to thank C. Weber for advising me to consider Levine duality in
the even dimensional case. I also thank M. Kervaire for useful conversations.

1. Factorisation is not necessarily unique for (2q —1)-knots, g =3

Let =3 be an integer.

DEFINITION. A Seifert matrix A is a square matrix of integers such that
det(A+(—1)?A")= £ 1, where A' is the transpose of A.

Let A be a non-singular Seifert matrix (that is, det (A) # 0). We shall say that
A is irreducible if A is not S-equivalent to the orthogonal sum of two non-
singular Seifert matrices. (See [Le] for the definition of S-equivalence. In the
examples that we shall construct, the Seifert matrices will be unimodular, and
unimodular Seifert matrices are S-equivalent if and only if they are integrally
congruent (see [T, Proposition 4.3])). We shall use the notation

S=A+(-1)A", z=S""'A

* Supported by a grant from the Alexander von Humboldt Foundation.
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LEMMA 1. Let A, and A, be Seifert matrices with z, = z,. Then

A, 0 (Az 0 )
d
(0 —Al) e U

are integrally congruent.

LEMMA 2. There exist irreducible Seifert matrices A, and A, such that

a) z,=z,
b) A, and A, are not S-equivalent
A, and — A, are not S-equivalent.

(We shall give explicit examples of such Seifert matrices after the proof of this
lemma.)

The above two lemmas give the desired result. Indeed, let A, and A, be
Seifert matrices as in Lemma 2.

Levine has shown that the S-equivalence classes of non-singular Seifert
matrices correspond biunivoguely to the isotopy classes of simple (2qg — 1)-knots
[Le, Theorems 1,2, 3). Note that this implies that irreducible Seifert matrices
correspond to irreducible knots. Let K, L, K,, L, be the simple (2q— 1)-knots
corresponding to A, —A,, A,, — A, respectively. These knots are irreducible,
because A, and A, are irreducible. By Lemma 1,

A, 0 (A2 0 )
d
(o ——Al) M N0 —a,

are integrally congruent, as z, = z,. Therefore they are S-equivalent. So by [Le,
Theorem 3] the connected sum of K; and L, is isotopic to the connected sum of
K, and L,. On the other hand, [Le, Theorem 1] shows that K, is not isotopic
either to K, or to L,, as the Seifert matrices are not S-equivalent.

Proof of Lemma 1. Let A be a Seifert matrix, and let

A 0
Ml:(o —A)’ Mz:(

0 (- 1)“(1“‘2'))
z 0 '
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Then M, and M, are integrally congruent. Indeed, let

X:(l__zz 2:32):(5 ;>(ol (sg)‘)((—l){‘“f\ ?>

where I is the identity matrix.
One checks by direct computation that M, = X'M, X (it is useful to note that
1—z'=AS"', and that (1-z')A = Az). This proves Lemma 1, as z, =z, = z,

(Al 0 ) and (Az 0 )
0 —-A 0 -A,
are both congruent to

T

Proof of Lemma 2. Let ¢ be the cyclotomic polynomial corresponding to the
15™ roots of unity. Let t be the Jordan matrix associated with ¢, and let
z=(1-1t)""'. Note that det (z)=1: indeed, det (1—t)=¢(1)=1.

Let ¢ be a primitive 15™ root of unity. Sending ¢ to { ' induces a non-trivial
involution on Z[{]. We shall denote this involution by an overbar.

Let A ={x € Q({) | Trow,o (xZ[{]) = Z} be the inverse different of the exten-
sion Q(£)/Q. We have: A = A.

DEFINITION. Let V be a torsion free Z[{]-module of finite rank. We shall
say that a hermitian or skewhermitian form

h:VXV—A
i1s unimodular, if

ad (h): V— Homy;,, (V,4)

x—>h( ,x)
1s an isomorphism.
Claim 1. The integral congruence classes of Seifert matrices A such that

(A+(—1)YA) "A=z2 (1)
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(z=(1—-1)"" as above, fixed; q a fixed integer) are in bijection with the isometry
classes of (—1)?-hermitian unimodular forms

h:Z[{1XZ[{]— A.

