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Abstract—Arterial tree hemodynamics can be simulated by
means of several models of different level of complexity,
depending on the outputs of interest and the desired degree
of accuracy. In this work, several numerical comparisons of
geometrical multiscale models are presented with the aim of
evaluating the benefits of such complex dimensionally-
heterogeneous models compared to other simplified simula-
tions. More precisely, we present flow rate and pressure wave
form comparisons between three-dimensional patient-specific
geometries implicitly coupled with one-dimensional arterial
tree networks and (i) a full one-dimensional arterial tree
model and (ii) stand-alone three-dimensional fluid–structure
interaction models with boundary data taken from precom-
puted full one-dimensional network simulations. On a
slightly different context, we also focus on the set up and
calibration of cardiovascular simulations. In particular, we
perform sensitivity analyses of the main quantities of interest
(flow rate, pressure, and solid wall displacement) with respect
to the parameters accounting for the elastic and viscoelastic
responses of the tissues surrounding the external wall of the
arteries. Finally, we also compare the results of geometrical
multiscale models in which the boundary solid rings of the
three-dimensional geometries are fixed, with respect to those
where the boundary interfaces are scaled to enforce the
continuity of the vessels size with the surrounding one-
dimensional arteries.

Keywords—Geometrical multiscale modeling, Blood flow

models, Fluid–structure interaction, Wave propagation,

Patient-specific geometries, Aorta and iliac arteries.
.

INTRODUCTION

Numerical simulations based on complex mathe-
matical approaches have become an effective tool to
model arterial flow dynamics. Research in this field is
essential in order to understand, predict, and treat
common and potentially fatal cardiovascular pathol-
ogies, such as aneurysms formation, atherosclerosis,
and congenital defects, as well as the planning of sur-
gical intervention, usually called predictive surgery.

Thanks to modern supercomputing facilities, mod-
eling big portions of the systemic arterial tree with a
fully detailed three-dimensional (3-D) description is
nowadays feasible.48 Nevertheless, the amount of data
required by these simulations can be hardly retrieved.
Moreover, a compromise between model complexity
and computational cost might be still relevant in a
medical environment, where huge number of patients
need to be assisted at the same time. In this sense,
geometrical multiscale approaches provide an efficient
and reliable way to select the desired level of com-
plexity in each component of the cardiovascular sys-
tem.6,21,37,40,41,47 The main ingredients of a geometrical
multiscale model for cardiovascular flows are (i) 3-D
fluid–structure interaction (FSI) models, which are
used to represent few specific components of main
interest,4,10,13,18,23,25,26,46 (ii) one-dimensional (1-D)
FSI models, which describe the global blood circula-
tion in the arterial network,1,7,8,20,35 and (iii) lumped
parameters models, which account for the cumulative
effects of all distal vessels, i.e., small arteries, arterioles,
and capillaries.22,45 More generally, from the medical
point of view, a 3-D model allows to have a deep in-
sight of a specific region of the cardiovascular system
(e.g., the thoracic aorta), whereas the interaction with
the global cardiovascular system is modeled by the
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mean of simpler models obtained through a dimen-
sional reduction.

Despite the fact that the geometrical multiscale
modeling technique is widely accepted in the literature,
so far the greatest part of the studies has focused mainly
on mathematical and methodological aspects. In par-
ticular, at the best of our knowledge, there are no
studies performing a quantitative comparison between
large heterogeneous cardiovascular networks (includ-
ing at the same time 3-D FSI, 1-D FSI, and lumped
parameters models), vs. simplified problems, e.g.,
stand-alone 3-D FSI simulations or full 1-D FSI
problems. Moreover, most of the patient-specific car-
diovascular applications in the literature does not make
use of networks of 1-D arteries to account for the sys-
temic circulation, which is generally condensed by using
lumped parameters models directly coupled with the
inlets/outlets of the 3-D geometries of the patients (see,
e.g., Balossino et al.,2 Laganàà et al.,30 Baretta et al.,3

and Moireau et al.39). This is a quite severe modeling
assumption, since the flow in the systemic arteries is
strongly space-time dependent, thus requiring at least a
1-D axial description of the traveling waves.

To fill this gap, in this work we provide several
numerical comparisons of geometrical multiscale
models with the aim of proving, and somehow quan-
tifying, the benefits of such complex dimensionally-
heterogeneous problems with respect to other simpler
approaches. The geometrical multiscale models are set
up by coupling one or more 3-D patient-specific
geometries with a full network of 1-D models repre-
senting the global circulation of an average healthy
patient. In particular, since the analysis of pathological
scenarios is not considered here, we select two healthy
3-D geometries corresponding to the aorta and the iliac
arteries. The results of these models are compared with
both a full 1-D network of arteries and stand-alone 3-
D FSI simulations, where the data for the latter at the
inlet and outlet boundary interfaces are taken from a
precomputed full 1-D network simulation. The com-
parisons are performed mainly in terms of flow rate
and pressure waveforms. In addition, we also analyze
the 3-D solid wall displacement magnitude.

On a slightly different context, we also focus on the
calibration of cardiovascular simulations. Indeed, a key
aspect to consider in order to obtain results in the
physiological range is the tuning of the problem
parameters, especially for modeling 3-D FSI arteries. In
the literature there are several works on parameter
estimation for cardiovascular applications; among the
most popular techniques we can mention the Kalman
filtering approaches or the variational procedures.5,15,38

For our specific analysis, it is essential to account for the
correct boundary data on the solid wall geometries. This
problem has been already addressed by Crosetto et al.14

and Moireau et al.39 for the external surface of the
arterial wall, where Robin boundary conditions have
been successfully used to account for the elastic and
viscoelastic responses of the external tissues. Neverthe-
less, the values of the empiric tissue parameters
appearing at the boundaries is rather difficult to esti-
mate, and neither calibration procedures nor sensitivity
analysis to show the effect of the variation of the
parameters on the main quantities of interest were pro-
vided. Regarding the interface boundary rings of the
arterial wall, in Formaggia et al.20 and Malossi et al.37

an approach to prescribe the continuity of the vessel area
with surrounding models has been proposed. However,
its impact on cardiovascular simulations compared to
fixed area configurations has never been investigated,
apart from few benchmark tests in simple geometries.

With the aim of covering the aspects mentioned
above, in this work we also provide several compari-
sons and sensitivity analysis focused both on the cali-
bration of the tissue parameters and on the analysis of
the impact of different interface ring boundary condi-
tions on the main quantities of interest.

Thiswork is organized as follows. In the ‘‘Geometrical
Multiscale Approach’’ section we describe the main
ingredients of the geometrical multiscale methodology.
Then, in the ‘‘Numerical Simulations’’ section, we pres-
ent the numerical results with several comparisons and
sensitivity analyses. Finally, main conclusions are sum-
marized in the ‘‘Conclusions’’ section.

GEOMETRICAL MULTISCALE APPROACH

In this section we describe the main components of
the geometrical multiscale method that we use to simu-
late the global arterial circulation. More precisely, we
model the arterial network by coupling together differ-
ent dimensionally-heterogeneous models, such as 3-D
FSI models, which are used to represent specific com-
ponents of main interest, 1-D FSI models, to simulate
the pulse wave propagation in the global arterial system,
and three-element RCR windkessel terminals, that
account for the peripheral circulation and correspond to
well known simple differential algebraic equations, for
brevity not described here (see Malossi et al.35, Section
5.1 for all the details). Finally, we briefly recall from
other works the coupling equations and the numerical
approach to solve the global network of models.

3-D FSI Model for Main Arteries

In a geometrical multiscale setting, 3-D FSI models
are used to simulate the hemodynamics in complex
geometrical situations, such as those occurring at
bifurcations, aneurysms, and stenoses among others. In
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addition, when aiming at patient-specific analyses, the
correct characterization of the local arterial flow has to
be carried out by using patient-specific data obtained
from medical images, e.g., computed tomography (CT)
scan or magnetic resonance imaging (MRI).

