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Abstract Arterial tree hemodynamics can be simulated by
means of several models of different level of complexity,
depending on the outputs of interest and the desired degree
of accuracy. In this work, several numerical comparisons of
geometrical multiscale models are presented with the aim
of evaluating the benefits of such complex dimensionally-
heterogeneous models compared to other simplified simu-
lations. More precisely, we present flow rate and pressure
wave form comparisons between three-dimensional patient-
specific geometries implicitly coupled with one-dimensional
arterial tree networks and (i) a full one-dimensional arte-
rial tree model and (ii) stand-alone three-dimensional fluid-
structure interaction models with boundary data taken from
precomputed full one-dimensional network simulations. On
a slightly different context, we also focus on the set up and
calibration of cardiovascular simulations. In particular, we
perform sensitivity analyses of the main quantities of inter-
est (flow rate, pressure, and solid wall displacement) with
respect to the parameters accounting for the elastic and vis-
coelastic responses of the tissues surrounding the external
wall of the arteries. Finally, we also compare the results of
geometrical multiscale models in which the boundary solid
rings of the three-dimensional geometries are fixed, with re-
spect to those where the boundary interfaces are scaled to
enforce the continuity of the vessels size with the surround-
ing one-dimensional arteries.
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1 Introduction

Numerical simulations based on complex mathematical ap-
proaches have become an effective tool to model arterial
flow dynamics. Research in this field is essential in order
to understand, predict, and treat common and potentially
fatal cardiovascular pathologies, such as aneurysms forma-
tion, atherosclerosis, and congenital defects, as well as the
planification of surgical intervention, usually called predic-
tive surgery.

Being the time constraint important in a medical en-
vironment, a compromise between model complexity and
computational cost is mandatory. In this sense, geometri-
cal multiscale approaches provide an efficient and reliable
way to select the desired level of complexity in each com-
ponent of the cardiovascular system.4,14,28,31,37 The main in-
gredients of a geometrical multiscale model for cardiovas-
cular flows are (i) three-dimensional (3-D) fluid-structure
interaction (FSI) models, which are used to represent few
specific components of main interest,3,7,9,13,19,36 (ii) one-
dimensional (1-D) FSI models, which describe the global
blood circulation in the arterial network,1,5,15,29 and (iii) lumped
parameters models, which account for the cumulative effects
of all distal vessels, i.e., small arteries, arterioles, and capil-
laries.17,35 More generally, from the medical point of view,
a 3-D model allows to have a deep insight of a specific re-
gion of the cardiovascular system (e.g., the thoracic aorta),
whereas the interaction with the global cardiovascular sys-
tem is modeled by the mean of reduced order models.
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Despite the geometrical multiscale modeling idea is rather
established, so far the greatest part of the literature has fo-
cused mainly on the mathematical and methodological as-
pects. In particular, at the best of our knowledge, evidences
of the benefit of such a more complex model with respect to
simplified problems, e.g., stand-alone 3-D FSI simulations,
has been neither directly investigated nor quantified by nu-
merical comparisons in real cardiovascular problems. More-
over, most of the patient-specific cardiovascular applications
in the literature does not make use of networks of 1-D ar-
teries to account for the systemic circulation, which instead
is condensed by using lumped parameters models directly
coupled with the inlets/outlets of the 3-D geometries of the
patients (see, e.g., Baretta et al. 2 and Moireau et al. 30 ).

To fill this gap, in this work we provide several numer-
ical comparisons of geometrical multiscale models with the
aim of proving, and somehow quantifying, the benefits of
such complex dimensionally-heterogeneous problems with
respect to other simpler approaches. The geometrical multi-
scale models are set up by coupling one or more 3-D patient-
specific geometries with a full network of 1-D models repre-
senting the global circulation of an average healthy patient.
In particular, since the analysis of pathological scenarios is
not considered here, we select two healthy 3-D geometries
corresponding to the aorta and the iliac arteries. The results
of these models are compared with both a full 1-D network
of arteries and stand-alone 3-D FSI simulations, where the
data for the latter at the inlet and outlet boundary interfaces
are taken from a precomputed full 1-D network simulation.
The comparisons are performed mainly in terms of flow rate
and pressure waveforms. In addition, we also analyze the
3-D solid wall displacement magnitude.

On a slightly different context, we also focus on the cal-
ibration of cardiovascular simulations. Indeed, one critical
aspect to get physiological results is the tuning of the prob-
lem parameters, especially for modeling 3-D FSI arteries. In
this regard, it is essential to account for the correct bound-
ary data on the the solid wall geometries. This problem has
been already addressed by Crosetto et al. 10 and Moireau
et al. 30 for the external surface of the arterial wall, where
Robin boundary conditions have been successfully used to
account for the elastic and viscoelastic responses of the ex-
ternal tissues. Nevertheless, the values of the empiric tissue
parameters appearing at the boundaries is rather difficult to
estimate, and neither calibration procedures nor sensitivity
analysis to show the effect of the variation of the parameters
on the main quantities of interest were provided. Regarding
the interface boundary rings of the arterial wall, in Formag-
gia et al. 16 and Malossi et al. 28 an approach to prescribe
the continuity of the vessel area with surrounding models
has been proposed. However, its impact on cardiovascular
simulations compared to fixed area configurations has never

been investigated, apart from few benchmark tests in simple
geometries.

With the aim of covering the aspects mentioned above,
in this work we also provide several comparisons and sensi-
tivity analysis focused both on the calibration of the tissue
parameters and on the analysis of the impact of different in-
terface ring boundary conditions on the main quantities of
interest.

This work is organized as follows. In Section 2 we de-
scribe the main ingredients of the geometrical multiscale ap-
proach. Then, in Section 3, we present the numerical results
with several comparisons and sensitivity analyses. Finally,
main conclusions are summarized in Section 4.

2 Geometrical multiscale approach

In this section we describe the main components of the geo-
metrical multiscale method that we use to simulate the global
arterial circulation. More precisely, we model the arterial
network by coupling together different dimensionally-heterogeneous
models, such as 3-D FSI models, which are used to repre-
sent specific components of main interest, 1-D FSI models,
to simulate the pulse wave propagation in the global arterial
system, and lumped parameters models, that accounts for
the peripheral circulation. The latests correspond in general
to well known simple differential algebraic equations, and
for brevity are not detailed here. Finally, we briefly recall
from other works the coupling equations and the numerical
approach to solve the global network of models.