Proof of Claim 1. Let A be a Seifert matrix with property (1), and let
S=A+(—1)"A". Rank (A)=degree (¢) = 8. Let V be a free Z-module of rank 8.
We can consider § as a (—1)*-symmetric form S:VXV—Z and t=
1-z7":V— V will be an isometry for S.

Setting ¢ - v = t(v) for v in V makes V into a Z[{]-module. As t corresponds
to the Jordan matrix of ¢, V is isomorphic to Z[{].

As in [B-M, §1], we associate to S a (— 1)?-hermitian form

h:Z[{]1x<Z[{]— A
such that
Tregye hlax, y)=S(ax, y) Vae P({)Vx,ye V. (2)

It 1s easy to check that h is unimodular and that congruent Seifert matrices
determine isometric (—1)?-hermitian forms.

Conversely, given a unimodular (— 1)?-hermitian form h:Z[{]XZ[{]— A, the
formula (2) determines a (— 1)?-symmetric matrix S such that det (S)= =1 and ¢
is an isometry for S. Set A =Sz. Then A+ (—1)?A’' =S, therefore A is a Seifert
matrix " satisfying (1). Isometric (—1)7-hermitian forms determine congruent
Seifert matrices.

Claim 2. The isometry classes of unimodular (—1)?-hermitian forms
h:Z[L1XZ[{]— A

are in bijection with Uy/N(U), where U is the group of units of Z[{], U, is the
group of units of Z[{+ (], and N: U— U,, N(u) = ui, is the norm map.

Proof of Claim 2. Let g be the minimal polynomial of {+/, and let

o= 1 1
g+ -
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Let A, be the inverse different of the extension Q(£)/Q(¢ + ), and A, the inverse
different of Q({+¢)/Q. Then A =A, - A, [L, I11. §1, Proposition 5] and

1
A=TT7 Z[{]

o l!\ﬂ

fo= s Aet )

[L, III. §1 Corollary of Proposition 2]. Therefore A = a,Z[{]. Notice that a,=
- ao.

Let h:Z[{]XZ[{]— A be a unimodular (—1)4-hermitian form. We have:
h(x, y) = axy for some a in A such that a =(—1)%a.

As we can identify Homg,; (Z[{], A) with A, the unimodularity of h implies
that aZ[{]= A. Therefore aZ[{]= a,Z[]. This implies that aa,' is a unit. We
have aay;'=(-1)"aa,".

Set

-1 . .
_ {aao if g is odd 3)

aay'({— ) if q is even

{—Cis aunit: ((—O(+HD(-(~-{+1)=1,

Therefore u is in U, in both cases. Conversely, to ue U, we associate the
(—1)?-hermitian form h(x, y) = axy where a is given by (3). One checks easily
that two (—1)7-hermitian forms are isometric if and only if the corresponding
units are in the same class in U,/N(U).

Let us determine the cardinality of Uy,/N(U). We have

[U,: Ugl

LWo: NOI=t5y-uay

Using the theorem of Dirichlet on the rank of the group of units, we see that
[U,: U3]=16.
Let u be the group of roots of unity in Q(¢). Then

[N(U): Ugl=[U:nUc}= Q

and Q=2 [L1, Chap. 3, Theorem 4.1]. So [U,: N(U)]=8. (We shall actually
exhibit 8 distinct classes of U,/N(U) in the next section.)
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Applying Claim 1 and Claim 2, we see that there are 8 non-congruent Seifert
matrices A such that

(A+(-1)A) 1A = 2. (1)

Therefore it is possible to choose A, and A, satisfying (1), and such that A, is not
congruent either to A, or to — A,. But congruence and S-equivalence are the
same in this case, because the Seifert matrices are unimodular (see [T, Proposition
4.3]). A, and A, are irreducible, as their Alexander polynomial is irreducible.

Explicit examples

Let =¢e*™" andlet u; =1, u,=¢+{¢'. We have u,(—ui+ui+4u,—4)=1,
therefore u, is a unit. But u, is not in N(U): indeed, u, is conjugate to '+’
which is negative. Clearly —u, is also negative, therefore not in N(U). Using
similar methods for the units u; = >+ 72, us=uyus =+ '+ 3+ 73, we see
that u,, —uy, u,, —u,, us, — u;, Uy, — u, are all in different classes of U,/N(U). In
the proof of Lemma 2 we have seen that the cardinality of U,/N(U) is 8,
therefore we have a complete set of representants of U,/N(U).