Equations

Let X � R3 with boundary @X; where �X ¼ �XF [ �XS;
being XF and XS the fluid and solid domains, respec-
tively. In addition, let CI be the fluid-solid interface
@XF \ @XS: The FSI problem employed in this work
consists of the incompressible Navier–Stokes equations
coupledwith a linear elastic isotropic structure described
by the St. Venant–Kirchhoff equations. To account for
the interaction between the fluid and the solid, we define
an Arbitrary Lagrangian–Eulerian (ALE) map, i.e.,

Mt : X0
F ! Xt

F � R3

x0 7!Mt x0
� �

¼ x0 þ dF x0
� �

;

where the superscripts 0 and t refer to the reference and
current configurations, respectively (see Fig. 1),
x0 2 X0

F is a point, and dF is the fluid domain dis-
placement. More precisely, in this work we compute dF
as the harmonic extension of the solid displacement dS
at the reference fluid-solid interface C0

I to the interior
of the reference fluid domain X0

F:
The resulting FSI problem reads

@uF
@t

����
x0

þ uF �
@dF
@t

����
x0

� �
� $

� �
uF

� 1

qF

$ � rF ¼ 0 in Xt
F � ð0;T�;

$ � uF ¼ 0 in Xt
F � ð0;T�;

qS

@2dS
@t2
� $ � rS ¼ 0 in X0

S � ð0;T�;

�DdF ¼ 0 in X0
F � ð0;T�;

uF �Mt � @dS
@t
¼ 0 on C0

I � ð0;T�;

rS � nS � JSG
�T
S rF �Mtð Þ � nS ¼ 0 on C0 � ð0;T�;

dF � dS ¼ 0 on C0
I � ð0;T�;

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

ð1Þ

where (0,T) is the time interval, uF the fluid velocity, qF

and qS are the fluid and solid density, respectively, nS is
the outgoing normal direction applied to the solid

domain, GS ¼ Iþ $dS the solid deformation gradient
(with I the identity matrix), and JS = det(GS). In
addition, rF and rS are the Cauchy and the first Piola–
Kirchhoff stress tensors, respectively, i.e.,

rF ¼ �pFIþ 2l�F uFð Þ;
rS ¼ kSðES; mSÞtr �S dSð Þð ÞIþ 2lSðES; mSÞ�S dSð Þ;

where �F uFð Þ is the strain rate tensor, being pF the fluid
pressure and lF the fluid dynamic viscosity, and �S dSð Þ
is the linear strain tensor, being kS and lS the first and
second Lamé parameters, respectively, which are
algebraic functions of the Young’s modulus ES and the
Poisson’s ratio mS of the wall material.

Problem (1) is closed by a proper set of initial and
boundary conditions. More precisely, on the external
wall C0

S;ext we apply a viscoelastic Robin boundary
condition to account for the presence of the external
tissues, as we detail in the ‘‘Robin Boundary Condition
for the Solid External Wall’’ section. On
Ct
F;j � @Xt

FnCt
I; j ¼ 1; . . . ; nC

FS we impose either inflow
and outflow boundary data or continuity equations
with the surrounding models, which are detailed in the
‘‘Interface Equations for the Global Network of
Models’’ section. Similarly, the inlet/outlet solid rings
C0
S;j; j ¼ 1; . . . ; nC

FS can be either fixed or scaled to
match the area of surrounding models, as described by
Malossi et al.37 and briefly recalled in the ‘‘Interface
Equations for the Global Network of Models’’ section.

Remark 1 Several models of the arterial wall are
described in literature, with different levels of
complexity.24,27,28,32,44 An accurate model for the
arterial wall should take into account the effects of
anisotropy due to the distribution of the collagen
fibers, the three layers (intima, media, and adventitia)
structure, the nonlinear behavior due to collagen
activation, and the incompressibility constraint.
Nevertheless, a linear elastic isotropic structure is still
considered a reasonable approximation for the large
healthy arteries, as demonstrated numerically in, e.g.,
Crosetto et al.,12,14 and validated experimentally in,
e.g., Kanyanta et al.29

Numerical Approximation

The FSI problem is solved by using a non-modular
(monolithic) approach.11,13 The fluid problem is dis-
cretized in space by a P1� P1 finite element method,
stabilized by an interior penalty technique.9 The solid
and the geometric problems are discretized in space by
P1 finite elements. Regarding time discretizations for
the incompressible Navier–Stokes equations on mov-
ing domains we use a first order Euler scheme, while
for the structural problem we use a second order mid-
point scheme, for an overall accuracy of one. The time

FIGURE 1. ALE map between reference and current config-
urations. The colors in the scheme refer to the computed
pressure field.
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interval [0, T] is split into subintervals ½tn; tnþ1�;
n ¼ 0; 1; 2; . . . ; such that tn ¼ nDt; Dt being the time
step. The fluid and solid problems are coupled by using
the geometric convective explicit time discretization,
i.e., the fluid problem is linearized by considering ex-
plicit the fluid domain displacement and the convective
term. This choice allows to split the solution of the
geometric part (the harmonic extension) from the fluid-
solid one, leading to a significant reduction of the
computational cost. For more details on the 3-D FSI
problem see Crosetto.11

Robin Boundary Condition for the Solid External Wall

From the modeling point of view, one critical aspect
to get physiological results in a 3-D FSI simulation is
the tuning of the boundary condition on the solid
external wall. The influence of external tissues and
organs tethering and constraining the movement of
blood vessels is of critical importance when simulating
3-D FSI problems in the arterial system.33 At the
present time, the modeling of the detailed multi-con-
tact relations between the arteries and the other tissues
is unfeasible. However, in the literature there are
examples proving that the behavior of external tissues
support on the outer arterial wall can be handled by
enforcing a Robin boundary condition on C0

S;ext: As an
example we mention the work of Crosetto et al.,14

where the tissues are modeled with a purely elastic
term, and the work of Moireau et al.,39 where both the
elastic and the viscoelastic contributions are
accounted. In this latter case, the resulting Robin
boundary condition for the 3-D FSI problem reads

rS � nS þ kSdS þ cSvS þ PextnS ¼ 0; on C0
S;ext � ð0;T�;

ð2Þ

where vS is the velocity of the solid domain and Pext the
reference external pressure. The parameters kS and cS
account for the elastic and viscoelastic response of the
external tissues, respectively. More generally, they are
empiric coefficients that depend on space and, possi-
bly, on time (e.g., to represent the change of mechan-
ical properties over time).

Tuning the value of the parameters kS and cS is
rather difficult. In both Crosetto et al.14 and Moireau
et al.39 a range of orders of magnitude for the aorta is
identified on the basis of qualitative considerations
about the pulse wave velocity and the maximum
admissible displacement of the vessel wall. However,
neither further investigations nor sensitivity analyses
that show the effect of the variation of the parameters
on the main quantities of interest are provided. To fill
this gap, in the ‘‘External Tissues Parameters Com-
parisons: 3-D Aorta’’ and ‘‘External Tissues Parame-
ters Comparisons: 3-D Iliac’’ sections we perform

several comparisons in terms of flow rate and dis-
placement for the aorta and iliac arteries, respectively,
as a function of different sets of values for the
parameters kS and cS.

Remark 2 From the numerical viewpoint, the Robin
boundary condition must be implemented according to
the time discretization scheme used in the solid problem.
In particular, since in this workwe use an explicit second
order mid-point scheme, the following relation holds

vnþ1S þ vnS
2

¼ dnþ1S � dnS
Dt

;

such that, for n ¼ 0; 1; 2; . . . ; the discrete form of (2)
reads

rS � nSþ kS þ
2cS
Dt

� �
dnþ1S

� 2cS
Dt

dnS þ cSv
n
S

� �
þ PextnS ¼ 0; on C0

S;ext:

1-D FSI Model for the Global Arterial Circulation

In a geometrical multiscale setting, the global arterial
circulation can be modeled by a network of 1-D FSI
models based on the Euler equations.16 Despite its
simple axial symmetric representation of the blood flow,
it has proven to be able to provide accurate information
under physiological and pathophysiological conditions,
and therefore gives insight about the main characteris-
tics that lead to the interplay among physical phenom-
ena taking place in the systemic arteries.

Equations

The 1-D FSI model is derived from the incom-
pressible Navier–Stokes equations by introducing
some simplifying hypotheses on the behavior of the
flow quantities over the cross-section of the artery. The
structural model is accounted through a simple pres-
sure-area relation. Being z 2 [0,L] the axial coordi-
nate, with L the length of the vessel, the resulting
governing equations are

@A

@t
þ @Q
@z
¼ 0 in ð0;LÞ � ð0;T�;

@Q

@t
þ @

@z
aF

Q2

A

� �
þ A

qF

@P

@z

þjF
Q

A
¼ 0 in ð0;LÞ � ð0;T�;

P� w Að Þ ¼ 0 in ð0;LÞ � ð0;T�;

8
>>>>>>>>><

>>>>>>>>>:

ð3Þ

where aF and jF are the Coriolis and friction coeffi-
cients, respectively,35 A is the cross-sectional area, Q
the volumetric flow rate, P the average pressure, and
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w Að Þ ¼ Pext þ bS

ffiffiffiffiffiffi
A

A0

r

� 1

 !