2.1 3-D FSI model for main arteries

In a geometrical multiscale setting, 3-D FSI models are used
to simulate the hemodynamics in complex geometrical sit-
uations, such as those occurring at bifurcations, aneurysms,
and stenoses among others. In addition, when aiming at patient-
specific analyses, the correct characterization of the local
arterial flow has to be carried out by using patient-specific
data obtained from medical images, e.g., computed tomog-
raphy (CT) scan or magnetic resonance imaging (MRI).

2.1.1 Equations

Let Ω ⊂ R3 with boundary ∂Ω, where Ω̄ = Ω̄F ∪ Ω̄S, be-
ing ΩF and ΩS the fluid and solid domains, respectively. In
addition, let ΓI be the fluid-solid interface ∂ΩF ∩ ∂ΩS. The
fluid-structure interaction problem employed in this work
consists of the incompressible Navier–Stokes equations cou-
pled with a linear elastic isotropic structure described by the
St. Venant–Kirchhoff equations. To account for the interac-
tion between the fluid and the solid, we define an Arbitrary
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Figure 1: ALE map between reference and current config-
urations. The colors in the scheme refer to the computed
pressure field.

Lagrangian–Eulerian (ALE) map, i.e.,

M t : Ω
0
F→Ω

t
F ⊂ R3

x0 7→M t (x0)= x0 +dF
(
x0) ,

where the superscripts 0 and t refer to the reference and cur-
rent configurations, respectively (see Figure 1), x0 ∈ Ω0

F is
a point, and dF is the fluid domain displacement. More pre-
cisely, in this work we compute dF as the harmonic exten-
sion of the solid displacement dS at the reference fluid-solid
interface Γ0

I to the interior of the reference fluid domain Ω0
F.

The resulting FSI problem reads



∂uF

∂t

∣∣∣∣
x0
+

((
uF−

∂dF

∂t

∣∣∣∣
x0

)
·∇
)

uF

− 1
ρF

∇ ·σF = 0 in Ωt
F× (0,T ],

∇ ·uF = 0 in Ωt
F× (0,T ],

ρS
∂2dS

∂t2 −∇ ·σS = 0 in Ω0
S× (0,T ],

−∆dF = 0 in Ω0
F× (0,T ],

uF ◦M t − ∂dS

∂t
= 0 on Γ0

I × (0,T ],

σS ·nS− JSG−TS (σF ◦M t) ·nS = 0 on Γ0
I × (0,T ],

dF−dS = 0 on Γ0
I × (0,T ],

(1)

where (0,T ] is the time interval, uF the fluid velocity, ρF
and ρS are the fluid and solid density, respectively, nS is
the outgoing normal direction applied to the solid domain,
GS = I+∇dS the solid deformation gradient (with I the iden-
tity matrix), and JS = det(GS). In addition, σF and σS are the
Cauchy and the first Piola–Kirchhoff stress tensors, respec-
tively, i.e.,

σF =−pFI+2µF εF (uF) ,

σS = λS(ES,νS)tr(εS (dS)) I+2µS(ES,νS)εS (dS) ,

where εF (uF) is the strain rate tensor, being pF the fluid
pressure and µF the fluid dynamic viscosity, and εS (dS) is
the linear strain tensor, being λS and µS the first and second

Lamé parameters, respectively, which are algebraic func-
tions of the Young’s modulus ES and the Poisson’s ratio νS
of the wall material.

Problem (1) is closed by a proper set of initial and bound-
ary conditions. More precisely, on the external wall Γ0

S,ext
we apply a viscoelastic Robin boundary condition to ac-
count for the presence of the external tissues, as we detail
in Section 2.1.3. On Γt

F, j ⊂ ∂Ωt
F\Γt

I, j = 1, . . . ,nΓ
FS we im-

pose either inflow and outflow boundary data or continuity
equations with the surrounding models, which are detailed
in Section 2.3. Similarly, the inlet/outlet solid rings Γ0

S, j,
j = 1, . . . ,nΓ

FS can be either fixed or scaled to match the area
of surrounding models, as described by Malossi et al. 28 and
briefly recalled in Section 2.3.

Remark 1 Several models of the arterial wall are described
in literature, with different levels of complexity.18,20,21,24,34

An accurate model for the arterial wall should take into ac-
count the effects of anisotropy due to the distribution of the
collagen fibers, the three layers (intima, media, and adven-
titia) structure, the nonlinear behavior due to collagen acti-
vation, and the incompressibility constraint. Nevertheless, a
linear elastic isotropic structure is still considered a reason-
able approximation for the large healthy arteries, as demon-
strated numerically in, e.g., Crosetto et al. 10,11 , and vali-
dated experimentally in, e.g., Kanyanta et al. 22 .

2.1.2 Numerical approximation

The FSI problem is solved by using a non-modular (mono-
lithic) approach.8,9 The fluid problem is discretized in space
by a P1–P1 finite element method, stabilized by an interior
penalty technique.6 The solid and the geometric problems
are discretized in space by P1 finite elements. Regarding
time discretizations for the incompressible Navier–Stokes
equations on moving domains we use a first order Euler
scheme, while for the structural problem we use an explicit
second order mid-point scheme. The time interval [0,T ] is
split into subintervals [tn, tn+1], n= 0,1,2, . . . , such that tn =

n∆t, ∆t being the time step. The fluid and solid problems
are coupled by using the geometric convective explicit time
discretization, i.e., the fluid problem is linearized by con-
sidering explicit the fluid domain displacement and the con-
vective term. This choice allows to split the solution of the
geometric part (the harmonic extension) from the fluid-solid
one, leading to a significant reduction of the computational
cost. For more details on the 3-D FSI problem see Crosetto 8 .