Using the method given in the proof of Lemma 2, let us associate the Seifert
matrices A, to the units u;,, i=1---4,

A, 0 : .. . .
Then the ( 0 A ) are all different factorisations of the same Seifert matrix
B (see Lemma 1). Moreover, B has no other factorisations than these four. Direct
computation gives the following matrices for A, and A,:

q odd:
1 1 1 1 1 0 -1 =2
1 1 1 1 1 1 0 -1
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1
ATl 0 1 1 1 111
-1 0 1 1 1 1 1 1
-2 -1 0O 1 1 1 1 1
-2 =2 -1 0 1 1 1 1
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2 2 2 2 1 0 -2 -3
/2 2 2 2 2 1 0 -2
2 2 2 2 2 2 1 0
A=l v o2 2 2 2 2 2 1
0 1 2 2 2 2 2 2
-2 0 1 2 2 2 2 2
-3 -2 0 1 2 2 2 2
-4 -3 2 0 1 2 2 2
q even
6o 0 0 0 -1 -2 -2 -1
/o o 0 0 0 -1 -2 -2
0 0 0 0 0 0 -1 -2
A= 1 o0 0 0o 0o 0 -1
2 1.0 0 0 0 0 0
2 2 1 0 0 0 0 0
\1 2 2 1 0 0 0 0
o 1 2 2 1 0 0 0
0 0 0 -1 -2 -3 -3 -2
/0 0 0 0 -1 -2 -3 -3
1 00 0 0 -1 -2 -3
A=l 2 1 0o 0o 0o 0 -1 -2
3 2 1 0 0 0 0 -1
3 3 2 1 0 0 0
2 3 3 2 1 0 0
0 2 3 3 2 1 0

2. Factorisation is not necessarily unique for (2q)-knots, g =4

Let =4 be an integer. Let A=2Z[t,t '], and let T be a finitely generated
Z-torsion A-module such that (1—¢): T— T is an isomorphism.
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DEFINITION. L: TXT— Q/Z is a Levine pairing if L is Z-bilinear, non-
singular, (—1)?*'-symmetric, such that

L(tx,ty)=L(x,y) for x,yin T.

In [Le 1] Levine associates to every (2q)-knot K a Levine pairing on the
Z-torsion part T of H,(X), X being the maximal abelian cover of X = $***?\K.
Isotopic knots have isometric pairings. He also shows that every Levine pairing
can be realized by a simple (2q)-knot [Le 1, Theorem 13.1]. Conversely, Kojima
has shown that if Hq(f() is finite and 2-torsion free and if q=4, then simple
(2q)-knots having isometric Levine pairings are isotopic [Ko, Theorem 1]. There-
fore, the following examples determine simple (2q)-knots which factorise in more
than one way:

q odd
Let T=12Z/5, and let t(x)= —x for x in T. Then L,, L,: TX T— Q/Z given by
L,(x, y)=%xy, L,(x, y) =%xy are Levine pairings. Clearly L, is not isometric either
to L, or to —L,. But

(3 2)(1/5 0 )(3 1)_< 0 1/5)~<4 1)(2/5 0 )(4 1)
1 1/No 45/\2 1/ \yys o/ \1 1/\o 3/5/\1 1)
and the isomorphisms obviously commute with €.

q even
Let T=2Z/5®Z/5, t: T— T given by the matrix

(i =)
1 -2
and let L,, L,: TXT— Q/Z be the Levine pairings given by the matrices
( 0 1/5) ( 0 2/5)
4/5 0 3/5 0
respectively.
L; is not A-isometric either to L, or to —L,. Indeed, suppose that L, is

A-isometric to € - L,, for e = +1 or — 1, and let X be the matrix corresponding to
this isometry. Then det (X) = 2e.
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Let

X

)

The relation tX = Xt implies det(X)=(a+b)>. But (a+b)*=2¢ is impossible.
L, —-L, and L,® — L, are both A-isometric to

0 0 0 2/5
0 0 3/5 0
0 2/5 0 0

3/5 0 0 0

the isometries are given by

(o )= G @)

and

Gr o)=lo 1lar )

1
respectively, with [ =( 0).

0 1
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