þ cS
1

A
ffiffiffiffi
A
p @A

@t

� �
; ð4Þ

where

bS ¼
ffiffiffiffiffiffi
p
A0

r
hSES

1� m2S
; cS ¼

TS tan/S

4
ffiffiffi
p
p hSES

1� m2S
;

being A0 the reference value for the vessel area, hS the
wall thickness, TS the wave characteristic time, and /S

the viscoelastic angle. The second and third terms in
(4) account for the elastic and viscoelastic response of
the vessel wall.

Problem (3) is finally closed by a proper set of initial
and boundary conditions. The latter can be either inflow
andoutflowboundary data or continuity equationswith
the surrounding models, as we detail in the ‘‘Interface
Equations for the Global Network of Models’’ section.

Numerical Approximation

The 1-D FSI problem is solved by using an operator
splitting technique based on an explicit second order
Taylor–Galerkin discretization, where the solution of
the problem is split into two steps, such that the first
one corresponds to the solution of a purely elastic
problem, while the second one provides a viscoelastic
correction.19 The spatial discretization is accomplished
using P1 finite elements. For more details see Malossi
et al.35 and references therein.

Interface Equations for the Global Network of Models

The solution of the global dimensionally-hetero-
geneous problem is addressed following the approach
first devised in Malossi et al.36 and later extended in
Malossi et al.37 to account for the continuity of the
vessel area. More precisely, let us consider a general
network of heterogeneous models connected by C cou-
pling nodes. At each node we write the conservation of
averaged/integrated quantities over the boundary
interfaces, such that the interface problem does not have
any dependency on the geometrical nature nor on the
mathematical formulation of each model. In other
words, we treat the coupled models as black boxes, such
that the equations and the modeling assumptions (e.g.,
3-D vs. 1-D modeling) are hidden behind general inter-
faces providing information regarding the boundary
values in terms of averaged/integrated quantities. Par-
ticularly, these boundary quantities are the volumetric
flow rate Q; the averaged normal component of the
traction vector S; and the area of the fluid section A;
hereafter referred to as coupling flow, coupling stress, and
coupling area, respectively. On the jth coupling interface
of the 3-D FSI model these quantities are computed as

Q3-D
j ¼

Z

Ct
F;j

uF � nFdC; j ¼ 1; . . . ; nC
FS;

S3-Dj ¼ 1

Ct
F;j

���
���

Z

Ct
e;j

rF � nFð Þ � nFdC; j ¼ 1; . . . ; nC
FS;

A3-D
j ¼ Ct

;j

���
���; j ¼ 1; . . . ; nC

FS;

where nF is the outgoing normal direction applied to
the fluid domain. The 3-D FSI fluid problem is closed
by imposing ðrF � nFÞ � s2F ¼ 0 and ðrF � nFÞ � s2F ¼ 0
on Ct

F;j; j ¼ 1; . . . ; nC
FS; where s1F and s2F are the two

tangential directions. In addition, we assume that the
normal stress rF � nFð Þ � nF is constant over the cou-
pling interfaces. Regarding the solid problem, follow-
ing the approach of Formaggia et al.,20 the vessel area
is imposed by prescribing a radial displacement of the
internal contour of the jth 3-D solid ring, i.e.,

dS � nS ¼ 0 on C0
I \ C0

S;j � ð0;T�;
dS �Wt

j x0 � x0G;j

� 	h i
� s1S ¼ 0 on C0

I \ C0
S;j � ð0;T�;

dS �Wt
j x0 � x0G;j

� 	h i
� s2S ¼ 0 on C0

I \ C0
S;j � ð0;T�;

8
>><

>>:

for j ¼ 1; . . . ; nC
FS; where s1S and s2S are the two tan-

gential directions lying on C0
S;j; j ¼ 1; . . . ; nC

FS: This
corresponds to scale the boundary area preserving its
original shape, where the radial scale factor is defined
as

Wt
j ¼

ffiffiffiffiffiffiffiffiffiffiffi
A3-D

j

A0
j

vuut � 1;

being Aj
0 and x0G;j the reference area of the jth coupling

interface of the 3-D fluid problem and its geometric
center, respectively. Other more general approaches
might be employed to weakly prescribe the value of the
area on the solid boundary interface. Nevertheless, since
in cardiovascular applications the displacement of the
vessel is relatively small, thus not far from the original
shape, the technique presented here can be considered
enough accurate for our analysis. Note that to close the
3-D FSI solid problem, we need to impose an additional
boundary condition on C0

S;jnC0
I \ C0

S;j; j ¼ 1; . . . ; nC
FS;

which in our case is rS � nS ¼ 0: Regarding the two
coupling interfaces of the 1-D FSI model we have

Q1-D
L ¼ �QL;
Q1-D

R ¼ QR;
S1-D ¼ �PL;
S1-DR ¼ �PR;

A1-D ¼ AL;

A1-D
R ¼ AR;

where the subscripts L and R stand for left and right
quantities, respectively.

The resulting set of conservation equations for the
fluid part of the interface problem is
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PI c

i¼1
Qc;i ¼ 0;

Sc;1 � Sc;i ¼ 0; i ¼ 2; . . . ; I c;

8
<

:
ð5Þ

where I c is the number of interfaces connected by the
cth coupling node, c ¼ 1; . . . ; C: More precisely, the
first equation ensures the conservation of the mass and
the second implies the continuity of the mean normal
stress. Note that no assumption is made on the type of
boundary data (Q or S) to be imposed on the 3-D and
1-D interfaces. Indeed, our methodology allows to
choose the type of data to be applied on any boundary
interface independently of the models type.36,37 The
iterations number of the interface problem might be
slightly affected by the type of boundary data imposed
on the interface of the coupled models. Particularly, in
all the tested cases, at a given time step the increase/
decrease of the iterations number is always bounded to
one or two iterations maximum, without a precise
correlation with the chosen type of boundary data. By
averaging the number of iterations per time step over
the entire simulation, this difference further reduces
and becomes nearly negligible.

Remark 3 Being written in terms of mean normal
stress, the set of interface equations (5) does not
preserve the total energy of the problem at the
interface between two dimensionally-heterogeneous
models. However, the kinetic contribution of the
total stress is negligible for cardiovascular problems,
as shown by Malossi,34 see Section 5.4.2.5 of the
dissertation, such that the results presented here using
(5) coincides with those that would have be obtained
by prescribing the continuity of the mean total normal
stress. Hence, the set of interface equations used in this
work are stable for this class of problems.

In case the continuity of the vessel area is enforced
between two vessels, the set of Eqs. (5) becomes

Q1-D
c;1 þQ3-D

c;2 ¼ 0;

S1-Dc;1 � S3-Dc;2 ¼ 0;

A1-D
c;1 �A

3-D
c;2 ¼ 0;

8
><

>:
ð6Þ

where, for the sake of clarity, the model to which each
quantity belongs is indicated in the superscript. More
precisely, the continuity of the vessel area cannot be
imposed between two 1-D FSI vessels. In fact, due to
modeling reasons, the 1-D FSI problem needs just one
physical boundary condition on each side of the seg-
ment, and therefore it is not possible to impose both a
fluid quantity and the vessel area at the same time. On
the contrary, the 3-D FSI model needs boundary data
on both the fluid and the solid parts of each interface,
such that it is possible to set the continuity of its
boundary areas with the surrounding 1-D FSI models.

In addition, we remark that (6) is written for the spe-
cific case of a 3-D FSI interface coupled with a single 1-
D FSI model. In the case of a generalization to two or
more 1-D models connected to the same 3-D FSI
interface, the continuity of the area does not make
sense, and for this reason we do not address this case.37

From the numerical viewpoint, the global interface
problem is written in a residual formulation and solved
by using the Newton and the Broyden methods. First of
all, the Jacobian of the global interface problem is either
computed analytically by solving the tangent problem
associated to each model, or approximated with finite
differences. The resulting matrix is used to perform a
single (inexact-)Newton iteration, which corresponds to
the very first iteration at the first time step of the sim-
ulation. After that, from the second iteration and for all
the other time steps, the Jacobian is updated by using a
Broyden method, which is based on a cheap evaluation
of the residual of the interface problem.34,35,37

NUMERICAL SIMULATIONS

In this section we present several comparisons among
different geometrical multiscale models. The purpose of
these comparisons is manifold. On the one hand, we
study the interaction between 3-D patient specific
geometries and a global arterial network of 1-Dmodels.
This results are compared both with a full 1-D network
of arteries, and a stand-alone 3-D simulation with
boundary data taken from the same full 1-D network.
On the other hand, we also analyze the effect of the 3-D
solid boundary conditions on the simulations. In par-
ticular, we perform a sensitivity analysis of the external
tissues parameters, and we also compare results of
configurations where the area at the interfaces is fixed,
with those where it is scaled to have the continuity of the
vessels size with the surrounding 1-D arteries.