2.1.3 Robin boundary condition for the solid external wall

From the modeling point of view, one critical aspect to get
physiological results in a 3-D FSI simulation is the tuning
of the boundary condition on the solid external wall. The
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influence of external tissues and organs tethering and con-
straining the movement of blood vessels is of critical im-
portance when simulating 3-D FSI problems in the arterial
system.25 At the present time, the modeling of the detailed
multi-contact relations between the arteries and the other
tissues is unfeasible. However, Crosetto et al. 10 show that
for 3-D FSI problems the elastic behavior of external tissues
support on the outer arterial wall can be handled by enforc-
ing a Robin boundary condition on Γ0

S,ext. This approach has
been further extended in Moireau et al. 30 to include also the
viscoelastic response of the tissues, such that the resulting
Robin boundary condition for the 3-D FSI problem reads

σS ·nS + kSdS + cSvS +PextnS = 0, on Γ
0
S,ext× (0,T ], (2)

where vS is the velocity of the solid domain and Pext the ref-
erence external pressure. The parameters kS and cS account
for the elastic and viscoelastic response of the external tis-
sues, respectively. More generally, they are empiric coeffi-
cients that depend on space and, possibly, on time (e.g., to
represent the change of mechanical properties over time).

Tuning the value of the parameters kS and cS is rather
difficult. In both Crosetto et al. 10 and Moireau et al. 30 a
range of orders of magnitude for the aorta is identified on
the basis of qualitative considerations about the pulse wave
velocity and the maximum admissible displacement of the
vessel wall. However, neither further investigations nor sen-
sitivity analyses that show the effect of the variation of the
parameters on the main quantities of interest are provided.
To fill this gap, in Sections 3.3.2 and 3.3.3 we perform sev-
eral comparisons in terms of flow rate and displacement for
the aorta and iliac arteries, respectively, as a function of dif-
ferent sets of values for the parameters kS and cS.

Remark 2 From the numerical viewpoint, the Robin bound-
ary condition must be implemented according to the time
discretization scheme used in the solid problem. In particu-
lar, since in this work we use an explicit second order mid-
point scheme, the following relation holds

vn+1
S + vn

S
2

=
dn+1

S −dn
S

∆t
,

such that, for n = 0,1,2, . . . , the discrete form of (2) reads

σS ·nS +

(
kS +

2cS

∆t

)
dn+1

S

−
(

2cS

∆t
dn

S + cSvn
S

)
+PextnS = 0, on Γ0

S,ext.

2.2 1-D FSI model for the global arterial circulation

In a geometrical multiscale setting, the global arterial circu-
lation can be modeled by a network of 1-D FSI models. De-
spite its simple axial symmetric representation of the blood

flow, it has proven to be able to provide accurate informa-
tion under physiological and pathophysiological conditions,
and therefore gives insight about the main characteristics
that lead to the interplay among physical phenomena taking
place in the systemic arteries.

2.2.1 Equations

The 1-D FSI model is derived from the incompressible Navier–
Stokes equations by introducing some simplifying hypothe-
ses on the behavior of the flow quantities over the cross-
section of the artery. The structural model is accounted through
a simple pressure-area relation. Being z ∈ [0,L] the axial co-
ordinate, with L the length of the vessel, the resulting gov-
erning equations are

∂A
∂t

+
∂Q
∂z

= 0 in (0,L)× (0,T ],

∂Q
∂t

+
∂

∂z

(
αF

Q2

A

)
+

A
ρF

∂P
∂z

+κF
Q
A

= 0 in (0,L)× (0,T ],

P−ψ(A) = 0 in (0,L)× (0,T ],

(3)

where αF and κF are the Coriolis and friction coefficients,
respectively,29 A is the cross-sectional area, Q the volumet-
ric flow rate, P the average pressure, and

ψ(A) = Pext +βS

(√
A
A0 −1

)
+ γS

(
1

A
√

A
∂A
∂t

)
, (4)

where

βS =

√
π

A0

hSES

1−ν2
S
, γS =

TS tanφS

4
√

π

hSES

1−ν2
S
,

being A0 the reference value for the vessel area, hS the wall
thickness, TS the wave characteristic time, and φS the vis-
coelastic angle. The second and third terms in (4) account
for the elastic and viscoelastic response of the vessel wall.

Problem (3) is finally closed by a proper set of initial
and boundary conditions. The latter can be either inflow and
outflow boundary data or continuity equations with the sur-
rounding models, as we detail in Section 2.3.

2.2.2 Numerical approximation

The 1-D FSI problem is solved by using an operator splitting
technique based on an explicit second order Taylor–Galerkin
discretization, where the solution of the problem is split into
two steps, such that the first one corresponds to the solu-
tion of a purely elastic problem, while the second one pro-
vides a viscoelastic correction. The spatial discretization is
accomplished using P1 finite elements. For more details see
Malossi et al. 29 and references therein.
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2.3 Interface equations for the global network of models

The solution of the global dimensionally-heterogeneous prob-
lem is addressed following the approach first devised in Mal-
ossi et al. 27 and later extended in Malossi et al. 28 to ac-
count for the continuity of the vessel area. More precisely,
let us consider a general network of heterogeneous models
connected by C coupling nodes. At each node we write the
conservation of averaged/integrated quantities over the in-
terfaces, such that the interface problem does not have any
dependency on the geometrical nature nor on the mathe-
matical formulation of each model. More specifically, these
boundary quantities are the volumetric flow rate Q, the aver-
aged normal component of the traction vector S, and the area
of the fluid section A, hereafter referred to as coupling flow,
coupling stress, and coupling area, respectively. On the j-th
coupling interface of the 3-D FSI model these quantities are
computed as

Q3-D
j =

∫
Γt

F, j

uF ·nF dΓ, S3-D
j =

1∣∣∣Γt
F, j

∣∣∣
∫

Γt
F, j

(σF ·nF) ·nF dΓ,

A3-D
j =

∣∣∣Γt
F, j

∣∣∣ , j = 1, . . . ,nΓ
FS,

where nF is the outgoing normal direction applied to the
fluid domain. The 3-D FSI fluid problem is closed by im-
posing (σF ·nF) · τ2F = 0 and (σF ·nF) · τ2F = 0 on Γt

F, j, j =
1, . . . ,nΓ

FS, where τ1F and τ2F are the two tangential direc-
tions. In addition, we assume that the normal stress (σF ·nF) ·
nF is constant over the coupling interfaces. Regarding the
solid problem, the vessel area is imposed by prescribing a
radial displacement of the internal contour of the j-th 3-D
solid ring, i.e.,

dS ·nS = 0 on Γ0
I ∩Γ0

S, j× (0,T ],[
dS−Ψt

j

(
x0− x0

G, j

)]
· τ1S = 0 on Γ0

I ∩Γ0
S, j× (0,T ],[

dS−Ψt
j

(
x0− x0

G, j

)]
· τ2S = 0 on Γ0

I ∩Γ0
S, j× (0,T ],

for j = 1, . . . ,nΓ
FS, where τ1S and τ2S are the two tangential

directions lying on Γ0
S, j, j = 1, . . . ,nΓ

FS. This corresponds to
scale the boundary area preserving its original shape, where
the radial scale factor is defined as

Ψ
t
j =

√√√√A3-D
j

A0
j
−1,

being A0
j and x0

G, j the reference area of the j-th coupling
interface of the 3-D fluid problem and its geometric cen-
ter, respectively. Note that to close the 3-D FSI solid prob-
lem, we need to impose an additional boundary condition on
Γ0

S, j\Γ0
I ∩Γ0

S, j, j = 1, . . . ,nΓ
FS, which in our case is σS ·nS =

0. Regarding the two coupling interfaces of the 1-D FSI
model we have

Q1-D
L =−QL,

Q1-D
R = QR,

S1-D
L =−PL,

S1-D
R =−PR,

A1-D
L = AL,

A1-D
R = AR,

where the subscripts L and R stand for left and right quanti-
ties, respectively.

The resulting set of conservation equations for the fluid
part of the interface problem is

Ic

∑
i=1

Qc,i = 0,

Sc,1−Sc,i = 0, i = 2, . . . ,Ic,

(5)

where Ic is the number of interfaces connected by the c-th
coupling node, c = 1, . . . ,C . More precisely, the first equa-
tion ensures the conservation of the mass and the second
implies the continuity of the mean normal stress.

Remark 3 Being written in terms of mean normal stress, the
set of interface equations (5) does not preserve the total en-
ergy of the problem at the interface between two dimensionally-
heterogeneous models. However, the kinetic contribution of
the total stress is negligible for cardiovascular problems, as
shown by Malossi 26, see Section 5.4.2.5 of the dissertation,
such that the results presented here using (5) coincides with
those that would have be obtained by prescribing the conti-
nuity of the mean total normal stress. Hence, the set of in-
terface equations used in this work are stable for this class
of problems.

In case the continuity of the vessel area is enforced be-
tween two vessels, the set of equations (5) becomes

Q1-D
c,1 + Q3-D

c,2 = 0,

S1-D
c,1 − S3-D

c,2 = 0,

A1-D
c,1 −A3-D

c,2 = 0,

(6)

where, for the sake of clarity, the model to which each quan-
tity belongs is indicated in the superscript. More precisely,
the continuity of the vessel area cannot be imposed between
two 1-D FSI vessels. In fact, due to modeling reasons, the
1-D FSI problem needs just one physical boundary condi-
tion on each side of the segment, and therefore it is not pos-
sible to impose both a fluid quantity and the vessel area at
the same time. On the contrary, the 3-D FSI model needs
boundary data on both the fluid and the solid parts of each
interface, such that it is possible to set the continuity of its
boundary areas with the surrounding 1-D FSI models. In ad-
dition, we remark that (6) is written for the specific case of
a 3-D FSI interface coupled with a single 1-D FSI model.
In the case of a generalization to two or more 1-D models
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connected to the same 3-D FSI interface, the continuity of
the area does not make sense, and for this reason we do not
address this case.28

From the numerical viewpoint, the global interface prob-
lem is written in a residual formulation and solved by using
the Newton and the Broyden methods. First of all, the Jaco-
bian of the global interface problem is either computed an-
alytically by solving the tangent problem associated to each
model, or approximated with finite differences. The result-
ing matrix is used to perform a single (inexact-)Newton it-
eration, which corresponds to the very first iteration at the
first time step of the simulation. After that, from the second
iteration and for all the other time steps, the Jacobian is up-
dated by using a Broyden method, which is based on a cheap
evaluation of the residual of the interface problem.26,28,29

3 Numerical simulations

In this section we present several comparisons among dif-
ferent geometrical multiscale models. The purpose of these
comparisons is manifold. On the one hand, we study the
interaction between 3-D patient specific geometries and a
global arterial network of 1-D models. This results are com-
pared both with a full 1-D network of arteries, and a stand-
alone 3-D simulation with boundary data taken from the
same full 1-D network. On the other hand, we also analyze
the effect of the 3-D solid boundary conditions on the simu-
lations. In particular, we perform a sensitivity analysis of the
external tissues parameters, and we also compare results of
configurations where the area at the interfaces is fixed, with
those where it is scaled to have the continuity of the vessels
size with the surrounding 1-D arteries.

All the simulations presented in this work have been per-
formed on several cluster nodes with two Intel® Xeon® pro-
cessors X5550 (quad core, 8 MB cache, 2.66 GHz CPU)
each, interconnected by a 20 Gb/s InfiniBand® architecture.

3.1 Human arterial tree model

To model the global circulation we use the data of the arterial
network provided in Reymond et al. 32 , which is composed
by 103 elements (4 coronary, 24 aortic, 51 cerebral, 10 up-
per limbs, and 14 lower limbs) and includes all the values of
the parameters required to describe the blood flow, such as
the geometrical properties of the vessels (length and prox-
imal/distal areas) and the data for the terminals, which are
modeled as three-element windkessel elements and account
for the cumulative effects of all distal vessels (small arteries,
arterioles, and capillaries). These values have been obtained
both from in vivo measurements and averaged data from the
literature. The presence of the venous circulation is taken
into account by imposing the return venous pressure Pv on

Table 1: Main parameters of the 1-D network of arteries. For
more details see Malossi et al. 29 and references therein.