All the simulations presented in this work have been
performed using the LifeV library1 on several cluster
nodes with two Intel� Xeon� processors X5550 (quad
core, 8 MB cache, 2.66 GHz CPU) each, intercon-
nected by a 20 Gb/s InfiniBand� architecture.

Human Arterial Tree Model

Tomodel the global circulation we use the data of the
arterial network provided in Reymond et al.,43 which is
composed by 103 elements (4 coronary, 24 aortic, 51
cerebral, 10 upper limbs, and 14 lower limbs) and
includes all the values of the parameters required to
describe the blood flow, such as the geometrical prop-
erties of the vessels (length and proximal/distal areas)

1http://www.lifev.org.
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and the data for the terminals, which are modeled as
three-element windkessel elements and account for the
cumulative effects of all distal vessels (small arteries,
arterioles, and capillaries). These values have been
obtained both from in vivo measurements and averaged
data from the literature. The presence of the venous cir-
culation is taken into account by imposing the return
venous pressure Pv on the distal side of each windkessel
terminal node. Regarding the parameters of the wall,
since we use a different model, we estimate these values
from other sources.35 The main parameters that define
the problem are summarized in Table 1. The average
space discretization of each 1-D FSI segment is 0.1 cm.
Regarding the timediscretization, in each arterywedefine
a different time step based on the local CFL require-
ments. These local inner time steps are defined such that
they synchronize with each other at each global outer
time step, i.e., the time step chosen for the 3-D FSI
models. This guarantee the possibility to write the inter-
face equations between all the coupled models at each
outer time step. More details about this two-level adap-
tive time step technique are provided in Malossi et al.35

Geometry Reconstruction and Mesh Generation

In this work we use the 3-D FSI model to simulate
the flow in two main patient-specific arteries, i.e., the
aorta and the iliac of two healthy patients. These
geometries have several bifurcations and some severe
bends, such that the blood flow dynamics can be pre-
cisely described only by employing a 3-D model.

The segmentation of the aorta was obtained
through MRI Time of Flight acquisition on a 3T MRI
scanner (Siemens Trio-Tim 3T System); details on the
used sequences are given in Reymond et al.42 Then, the
arterial lumen was reconstructed in 3-D from MRI
magnitude data (ITK Snap software). Since the
thickness of the wall is not visible in MRI data, it had
to be synthetically reconstructed. In particular, it has
been estimated to be equal to 10 percent of local lumen

radius, which is a commonly accepted approxima-
tion.31 Regarding the iliac, the geometry of the lumen
has been taken from the Simtk website,2 and the
thickness of the wall has been reconstructed with the
same assumptions used for the aorta.

To correctly model the different material properties
of the arterial wall and of the external tissues, we di-
vide the solid domains into several regions, which are
schematically shown in Fig. 2. Note that for the iliac
geometry we provide two different configurations,
which are later used in the ‘‘External Tissues Param-
eters Comparisons: 3-D Iliac’’ section for a numerical
comparison of the results as a function of the tissue
parameters at the bifurcations. The main wall param-
eters that define the 3-D problems are summarized in
Table 2.

Remark 4 The jumps in the mechanical properties of
the arterial wall (see Fig. 2 and Table 2) might
introduce wave reflections in the flow field. Never-
theless, these reflections are negligible if compared to
the physical reflection driven by the sudden change in
the vessel lumen at the bifurcations. Moreover, the
structural model can be easily refined by introducing
smooth continuous functions between the different wall
regions. This improvement will be included in future
works.

Remark 5 The value of the arterial wall density has
been taken from Crosetto et al.13 and Moireau et al.39

In Malossi,34 see Section 5.4.2.6 of the dissertation, a
comparison of the results obtained by setting qS = 1.2
g/cm3, with those computed by using either qS = 1.0 g/
cm346,47 or qS = 0.0 g/cm3 (purely elastic wall without
inertia) is presented, proving that (i) the inertia of the
arterial wall has a very small impact on this class of
applications, and (ii) the methodology and algorithms
described in Section 2 are stable even if the arterial wall
density is neglected.

Finally, for each arterial vessel two separate con-
forming fluid and solid geometries have been generated
using the VTK,3 VMTK,4 and ITK5 libraries.17 The
resulting mesh of the fluid part of the 3-D aorta con-
sists of 280,199 unstructured tetrahedral elements with
50,866 vertices, while the solid part is made of 278,904
structured tetrahedral elements with 58,565 vertices.
The corresponding average space discretizations for
both the fluid and solid problems is 0.158 cm.
Regarding the 3-D iliac, the mesh of the fluid part

TABLE 1. Main parameters of the 1-D network of arteries.

qF Blood density 1.04 g/cm3

lF Blood viscosity 0.035 g/cm/s

jF Friction coefficient 2.326 cm2/s

aF Coriolis coefficient 1.1

Pext Reference external pressure 100,000 dyn/cm2

Pv Venous pressure 6,666 dyn/cm2

hS/RS Wall thickness/local radius 0.1

ES Young’s modulus 3–12 9 106 dyn/cm2

mS Poisson’s ratio 0.50

/S Viscoelastic angle 10�
TS Systolic period 0.24 s

Heart rate 75 bpm

For more details see Malossi et al.35 and references therein.

2http://simtk.org.
3http://www.vtk.org.
4http://www.vmtk.org.
5http://www.itk.org.
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consists of 350,376 unstructured tetrahedral elements
with 63,716 vertices, while the solid part is made of
359,256 structured tetrahedral elements with 60,788
vertices. In this case, the corresponding average space
discretizations for both the fluid and solid problems is
0.076 cm. Regarding the time discretization, we use a
constant time step of 0.001 s.

Remark 6 The mesh size employed for the
discretization of the 3-D geometries used in our
studies might not be fine enough to represent the
smallest fluid dynamics structures. Particularly, the
relatively high Reynolds number in the aorta requires
the use of boundary layers to capture the details of the
fluid dynamics near the wall (which are fundamental to
evaluate, e.g., the wall shear stress). Nevertheless, the
focus of our analysis is on the value of the averaged/
integrated interface quantities, such as the flow rate,
the inlet/outlet pressure drop, and the boundary wall
displacement, for which the employed discretization is
fine enough.

Geometrical Multiscale Modeling

In this section we set up and solve three different
geometrical multiscale models where the 3-D patient-
specific vessels in Fig. 2 are embedded in the 1-D net-
work described in the ‘‘Human Arterial Tree Model’’
section, which represents an average healthy patient.

To set up the models we use the following procedure.
First of all, we identify the 1-D elements of the network
to be removed or cut, since they overlap with some
regions of the 3-D patient-specific geometries. This is
done by measuring the length of the different branches
of the 3-D vessels and comparing these data with the
one of the 1-D network. Obviously, this phase presents
several degrees of freedom and arbitrariness. The de-
gree of precision of this step also depends on the region
of interest and the required level of accuracy (e.g.,
rough evaluation of flow vs. precise local quantification
for surgery planning). In a clinical context this opera-
tion should be supervised by the clinician in order to
immediately determine the crucial regions for the
numerical simulations. Once the 1-D elements are cut,
the second step consists in changing the reference area
and the wall thickness of the 1-D arteries in order to
match the one of the nearby 3-D interfaces. Since the 3-
D geometries are not symmetric, it is possible that some
asymmetries are introduced also in the 1-D networks
(e.g., between the left and right external iliac arteries).
Moreover, it is important to check that the resulting
distal area is always smaller or equal than the proximal
one. If it is not the case, some further adjustments to the
1-D elements are required to avoid a non-physiological
behavior of the flow in those elements.

FIGURE 2. View of the aorta and iliac geometries with wall regions. (a) The aorta is divided in three regions: aortic arch (yellow),
carotids and subclavians (red), and vertebrals (blue). (b) The iliac is divided in four regions: abdominal aorta (red), common iliac
(yellow), external iliac (blue), and inner iliac (cyan). (c) Same as (b) with two additional regions at the bifurcations: abdominal aorta
bifurcation (green) and common iliac bifurcations (magenta).