ρF Blood density 1.04 g/cm3

µF Blood viscosity 0.035 g/cm/s
κF Friction coefficient 2.326 cm2/s
αF Coriolis coefficient 1.1
Pext Reference external pressure 100000 dyn/cm2

Pv Venous pressure 6666 dyn/cm2

hS/RS Wall thickness / local radius 0.1
ES Young’s modulus 3 – 12 · 106 dyn/cm2

νS Poisson’s ratio 0.50
φS Viscoelastic angle 10 degree
TS Systolic period 0.24 s

Heart rate 75 bpm

the distal side of each windkessel terminal node. Regarding
the parameters of the wall, since we use a different model,
we estimate these values from other sources.29 The main pa-
rameters that define the problem are summarized in Table 1.
The average space discretization of each 1-D FSI segment is
0.1 cm. Regarding the time discretization, in each artery we
define a different time step based on the local CFL require-
ments.

3.2 Geometry reconstruction and mesh generation

In this work we use the 3-D FSI model to simulate the flow
in two main patient-specific arteries, i.e., the aorta and the
iliac of two healthy patients. These geometries have several
bifurcations and some severe bends, such that the 3-D dy-
namics of the blood is not negligible.

The segmentation of the aorta was obtained through MRI
Time of Flight acquisition on a 3T MRI scanner (Siemens
Trio-Tim 3T System); details on the used sequences are given
in Reymond et al. 33 . Then, the arterial lumen was recon-
structed in 3-D from MRI magnitude data (ITK Snap soft-
ware). Since the thickness of the wall is not visible in MRI
data, it had to be synthetically reconstructed. In particular, it
has been estimated to be equal to 10 percent of local lumen
radius, which is a commonly accepted approximation.23 Re-
garding the iliac, the geometry of the lumen has been taken
from the Simtk website1, and the thickness of the wall has
been reconstructed with the same assumptions used for the
aorta.

To correctly model the different material properties of
the arterial wall and of the external tissues, we divide the
solid domains into several regions, which are schematically
shown in Figure 2. Note that for the iliac geometry we pro-
vide two different configurations, which are later used in
Section 3.3.3 for a numerical comparison of the results as
a function of the tissue parameters at the bifurcations. The

1 http://simtk.org

http://simtk.org
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(a) (b) (c)

Figure 2: View of the aorta and iliac geometries with wall regions. (a) The aorta is divided in three regions: aortic arch
(yellow), carotids and subclavians (red), and vertebrals (blue). (b) The iliac is divided in four regions: abdominal aorta
(red), common iliac (yellow), external iliac (blue), and inner iliac (cyan). (c) Same as (b) with two additional regions at the
bifurcations: abdominal aorta bifurcation (green) and common iliac bifurcations (magenta).

main wall parameters that define the 3-D problems are sum-
marized in Table 2.

Remark 4 The jumps in the mechanical properties of the ar-
terial wall (see Figure 2 and Table 2) might introduce wave
reflections in the flow field. Nevertheless, these reflections
are negligible if compared to the physical reflection driven
by the sudden change in the vessel lumen at the bifurcations.
Moreover, the structural model can be easily refined by in-
troducing smooth continuous functions between the differ-
ent wall regions. This improvement will be included in fu-
ture works.

Remark 5 The value of the arterial wall density has been
taken from Crosetto et al. 9 and Moireau et al. 30 . In Mal-
ossi 26, see Section 5.4.2.6 of the dissertation, a compari-
son of the results obtained by setting ρS = 1.2 g/cm3, with
those computed by using either ρS = 1.0 g/cm3 36,37 or ρS =

0.0 g/cm3 (purely elastic wall without inertia) is presented,
proving that (i) the inertia of the arterial wall has a very
small impact on this class of applications, and (ii) the method-
ology and algorithms described in Section 2 are stable even
if the arterial wall density is neglected.

Finally, for each arterial vessel two separate conform-
ing fluid and solid geometries have been generated using the
VTK2, VMTK3, and ITK4 libraries.12 The resulting mesh

2 http://www.vtk.org
3 http://www.vmtk.org
4 http://www.itk.org

Table 2: Wall parameters of the 3-D FSI arteries. The
Young’s modulus of the 3-D FSI aorta and iliac is
3000000 dyn/cm2 in all the branches apart from the verte-
bral arteries, where it is 6000000 dyn/cm2, and inner iliac
arteries, where it is 12000000 dyn/cm2.

ρS Wall density 1.2 g/cm3

hS/RS Wall thickness / local radius 0.1
ES Young’s modulus 3 – 12 · 106 dyn/cm2

νS Poisson’s ratio 0.48

of the fluid part of the 3-D aorta consists of 280199 unstruc-
tured tetrahedral elements with 50866 vertices, while the
solid part is made of 278904 structured tetrahedral elements
with 58565 vertices. The corresponding average space dis-
cretizations for both the fluid and solid problems is 0.158 cm.
Regarding the 3-D iliac, the mesh of the fluid part consists
of 350376 unstructured tetrahedral elements with 63716 ver-
tices, while the solid part is made of 359256 structured tetra-
hedral elements with 60788 vertices. In this case, the corre-
sponding average space discretizations for both the fluid and
solid problems is 0.076 cm. Regarding the time discretiza-
tion, we use a constant time step of 0.001 s.

3.3 Geometrical multiscale modeling

In this section we set up and solve three different geometri-
cal multiscale models where the 3-D patient-specific vessels

http://www.vtk.org
http://www.vmtk.org
http://www.itk.org
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in Figure 2 are embedded in the 1-D network described in
Section 3.1, which represents an average healthy patient.

To set up the models we use the following procedure.
First of all, we identify the 1-D elements of the network to
be removed or cut, since they overlap with some regions of
the 3-D patient-specific geometries. This is done by measur-
ing the length of the different branches of the 3-D vessels
and comparing these data with the one of the 1-D network.
Obviously, this phase presents several degrees of freedom
and arbitrariness. The degree of precision of this step also
depends on the region of interest and the required level of
accuracy (e.g., rough evaluation of flow versus precise lo-
cal quantification for surgery planning). In a clinical con-
text this operation should be supervised by the clinician in
order to immediately determine the crucial regions for the
numerical simulations. Once the 1-D elements are cut, the
second step consists in changing the reference area and the
wall thickness of the 1-D arteries in order to match the one
of the nearby 3-D interfaces. Since the 3-D geometries are
not symmetric, it is possible that some asymmetries are in-
troduced also in the 1-D networks (e.g., between the left
and right external iliac arteries). Moreover, it is important
to check that the resulting distal area is always smaller or
equal than the proximal one. If it is not the case, some fur-
ther adjustments to the 1-D elements are required to avoid a
non-physiological behavior of the flow in those elements.