TABLE 2. Wall parameters of the 3-D FSI arteries.

qS Wall density 1.2 g/cm3

hS/RS Wall thickness/local radius 0.1

ES Young’s modulus 3–12 9 106 dyn/cm2

mS Poisson’s ratio 0.48

The Young’s modulus of the 3-D FSI aorta and iliac is 3,000,000

dyn/cm2 in all the branches apart from the vertebral arteries, where

it is 6,000,000 dyn/cm2, and inner iliac arteries, where it is

12,000,000 dyn/cm2.
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Parallel Solution of the Global Problem

The parallelism is handled by distributing the models
across the available processes and cluster nodes. Each
model can be either assigned to a single process or
partitioned across several nodes. In our implementa-
tion, we distribute the models as a function of their type
and computational cost. More precisely, the models
obtained through a dimensional reduction (e.g., 1-D
FSI models and the lumped parameters terminals) are
distributed one per each available process. If the
number of models exceeds the number of processes, the
algorithm assigns more models to the same process. For
examples, when solving a network of 150 1-D and/or
lumped parameters models using 48 processes, each
process holds at least 3 models. The more expensive 3-
D FSI models are then partitioned across all the
available nodes and processes (including those that are
already holding one or more reduced dimensional
models). If more 3-D models are present in the net-
work, each of them is split on a subset of nodes such
that they globally use all the available resources.
Thanks to the parallelism intrinsic in our algorithms,
this choice leads in general to a balanced load.

The global network of elements is solved by using
the Broyden method, as described at the end of the
‘‘Interface Equations for the Global Network of
Models’’ section. The convergence to the imposed
tolerance of 10�6 is achieved between 2 and 4 itera-
tions; the average number of iterations per time step is
approximately 2.25 in all the presented cases.

External Tissues Parameters Comparisons: 3-D Aorta

In this section we focus on the study of the external
tissues parameters kS and cS introduced by the Robin
boundary condition on the arterial wall of the 3-D FSI
problem. For this analysis, we consider a geometrical
multiscale model assembled by coupling the 3-D pa-
tient-specific aorta in Fig. 2a with the 1-D arterial tree
described in the ‘‘Human Arterial Tree Model’’ sec-
tion, which represents an average healthy patient. For
the sake of simplicity, the results presented in this
section are obtained by fixing the position of the
boundary solid rings of the 3-D arterial wall of the
aorta, i.e., dS ¼ 0 on C0

S;j; j ¼ 1; . . . ; nC
FS:

The first study we perform consists of a sensitivity
analysis of the main quantities of interest with respect
to a variation of the elastic parameter kS. This is done
by assuming cS = 0 dyn s/cm3 and choosing five sets of
values for the coefficient kS at the different branches of
the aorta, as detailed in Table 3. Note that the values
of the different cases are chosen as multiples of those
of case E1

A.
The results of this comparison, at the most signifi-

cant coupling interfaces between the 3-D aorta and the
1-D network, are summarized in Fig. 3, where we also
plot the result of the full 1-D arterial network. First of
all, we observe that the behavior of the flow rate and
pressure is quite different in each of the five considered
cases. From the behavior of the pressure we observe
that the elastic tissues parameters of case E1

A is not stiff
enough to correctly capture the cardiovascular wave
pulse (the pressure level is low and nearly flat). This is
confirmed by the analysis of the displacement magni-
tude field of the 3-D arterial wall of the aorta at the
second heart beat (see Fig. 4), where we observe a
small overinflation of the thoracic aorta in case E1

A and
severe overinflations of the left common carotid artery
for the first three sets of coefficients in Table 3.

The analysis of the flow rate profiles in the other
branches displayed in Fig. 3 shows that all the con-
sidered cases present spurious high-frequency oscilla-
tions at the vertebral arteries, which are probably the
cause of the numerical breakdown in cases E2

A and E4
A.

In case E5
A, which represents the stiffest artery, the

oscillations do not appear in the left vertebral artery,
suggesting that this phenomenon might be related to
the stiffness of the external tissues parameters. In
particular, the two vertebral arteries are the smallest
branches of the considered geometry, which in turn
means that the wall thickness there is considerably
smaller than in the other branches (we recall that the
thickness of the solid domain is chosen to be propor-
tional to the local lumen of the vessel). This could
explain the fact that the high-frequency oscillations are
not present in the other branches of the same geome-
try.

Remark 7 Here, as well as in the forthcoming
‘‘External Tissues Parameters Comparisons: 3-D

TABLE 3. Empirical external tissues coefficients at the different wall regions of the 3-D aorta (see Fig. 2a).

Artery

kS (dyn/cm3)

cS (dyn s/cm3)E1
A E2

A E3
A E4

A E5
A

Aortic arch 15,000 30,000 45,000 60,000 75,000 0.0

Left/right carotid and subclavian 22,500 45,000 67,500 90,000 112,500 0.0

Left/right vertebral 30,000 60,000 90,000 120,000 150,000 0.0

We define five cases for the sets of values of the elastic coefficient.
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Iliac’’ section, the results of the full 1-D network are
aimed to provide a reference, validated43 value for the
main quantities of interest, and must not be considered
as a reference exact solution. Indeed, differences
between the results of the geometrical multiscale
models and those of the full 1-D network are
expected in view of the patient-specific topologies of
the 3-D geometries embedded in the former models.

Further comments about the high-frequency oscil-
lations observed in the purely elastic case can be per-
formed by studying the results of a second set of
simulations in which we introduce the viscoelastic

response of the tissues through the parameter cS (see
Eq. (2)). As previously done for the elastic parameter,
we select several sets of values for the coefficient cS at
the different branches of the aorta, as detailed in Ta-
ble 4. Regarding the elastic parameter, we choose the
set of values E4

A, which has proven to be stiff enough to
prevent excessive strain in all the branches of the 3-D
geometry (see Fig. 4), even if it was not able to smooth
out the high-frequency oscillations observed in the
smallest branches.

The results of this comparison, at the same inter-
faces of the previous one, are summarized in Fig. 5.
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FIGURE 3. Flow rate and pressure comparison, at the third heart beat, for the sets of values given in Table 3 (elastic behavior of
the external tissues), at the most significant coupling interfaces between the 3-D aorta (see Fig. 2a) and the 1-D network. The black
line is the solution of the full 1-D network.
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First of all, we observe that the spurious high-fre-
quency oscillations disappear at all the boundary
interfaces and independently of the chosen set of values
for the parameter cS. This behavior confirms the
importance of including the viscoelastic effects in the
model of the arterial wall, not only in 1-D FSI simu-
lations, as already proven, for instance, by Malossi
et al.,35 but also in 3-D FSI problems, as claimed by
Moireau et al.39 Moreover, this result suggests that the
high-frequency oscillations observed in Fig. 3 might be
related mainly to the model chosen for the structure of
the arterial wall. In particular, we recall that in our
simulations we use a linear elastic isotropic model,
which does not include any damping effect.

Regarding the value of the viscoelastic parameter,
we observe that the flow rate and pressure waveforms
change significantly among the simulated cases. More
precisely, the set of values V1

A and V2
A, are not high

enough to smooth the low-frequency oscillations of the
3-D FSI elastic wall. Moreover, they lead to a pressure
overshoot at most of the branches during the systolic
peak. On the contrary, the results given by the other

four sets of values are all very similar and belong to the
physiological regime. In particular, we observe a sort
of limit behavior of the viscoelastic parameter, such
that above a certain threshold the sensitivity of the
flow rate and pressure waveform to a variation of the
parameter cS becomes very small. This is coherent with
the nature of the Robin boundary conditions, whose
contribution decrease drastically when the parameters
value become high. In view of these results, hereafter
we compute the value of the viscoelastic parameter as
one tenth of the value of the corresponding elastic one,
i.e.,

cS ¼ kS=10: ð7Þ

This rule provides a reliable and easy way to calibrate
the viscoelastic parameter of the Robin boundary
condition for the external tissues.

External Tissues Parameters Comparisons: 3-D Iliac

In this section we further extend the study of the
external tissues parameters kS and cS by considering a

FIGURE 4. Wall displacement magnitude comparison, at the end-systole of the second heart beat (t 5 1.2 s), for the sets of values
given in Table 3 (elastic behavior of the external tissues) of the 3-D aorta (see Fig. 2a) coupled with the 1-D network (not shown).
The color bar ranges from blue (0.0 cm) to red (1.8 cm).

TABLE 4. Empirical external tissues coefficients at the different wall regions of the 3-D aorta (see Fig. 2a).

Artery

kS (dyn/cm3) cS (dyn s/cm3)

E4
A V1

A V2
A V3

A V4
A V5

A V6
A

Aortic arch 60,000 500 1,000 5,000 10,000 50,000 100,000

Left/right carotid and subclavian 90,000 500 1,000 5,000 10,000 50,000 100,000

Left/right vertebral 120,000 500 1,000 5,000 10,000 50,000 100,000

We define six cases for the sets of values of the viscoelastic coefficient.
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different problem. More precisely, we set up a geo-
metrical multiscale model composed by the 3-D
patient-specific iliac in Fig. 2b coupled with the 1-D
arterial tree described in the ‘‘Human Arterial Tree
Model’’ section, which represents an average healthy
patient. For the sake of simplicity, the results presented
in this section are obtained by fixing the position of the
boundary solid rings of the 3-D arterial wall of the
iliac, i.e., dS ¼ 0 on C0

S;j; j ¼ 1; . . . ; nC
FS:

First of all, we perform a sensitivity analysis of the
main quantities of interest with respect to a variation
of the external tissues parameters. In view of the results
achieved in the previous section, we directly consider
both the elastic and viscoelastic coefficients. For the
first one, we choose five sets of values at the different
branches of the iliac, as detailed in Table 5. Note that
the values of the different cases are chosen as multiples
of the ones of case E1

I. Then, following the result of the

    1.6 1.8 2 2.2 2.4    
−50

0

50

100

150

200

250
.

.

.

XXii1

X1

X1

X1

X1

X1

X1

1-D
VA

1

VA
2

VA
3

VA
4

VA
5

VA
6

Time [s]

Fl
ow

ra
te

[c
m

3
/s

]

Thoracic aorta B

    1.6 1.8 2 2.2 2.4    
−15

−5

5

15

25

35

45
.

.

.
XXii1

X1

X1

X1

X1

X1

X1

1-D
VA

1

VA
2

VA
3

VA
4

VA
5

VA
6

Time [s]

Fl
ow

ra
te

[c
m

3
/s

]

Left common carotid

    1.6 1.8 2 2.2 2.4    
−15

−5

5

15

25

35

45
.

.

.

XXii1

X1

X1

X1

X1

X1

X1

1-D
VA

1

VA
2

VA
3

VA
4

VA
5

VA
6

Time [s]

Fl
ow

ra
te

[c
m

3
/s

]

Right common carotid

    1.6 1.8 2 2.2 2.4    
−40

−25

−10

5

20

35

50
.

.

.

XXii1

X1

X1

X1

X1

X1

X1

1-D
VA

1

VA
2

VA
3

VA
4

VA
5

VA
6

Time [s]

Fl
ow

ra
te

[c
m

3
/s

]

Left subclavian

    1.6 1.8 2 2.2 2.4    
−1

0.8

2.6

4.4

6.2

8
.

.

.

XXii1

X1

X1

X1

X1

X1

X1

1-D
VA

1

VA
2

VA
3

VA
4

VA
5

VA
6

Time [s]

Fl
ow

ra
te

[c
m

3
/s

]

Left vertebral

    1.6 1.8 2 2.2 2.4    
−1

0.5

2

3.5

5

6.5

8
.

.

.

XXii1

X1

X1

X1

X1

X1

X1

1-D
VA

1

VA
2

VA
3

VA
4

VA
5

VA
6

Time [s]

Fl
ow

ra
te

[c
m

3
/s

]

Right vertebral

    1.6 1.8 2 2.2 2.4    
0.7

0.9

1.1

1.3

1.5

1.7

1.9x 10
5 .

.

.

XXii1

X1

X1

X1

X1

X1

X1

1-D
VA

1

VA
2

VA
3

VA
4

VA
5

VA
6

Time [s]

Pr
es

su
re

[d
yn

/c
m

2
]

Thoracic aorta B

    1.6 1.8 2 2.2 2.4    
0.7

0.9

1.1

1.3

1.5

1.7

1.9x 10
5 .

.

.

XXii1

X1

X1

X1

X1

X1

X1

1-D
VA

1

VA
2

VA
3

VA
4

VA
5

VA
6

Time [s]

Pr
es

su
re

[d
yn

/c
m

2
]

Left common carotid

    1.6 1.8 2 2.2 2.4    
0.7

0.9

1.1

1.3

1.5

1.7

1.9x 10
5 .

.

.

XXii1

X1

X1

X1

X1

X1

X1

1-D
VA

1

VA
2

VA
3

VA
4

VA
5

VA
6

Time [s]

Pr
es

su
re

[d
yn

/c
m

2
]

Right common carotid

    1.6 1.8 2 2.2 2.4    
0.7

0.9

1.1

1.3

1.5

1.7

1.9x 10
5 .

.

.

XXii1

X1

X1

X1

X1

X1

X1

1-D
VA

1

VA
2

VA
3

VA
4

VA
5

VA
6

Time [s]

Pr
es

su
re

[d
yn

/c
m

2
]

Left subclavian

    1.6 1.8 2 2.2 2.4    
0.7

0.9

1.1

1.3

1.5

1.7

1.9x 10
5 .

.

.

XXii1

X1

X1

X1

X1

X1

X1

1-D
VA

1

VA
2

VA
3

VA
4

VA
5

VA
6

Time [s]

Pr
es

su
re

[d
yn

/c
m

2
]

Left vertebral

    1.6 1.8 2 2.2 2.4    
0.7

0.9

1.1

1.3

1.5

1.7

1.9x 10
5 .

.

.

XXii1

X1

X1

X1

X1

X1

X1

1-D
VA

1

VA
2

VA
3

VA
4

VA
5

VA
6

Time [s]

Pr
es

su
re

[d
yn

/c
m

2
]

Right vertebral

FIGURE 5. Flow rate and pressure comparison, at the third heart beat, for the sets of values given in Table 4 (elastic and
viscoelastic behavior of the external tissues), at the most significant coupling interfaces between the 3-D aorta (see Fig. 2a) and the
1-D network. The black line is the solution of the full 1-D network.
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previous section, the viscoelastic parameter is obtained
from (7).

The results of this comparison, at the most signifi-
cant coupling interfaces between the 3-D iliac and the
1-D network, are summarized in Fig. 6. There we ob-
serve that, apart from case E1

I, whose tissues are clearly
not stiff enough (the pressure level is significantly lower
than the reference one), all the other cases lead to re-
sults in a physiological regime. Moreover, there are no
significant differences among the last four cases, even if
the parameters change considerably. This confirms the
results of the previous section. In particular, we remark
that the high sensitivity observed in Fig. 3 for the aorta
was mainly due to the lack of damping terms and,
consequently, to the high-frequency oscillations in the
solution, rather than to a true sensitivity to the elastic
parameter kS.

Regarding the displacement of the 3-D arterial wall,
similarly to the previous section, we observe a gradual

decrease in the displacement magnitude with respect to
an increase in the value of the tissues parameters. No
overinflations appear along the iliac branches in all the
simulated cases. However, even in the stiffest case, we
observe some severe overinflations at all the three
bifurcations. This non-physiological behavior is due to
the local reduced stiffness of the vessel, which in turn is
caused by the fact that at the branching points the
lumen of the vessel increases significantly, while the
thickness of the wall gradually diminish (since the
distal branches have a smaller radius). In the real pa-
tient, these large deformations are prevented thanks to
the support of the external tissues and to the presence
of collagen fibers, which are not accounted in our
model.

To solve this issue without introducing a more
complex model for the 3-D vessel wall, we use a second
configuration of the iliac geometry, where two addi-
tional regions are introduced at the bifurcations (see

TABLE 5. Empirical external tissues coefficients at the different wall regions of the 3-D iliac (see Fig. 2b).

Artery

kS (dyn/cm3)

cS (dyn s/cm3)E1
I E2

I E3
I E4

I E5
I

Abdominal aorta 25,000 50,000 75,000 100,000 125,000 kS/10

Left/right common iliac 35,000 70,000 105,000 140,000 112,500 kS/10

Left/right external iliac 37,500 75,000 112,500 150,000 187,500 kS/10

Left/right inner iliac 42,500 85,000 127,500 170,000 212,500 kS/10

We define five cases for the sets of values of the coefficients.
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FIGURE 6. Flow rate and pressure comparison, at the third heart beat, for the sets of values given in Table 5 (elastic and
viscoelastic behavior of the external tissues), at the most significant coupling interfaces between the 3-D iliac (see Fig. 2b) and the
1-D network. The black line is the solution of the full 1-D network.
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TABLE 6. Empirical external tissues coefficients at the bifurcations of the 3-D iliac (green and magenta wall regions in Fig. 2c).