3.3.1 Parallel solution of the global problem

The parallelism is handled by distributing the models across
the available processes and cluster nodes. Each model can
be either assigned to a single process or partitioned across
several nodes. In our implementation, we distribute the mod-
els as a function of their type and computational cost. More
precisely, the reduced order models (e.g., 1-D FSI models
and the lumped parameters terminals) are distributed one per
each available process. If the number of models exceeds the
number of processes, the algorithm assigns more models to
the same process. For examples, when solving a network of
150 reduced order models using 48 processes, each process
holds at least 3 models. The more expensive 3-D FSI models
are then partitioned across all the available nodes and pro-
cesses (including those that are already holding one or more
reduced order models). If more 3-D models are present in
the network, each of them is split on a subset of nodes such
that they globally use all the available resources. Thanks to
the parallelism intrinsic in our algorithms, this choice leads
in general to a balanced load.

The global network of elements is solved by using the
Broyden method, as described at the end of Section 2.3. The
convergence to the imposed tolerance of 10−6 is achieved
between 2 and 4 iterations; the average number of itera-

tions per time step is approximately 2.25 in all the presented
cases.

3.3.2 External tissues parameters comparisons: 3-D aorta

In this section we focus on the study of the external tissues
parameters kS and cS introduced by the Robin boundary con-
dition on the arterial wall of the 3-D FSI problem. For this
analysis, we consider a geometrical multiscale model as-
sembled by coupling the 3-D patient-specific aorta in Fig-
ure 2a with the 1-D arterial tree described in Section 3.1,
which represents an average healthy patient. For the sake of
simplicity, the results presented in this section are obtained
by fixing the position of the boundary solid rings of the 3-D
arterial wall of the aorta, i.e., dS = 0 on Γ0

S, j, j = 1, . . . ,nΓ
FS.

The first study we perform consists of a sensitivity anal-
ysis of the main quantities of interest with respect to a vari-
ation of the elastic parameter kS. This is done by assuming
cS = 0 dyn·s/cm3 and choosing five sets of values for the
coefficient kS at the different branches of the aorta, as de-
tailed in Table 3. Note that the values of the different cases
are chosen as multiples of those of case EA

1 .
The results of this comparison, at the most significant

coupling interfaces between the 3-D aorta and the 1-D net-
work, are summarized in Figure 3, where we also plot the
result of the full 1-D arterial network. First of all, we ob-
serve that the behavior of the flow rate and pressure is quite
different in each of the five considered cases. From the be-
havior of the pressure we observe that the elastic tissues pa-
rameters of case EA

1 is not stiff enough to correctly capture
the cardiovascular wave pulse (the pressure level is low and
nearly flat). This is confirmed by the analysis of the displace-
ment magnitude field of the 3-D arterial wall of the aorta at
the second heart beat (see Figure 4), where we observe a
small overinflation of the thoracic aorta in case EA

1 and se-
vere overinflations of the left common carotid artery for the
first three sets of coefficients in Table 3.

The analysis of the flow rate profiles in the other branches
displayed in Figure 3 shows that all the considered cases
present spurious high-frequency oscillations at the vertebral
arteries, which are probably the cause of the numerical break-
down in cases EA

2 and EA
4 . In case EA

5 , which represents the
stiffest artery, the oscillations do not appear in the left ver-
tebral artery, suggesting that this phenomenon might be re-
lated to the stiffness of the external tissues parameters. In
particular, the two vertebral arteries are the smallest branches
of the considered geometry, which in turn means that the
wall thickness there is considerably smaller than in the other
branches (we recall that the thickness of the solid domain is
chosen to be proportional to the local lumen of the vessel).
This could explain the fact that the high-frequency oscilla-
tions are not present in the other branches of the same ge-
ometry.
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Table 3: Empirical external tissues coefficients at the different wall regions of the 3-D aorta (see Figure 2a). We define five
cases for the sets of values of the elastic coefficient.

Artery
kS [dyn/cm3]

cS [dyn·s/cm3]
EA

1 EA
2 EA

3 EA
4 EA

5

Aortic arch 15000 30000 45000 60000 75000 0.0
Left / right carotid and subclavian 22500 45000 67500 90000 112500 0.0
Left / right vertebral 30000 60000 90000 120000 150000 0.0
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Figure 3: Flow rate and pressure comparison, at the third heart beat, for the sets of values given in Table 3 (elastic behavior of
the external tissues), at the most significant coupling interfaces between the 3-D aorta (see Figure 2a) and the 1-D network.
The black line is the solution of the full 1-D network.
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Case EA
1 . Case EA

2 . Case EA
3 . Case EA

4 . Case EA
5 .

Figure 4: Wall displacement magnitude comparison, at the end-systole of the second heart beat (t = 1.2 s), for the sets of
values given in Table 3 (elastic behavior of the external tissues) of the 3-D aorta (see Figure 2a) coupled with the 1-D network
(not shown). The color bar ranges from blue (0.0 cm) to red (1.8 cm).

Remark 6 Here, as well as in the forthcoming Section 3.3.3,
the results of the full 1-D network are aimed to provide a ref-
erence, validated32 value for the main quantities of interest,
and must not be considered as a reference exact solution.
Indeed, differences between the results of the geometrical
multiscale models and those of the full 1-D network are ex-
pected in view of the patient-specific topologies of the 3-D
geometries embedded in the former models.

Further comments about the high-frequency oscillations
observed in the purely elastic case can be performed by study-
ing the results of a second set of simulations in which we in-
troduce the viscoelastic response of the tissues through the
parameter cS (see equation (2)). As previously done for the
elastic parameter, we select several sets of values for the co-
efficient cS at the different branches of the aorta, as detailed
in Table 4. Regarding the elastic parameter, we choose the
set of values EA

4 , which has proven to be stiff enough to pre-
vent excessive strain in all the branches of the 3-D geometry.