Artery

kS (dyn/cm3)

cS (dyn/cm3)E4
I E4a

I E4b
I E4c

I

Abdominal aorta (bifurcation) 100,000 200,000 300,000 400,000 kS/10

Left/right common iliac (bifurcations) 140,000 280,000 420,000 560,000 kS/10

From the reference case E4
I (see Table 5), we define three additional configurations.

FIGURE 7. Wall displacement magnitude comparison, at the end-systole of the third heart beat (t 5 2.0 s), for the sets of values
given in Table 6 (stiffening of the bifurcations), of the 3-D iliac (see Fig. 2c) coupled with the 1-D network (not shown). The color bar
ranges from blue (0.0 cm) to red (0.5 cm).

FIGURE 8. Lateral view of the top and low left bifurcations for the four cases in Fig. 7.
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Fig. 2c). Then we choose case E4
I as the reference one,

and we introduce three additional sets of values for the
tissues parameters at the iliac bifurcations, as detailed
in Table 6. As before, the values of the different cases
are chosen as multiples of the reference one.

In Fig. 7 we compare the magnitude of the dis-
placement field of the 3-D iliac arterial wall for the
different cases. The graphs show that at each increase
in the values of the tissues parameters, the overinfla-
tions at the branches diminish. This phenomenon is
more visible in Fig. 8, where an enlarged lateral view of
the top and low left bifurcations is shown. In addition,
a further analysis of the flow rate and pressure wave-
form at the coupling interfaces (which for brevity is not

presented here) shows no significant changes compared
to the results in Fig. 6. In view of these results we
conclude that, despite their simple formulation, Robin
boundary data provide a reliable way to account for
the effect of external tissues over the arterial wall.
Moreover, they can be used to somehow compensate a
local lack of stiffness due to particular geometrical
topologies, at least in healthy arteries.

Solid Ring Boundary Condition Comparisons

In this section we compare the solution of geomet-
rical multiscale models in which the boundary solid
rings of the 3-D geometries are fixed, as opposed to the

FIGURE 9. 3-D aorta wall displacement magnitude difference, at the end-systole of the sixth heart beat (t 5 4.4 s), between the
scaled area and the fixed area cases. The color bar ranges from blue (0.0 cm) to red (0.2 cm).

FIGURE 10. 3-D iliac wall displacement magnitude difference, at the end-systole of the sixth heart beat (t 5 4.4 s), between the
scaled area and the fixed area cases. The color bar ranges from blue (0.0 cm) to red (0.1 cm).
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case where the same 3-D boundary interfaces are
scaled to enforce the continuity of the vessels size with
the surrounding 1-D arteries. For these comparisons
we use the same geometrical multiscale models intro-
duced in the ‘‘External Tissues Parameters Compari-
sons: 3-D Aorta’’ and ‘‘External Tissues Parameters
Comparisons: 3-D Iliac’’ sections. For the values of the
elastic parameter of the external tissues, we select cases
E4
A and E4b

I for the aorta and iliac, respectively, while
the viscoelastic parameter is given by (7).

In Figs. 9 and 10 several views of the magnitude
difference of the two 3-D geometries displacement
fields are shown. In particular, we observe that a sig-
nificant difference between the two cases exists only
near the coupling interfaces, where the boundary
conditions change. In the other parts of the wall the
result is almost the same. In addition, a further anal-
ysis of the flow rate and pressure waveform at the
coupling interfaces (which for brevity is not presented
here) shows no significant differences between the two
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FIGURE 11. Flow rate comparison, at the sixth heart beat, for different configurations of the global arterial network, at the eight
interfaces of the 3-D aorta. The color of the 3-D picture represents the pressure field at the end-systole of the sixth heart beat
(t 5 4.4 s), where the color bar ranges from blue (80,000 dyn/cm2) to red (165,000 dyn/cm2). Positioning of 1-D network elements is
purely visual.
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configurations. This is coherent with the St. Venant–
Kirchhoff theory, which states that the influence of the
boundary conditions is bounded to the boundaries in
dissipative systems. In view of these results we con-
clude that the continuity of the vessel area between 3-D
and 1-D models is not essential for cardiovascular
applications, unless the focus of the analysis is on the
study of the dynamics and stresses of the wall near the
boundary interfaces. On the contrary, it might still be
relevant to avoid (or at least reduce) the generation of
spurious interface wave reflections in other flow
regimes.37

Geometrical Multiscale Models Comparisons

In this section we present several comparisons
among different geometrical multiscale models. More
precisely we compare the results of the full 1-D arterial
tree described in the ‘‘Human Arterial Tree Model’’
section, which represents an average healthy patient,

with the two dimensionally-heterogeneous models
introduced in the ‘‘External Tissues Parameters Com-
parisons: 3-D Aorta’’ and ‘‘External Tissues Parame-
ters Comparisons: 3-D Iliac’’ sections, and a third
model where the 3-D aorta and iliac geometries are
coupled together within the same 1-D network. The
purpose of the latest model is twofold: on the one
hand, it serves to prove the robustness of the presented
algorithms in configurations where more than a single
3-D FSI model is included; on the other hand, it is used
to analyze the combined effect of multiple disjoint 3-D
geometries embedded in the same arterial network,
compared to the cases in which just one single 3-D
geometry is considered. For all the configurations, we
impose the continuity of the vessel area through (6) at
the interfaces between the 3-D geometries and the 1-D
arteries. Regarding the values of the elastic parameter
of the external tissues, we select cases E4

A and E4b
I for

the aorta and iliac, respectively, while the viscoelastic
parameter is given by (7).
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FIGURE 12. Flow rate comparison, at the sixth heart beat, for different configurations of the global arterial network, at the
five interfaces of the 3-D iliac. The color of the 3-D picture represents the pressure field at the end-systole of the sixth heart beat
(t 5 4.4 s), where the color bar ranges from blue (80,000 dyn/cm2) to red (165,000 dyn/cm2). Positioning of 1-D network elements is
purely visual.
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The results of the flow rate waveform comparison at
all the coupling interfaces between the 1-D network
and the 3-D aorta and iliac are summarized in Figs. 11
and 12, respectively. First of all, we observe that the
presence of the 3-D iliac geometry has almost no effect
on the upstream solution (apart in the thoracic aorta B
interface, which is quite close to the iliac artery), while
the 3-D aorta produces a visible, even if small, differ-
ence in the downstream flow (see, e.g., the external iliac
interfaces). In addition, even if the inlet flow rate is the
same in all the cases (see ascending aorta 2 flow rate in
Fig. 11) the flow rate at the seven outlets of the aorta is

slightly different. This can be justified by observing
that the 3-D geometry of the aorta is not symmetric
(particularly, the branches have different left and right
vessel sizes), thus inducing a different splitting of the
flow compared to the one obtained for the full 1-D
arterial tree. Particularly, this difference is more pro-
nounced in the vertebral arteries, where the left/right
area is equal to 0.1 cm2 in the 1-D network, while in
the 3-D geometry we have 0.2 cm2 on the left side and
0.07 cm2 on the right one.

Regarding the behavior of the pressure and, conse-
quently, of the radial scale factor, which are shown in
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FIGURE 13. Pressure and radial scale factor comparisons, at the sixth heart beat, for different configurations of the global arterial
network, at the most significant coupling interfaces of the 3-D aorta and iliac (see Figs. 11 and 12).
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Fig. 13, we observe a difference in mean values
between the cases with and without the 3-D aorta
geometry. This is due to an increase in the resistance
between the inlet and the outlet, which in turn is due to
the presence of 3-D fluid dynamics. This was confirmed
by a sensitivity analysis with respect to the Young’s
modulus (for brevity not reported here), which has
shown almost no effect on the level of the end-diastolic
pressure. A possible motivation for the increase of
the resistance could be related to the presence of the

curvature of the aortic arch in the 3-D model, which is
not accounted in the 1-D problem. Moreover, recircu-
lation regions as well as friction forces at branching
points are also neglected in the 1-D case. In view of
these results, we conclude that 3-D patient-specific
geometries might have a significant effect on the arterial
flow, even in the case of healthy arteries. The presence
of geometrical singularities and pathologies, such as
aneurysms and stenoses, would probably increase this
effect and will make the subject of future works.
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FIGURE 14. Flow rate and pressure comparisons, at the sixth heart beat, between the solution of the geometrical multiscale
problem and the one of the stand-alone 3-D aorta with flow rate or stress boundary data from the full 1-D network, at the most
significant coupling interfaces of the 3-D aorta.
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Stand-Alone 3-D FSI Modeling

In this section we set up a comparison between the
results of the geometrical multiscale models presented
in the ‘‘External Tissues Parameters Comparisons: 3-D
Aorta’’ and ‘‘External Tissues Parameters Compari-
sons: 3-D Iliac’’ sections, and their stand-alone 3-D
FSI simulations counterparts. More precisely, the
stand-alone 3-D problems are set up by considering the
same 3-D geometries and data used in the two refer-
ence geometrical multiscale models (cases Ej

0 and E4b
I ,

respectively, where the viscoelastic parameter is given
by (7)). However, at the boundary interfaces, instead
of imposing the set of conservation equations with the
surrounding models, as described in the ‘‘Interface
Equations for the Global Network of Models’’ section
we prescribe either flow rate or stress time profiles,
taken from a precomputed solution of a full 1-D
arterial tree. Following the same approach, we also
impose the radial scale factor time profile on the solid
ring boundary interfaces, such that they are not fixed.

The flow rate and pressure waveform comparisons,
at themost significant coupling interfaces between the 3-
D aorta and the 1-D network, are summarized in
Fig. 14. The results show significant differences between
the reference configuration, i.e., the geometrical multi-
scale model, and the solution computed by solving the
stand-alone 3-D aorta model. For instance, let us con-
sider the flow rate waveform. The red lines coincide with
the precomputed (and imposed) solution of the full 1-D

arterial tree, which is different from the one of the
geometrical multiscale model, as already discussed in
the ‘‘Geometrical Multiscale Models Comparisons’’
section. On the contrary, the blue lines are computed by
imposing a stress boundary data. However, even in this
case, the resulting flow rate is significantly different
from the reference one. In particular, the flow rate
prediction in the left common carotid and vertebral
arteries are clearly incorrect. Regarding the pressure
waveform, where the precomputed solution of the full 1-
D arterial network coincides with the blue lines, a visible
mismatch between the reference solution and the stand-
alone cases is always present. In particular, the average
pressure level is overestimated when the flow rate is
imposed, and underestimated when the stress is pre-
scribed. As a consequence of the different flow rate and
pressure waveform, also the displacement field changes,
as shown in Fig. 15. The differences with respect to the
reference case are more evident when imposing the flow
rate, where we also observe a non-physiological exces-
sive strain (overinflation) of the left common carotid
artery, even if we use the same values for the tissues
parameters in both simulations.

Regarding the stand-alone 3-D iliac model, similar
considerations hold, as shown in Figs. 16 and 17.
Among other things, we highlight the totally incorrect
flow rate prediction in the left inner iliac artery when
imposing a stress boundary data.

The results of these comparisons prove the impor-
tance of the geometrical multiscale approach in the

FIGURE 15. 3-D aorta wall displacement magnitude difference, at the end-systole and end-diastole of the sixth heart beat,
between the solution of the geometrical multiscale problem and the one of the stand-alone 3-D aorta with flow rate or stress
boundary data from the full 1-D network. The color bar ranges from blue (0.0 cm) to red (0.5 cm).
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modeling of cardiovascular flows. The different
behavior of the stand-alone 3-D FSI simulations with
respect to the geometrical multiscale model reference
cases is mainly due to the lack of dynamic interplay
between the dimensionally-heterogeneous models.

Indeed, on the one hand, the set of conservation
equations described in the ‘‘Interface Equations for the
Global Network of Models’’ section provides a reliable
and automatic way to determine the boundary data of
each coupled model. On the other hand, they also
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FIGURE 16. Flow rate and pressure comparisons, at the sixth heart beat, between the solution of the geometrical multiscale
problem and the one of the stand-alone 3-D iliac with flow rate or stress boundary data from the full 1-D network, at the most
significant coupling interfaces of the 3-D iliac.

FIGURE 17. 3-D iliac wall displacement magnitude difference, at the end-systole and end-diastole of the sixth heart beat, between
the solution of the geometrical multiscale problem and the one of the stand-alone 3-D iliac with flow rate or stress boundary data
from the full 1-D network. The color bar ranges from blue (0.0 cm) to red (0.5 cm).

A. C. I. MALOSSI AND J. BONNEMAIN460



provide bilateral information on both flow rate and
pressure, independently of the imposed boundary
condition type.

CONCLUSIONS

In this work, we presented several numerical com-
parisons of geometrical multiscale models. A brief
description of the main ingredients of the geometrical
multiscale approach has been recalled from previous
works, together with the partitioned solution strategy
used to set up the global network of dimensionally-
heterogeneous models.

The purposes of this work were manifold. A first
goal was to describe in detail a possible approach to set
up and solve geometrical multiscale problems (not only
regarding interface equations, network connectivity
and solution algorithms, but also with a focus on the
set up of the specific problems), and to give more in-
sight on the calibration of the most critical parameters
needed by the numerical simulations. In this regard we
first provided a short description of the procedure
required to plug one or more 3-D patient-specific
geometries in a 1-D arterial tree network, whose
parameters were calibrated to represent an average
healthy patient. Then we set up several comparisons to
study the sensitivity of the main quantities of interest
(flow rate, pressure, and solid wall displacement) with
respect to the elastic and viscoelastic external tissues
parameters. These quantities, which appear in the
Robin boundary condition on the solid wall of the 3-D
FSI models, are empiric coefficients whose evaluation
is rather difficult. The results of our analysis show that:

1. the use of purely elastic Robin boundary con-
ditions together with a linear elastic structure
might lead to spurious high-frequency oscilla-
tions in some arteries, due to the total lack of
damping terms in the structural model;

2. viscoelastic Robin boundary conditions can be
used to somehow compensate for the lack of
damping terms in 3-D FSI model, at least in
healthy arteries, where a linear elastic structure
can still be considered a reasonable approxi-
mation;

3. a simple empiric relation can be used to
determine the value of the viscoelastic param-
eter as a function of the elastic one;

4. above a certain threshold, the sensitivity of the
flow rate and pressure waveform to a variation
of the external tissues parameters is very small.

In future works, additional investigations will be
performed to confirm the results of the first two

points. A possible strategy to do this is to try to
reproduce the high-frequency oscillations observed in
the vertebral arteries by using simpler geometrical
configurations, such as a cylindrical benchmark case
where the radius, the material properties, and the
inflow wave are chosen to be similar to those at the
simulated vertebral arteries. In addition, further sets of
simulations will be performed on the 3-D geometry of
the aorta by varying, for instance, the local thickness
of the wall or by including a more accurate model for
the structure. Anyway, despite these aspect, we showed
that it is possible to estimate, in a systematic way, an
admissible range of values for these parameters, such
that they lead to reliable physiological results.

Another goal of this work was to prove the
importance of the geometrical multiscale approach in
the modeling of cardiovascular flows. To do this we
compared the results given by geometrical multiscale
models with both the solution of a full 1-D arterial
tree, and the one of stand-alone 3-D problems, where
the 3-D patient-specific geometries were fed with
boundary data taken from a precomputed solution of
the same full 1-D network. Main results of this analysis
are:

1. 3-D patient-specific geometries might produce
significant changes in the 1-D arterial flow,
even in the case of healthy arteries;

2. flow rate and pressure waveforms produced by
stand-alone 3-D FSI simulations are different
(and in some cases far) from the ones obtained
in comparable geometrical multiscale scenar-
ios: this is due to the fact that stand-alone 3-D
FSI simulatons lack the dynamic interplay
among the dimensionally-heterogeneous mod-
els;

3. the continuity of the vessel area between 3-D
and 1-D FSI models is not essential for car-
diovascular applications, unless the focus of
the analysis is on the study of the dynamics and
stresses of the wall near the boundary inter-
faces.

In summary, despite their increased complexity and
computational cost with respect to either 1-D arterial
networks or simpler stand-alone 3-D FSI simulations,
geometrical multiscale models represent a powerful,
accurate tool to study in detail complex cardiovascular
problems. Indeed, they give the possibility to detail
some specific regions of interest by the mean of 3-D
FSI models, evaluating local hemodynamics parame-
ters (e.g., wall shear stress, turbulent flow, regions of
recirculation) without neglecting the interaction with
the global circulation, accounted through a network of
1-D elements.
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6Blanco, P. J., R. A. Feijóo, and S. A. A. Urquiza. Unified
variational approach for coupling 3D–1D models and its
blood flow applications. Comput. Methods Appl. Mech.
Eng. 196(41–44):4391–4410, 2007.
7Blanco, P. J., J. S. Leiva , R. A. Feijóo, and G. C.
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