The results of this comparison, at the same interfaces
of the previous one, are summarized in Figure 5. First of
all, we observe that the spurious high-frequency oscillations
disappear at all the boundary interfaces and independently
from the chosen set of values for the parameter cS. This be-
havior confirms the importance of including the viscoelas-
tic effects in the model of the arterial wall, not only in 1-D
FSI simulations, as already proven, for instance, by Mal-
ossi et al. 29 , but also in 3-D FSI problems, as claimed by
Moireau et al. 30 . Moreover, this result suggests that the high-
frequency oscillations observed in Figure 3 might be related
mainly to the model chosen for the structure of the arterial

wall. In particular, we recall that in our simulations we use
a linear elastic isotropic model, which does not include any
damping effect.

Regarding the value of the viscoelastic parameter, we
observe that the flow rate and pressure waveforms change
significantly among the simulated cases. More precisely, the
set of values VA

1 and VA
2 , are not high enough to smooth

the low-frequency oscillations of the 3-D FSI elastic wall.
Moreover, they lead to a pressure overshoot at most of the
branches during the systolic peak. On the contrary, the re-
sults given by the other four sets of values are all very simi-
lar and belong to the physiological regime. In particular, we
observe a sort of limit behavior of the viscoelastic parame-
ter, such that above a certain threshold the sensitivity of the
flow rate and pressure waveform to a variation of the param-
eter cS becomes very small. This is coherent with the nature
of the Robin boundary conditions, whose contribution de-
crease drastically when the parameters value become high.
In view of these results, hereafter we compute the value of
the viscoelastic parameter as one tenth of the value of the
corresponding elastic one, i.e.,

cS = kS/10. (7)

This rule provides a reliable and easy way to calibrate the
viscoelastic parameter of the Robin boundary condition for
the external tissues.

3.3.3 External tissues parameters comparisons: 3-D iliac

In this section we further extend the study of the external
tissues parameters kS and cS by considering a different prob-
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Table 4: Empirical external tissues coefficients at the different wall regions of the 3-D aorta (see Figure 2a). We define six
cases for the sets of values of the viscoelastic coefficient.

Artery
kS [dyn/cm3] cS [dyn·s/cm3]

EA
4 VA

1 VA
2 VA

3 VA
4 VA

5 VA
6

Aortic arch 60000 500 1000 5000 10000 50000 100000
Left / right carotid and subclavian 90000 500 1000 5000 10000 50000 100000
Left / right vertebral 120000 500 1000 5000 10000 50000 100000

    1.6 1.8 2 2.2 2.4    
−50

0

50

100

150

200

250

.

.

.

 

 

XXii1

X1

X1

X1

X1

X1

X1

1-D
VA

1
VA

2
VA

3
VA

4
VA

5
VA

6

Time [s]

Fl
ow

ra
te

[c
m

3 /s
]

Thoracic aorta B

    1.6 1.8 2 2.2 2.4    
−15

−5

5

15

25

35

45

.

.

.

 

 

XXii1

X1

X1

X1

X1

X1

X1

1-D
VA

1
VA

2
VA

3
VA

4
VA

5
VA

6

Time [s]

Fl
ow

ra
te

[c
m

3 /s
]

Left common carotid

    1.6 1.8 2 2.2 2.4    
−15

−5

5

15

25

35

45

.

.

.

 

 

XXii1

X1

X1

X1

X1

X1

X1

1-D
VA

1
VA

2
VA

3
VA

4
VA

5
VA

6

Time [s]

Fl
ow

ra
te

[c
m

3 /s
]

Right common carotid

    1.6 1.8 2 2.2 2.4    
−40

−25

−10

5

20

35

50

.

.

.

 

 

XXii1

X1

X1

X1

X1

X1

X1

1-D
VA

1
VA

2
VA

3
VA

4
VA

5
VA

6

Time [s]

Fl
ow

ra
te

[c
m

3 /s
]

Left subclavian

    1.6 1.8 2 2.2 2.4    
−1

0.8

2.6

4.4

6.2

8

.

.

.

 

 

XXii1

X1

X1

X1

X1

X1

X1

1-D
VA

1
VA

2
VA

3
VA

4
VA

5
VA

6

Time [s]

Fl
ow

ra
te

[c
m

3 /s
]

Left vertebral

    1.6 1.8 2 2.2 2.4    
−1

0.5

2

3.5

5

6.5

8

.

.

.

 

 

XXii1

X1

X1

X1

X1

X1

X1

1-D
VA

1
VA

2
VA

3
VA

4
VA

5
VA

6

Time [s]

Fl
ow

ra
te

[c
m

3 /s
]

Right vertebral

    1.6 1.8 2 2.2 2.4    
0.7

0.9

1.1

1.3

1.5

1.7

1.9
x 10

5 .

.

.

 

 

XXii1

X1

X1

X1

X1

X1

X1

1-D
VA

1
VA

2
VA

3
VA

4
VA

5
VA

6

Time [s]

Pr
es

su
re

[d
yn

/c
m

2 ]

Thoracic aorta B

    1.6 1.8 2 2.2 2.4    
0.7

0.9

1.1

1.3

1.5

1.7

1.9
x 10

5 .

.

.

 

 

XXii1

X1

X1

X1

X1

X1

X1

1-D
VA

1
VA

2
VA

3
VA

4
VA

5
VA

6

Time [s]

Pr
es

su
re

[d
yn

/c
m

2 ]

Left common carotid

    1.6 1.8 2 2.2 2.4    
0.7

0.9

1.1

1.3

1.5

1.7

1.9
x 10

5 .

.

.

 

 

XXii1

X1

X1

X1

X1

X1

X1

1-D
VA

1
VA

2
VA

3
VA

4
VA

5
VA

6

Time [s]

Pr
es

su
re

[d
yn

/c
m

2 ]

Right common carotid

    1.6 1.8 2 2.2 2.4    
0.7

0.9

1.1

1.3

1.5

1.7

1.9
x 10

5 .

.

.

 

 

XXii1

X1

X1

X1

X1

X1

X1

1-D
VA

1
VA

2
VA

3
VA

4
VA

5
VA

6

Time [s]

Pr
es

su
re

[d
yn

/c
m

2 ]

Left subclavian

    1.6 1.8 2 2.2 2.4    
0.7

0.9

1.1

1.3

1.5

1.7

1.9
x 10

5 .

.

.

 

 

XXii1

X1

X1

X1

X1

X1

X1

1-D
VA

1
VA

2
VA

3
VA

4
VA

5
VA

6

Time [s]

Pr
es

su
re

[d
yn

/c
m

2 ]

Left vertebral

    1.6 1.8 2 2.2 2.4    
0.7

0.9

1.1

1.3

1.5

1.7

1.9
x 10

5 .

.

.

 

 

XXii1

X1

X1

X1

X1

X1

X1

1-D
VA

1
VA

2
VA

3
VA

4
VA

5
VA

6

Time [s]

Pr
es

su
re

[d
yn

/c
m

2 ]

Right vertebral

Figure 5: Flow rate and pressure comparison, at the third heart beat, for the sets of values given in Table 4 (elastic and
viscoelastic behavior of the external tissues), at the most significant coupling interfaces between the 3-D aorta (see Figure 2a)
and the 1-D network. The black line is the solution of the full 1-D network.
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lem. More precisely, we set up a geometrical multiscale model
composed by the 3-D patient-specific iliac in Figure 2b cou-
pled with the 1-D arterial tree described in Section 3.1, which
represents an average healthy patient. For the sake of sim-
plicity, the results presented in this section are obtained by
fixing the position of the boundary solid rings of the 3-D
arterial wall of the iliac, i.e., dS = 0 on Γ0

S, j, j = 1, . . . ,nΓ
FS.

First of all, we perform a sensitivity analysis of the main
quantities of interest with respect to a variation of the exter-
nal tissues parameters. In view of the results achieved in the
previous section, we directly consider both the elastic and
viscoelastic coefficients. For the first one, we choose five
sets of values at the different branches of the iliac, as de-
tailed in Table 5. Note that the values of the different cases
are chosen as multiples of the ones of case EI

1. Then, follow-
ing the result of the previous section, the viscoelastic param-
eter is obtained from (7).

The results of this comparison, at the most significant
coupling interfaces between the 3-D iliac and the 1-D net-
work, are summarized in Figure 6. From the images we ob-
serve that, apart from case EI

1, whose tissues are clearly not
stiff enough (the pressure level is significantly lower than
the reference one), all the other cases lead to results in a
physiological regime. Moreover, there are no significant dif-
ferences among the last four cases, even if the parameters
change considerably. This confirms the results of the previ-
ous section. In particular, we remark that the high sensitivity
observed in Figure 3 for the aorta was mainly due to the lack
of damping terms and, consequently, to the high-frequency
oscillations in the solution, rather than to a true sensitivity
to the elastic parameter kS.

Regarding the displacement of the 3-D arterial wall, sim-
ilarly to the previous section, we observe a gradual decrease
in the displacement magnitude with respect to an increase in
the value of the tissues parameters. No overinflations appear
along the iliac branches in all the simulated cases. However,
even in the stiffest case, we observe some severe overinfla-
tions at all the three bifurcations. This non-physiological be-
havior is due to the local reduced stiffness of the vessel,
which in turn is caused by the fact that at the branching
points the lumen of the vessel increases significantly, while
the thickness of the wall gradually diminish (since the dis-
tal branches have a smaller radius). In the real patient, these
large deformations are prevented thanks to the support of the
external tissues and to the presence of collagen fibers, which
are not accounted in our model.

To solve this issue without introducing a more complex
model for the 3-D vessel wall, we use a second configuration
of the iliac geometry, where two additional regions are intro-
duced at the bifurcations (see Figure 2c). Then we choose
case EI

4 as the reference one, and we introduce three addi-
tional sets of values for the tissues parameters at the iliac
bifurcations, as detailed in Table 6. As before, the values of

the different cases are chosen as multiples of the reference
one.

In Figure 7 we compare the magnitude of the displace-
ment field of the 3-D iliac arterial wall for the different cases.
The images show that at each increase in the values of the
tissues parameters, the overinflations at the branches dimin-
ish. This phenomenon is more visible in Figure 8, where
an enlarged lateral view of the top and low left bifurca-
tions is shown. In addition, a further analysis of the flow rate
and pressure waveform at the coupling interfaces (which for
brevity is not presented here) shows no significant changes
compared to the results in Figure 6. In view of these results
we conclude that, despite their simple formulation, Robin
boundary data provide a reliable way to account for the ef-
fect of external tissues over the arterial wall. Moreover, they
can be used to somehow compensate a local lack of stiffness
due to particular geometrical topologies, at least in healthy
arteries.

3.3.4 Solid ring boundary condition comparisons

In this section we compare the solution of geometrical mul-
tiscale models in which the boundary solid rings of the 3-D
geometries are fixed, as opposed to the case where the same
3-D boundary interfaces are scaled to enforce the continu-
ity of the vessels size with the surrounding 1-D arteries. For
these comparisons we use the same geometrical multiscale
models introduced in Sections 3.3.2 and 3.3.3. For the val-
ues of the elastic parameter of the external tissues, we select
cases EA

4 and EI
4b for the aorta and iliac, respectively, while

the viscoelastic parameter is given by (7).

In Figures 9 and 10 several views of the magnitude dif-
ference of the two 3-D geometries displacement fields are
shown. In particular, we observe that a significant difference
between the two cases exists only near the coupling inter-
faces, where the boundary conditions change. In the other
parts of the wall the result is almost the same. In addition,
a further analysis of the flow rate and pressure waveform at
the coupling interfaces (which for brevity is not presented
here) shows no significant differences between the two con-
figurations. This is coherent with the St. Venant–Kirchhoff
theory, which states that the influence of the boundary con-
ditions is bounded to the boundaries in dissipative systems.
In view of these results we conclude that the continuity of
the vessel area between 3-D and 1-D models is not essen-
tial for cardiovascular applications, unless the focus of the
analysis is on the study of the dynamics and stresses of the
wall near the boundary interfaces. On the contrary, it might
still be relevant to avoid (or at least reduce) the generation of
spurious interface wave reflections in other flow regimes.28
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Table 5: Empirical external tissues coefficients at the different wall regions of the 3-D iliac (see Figure 2b). We define five
cases for the sets of values of the coefficients.

Artery
kS [dyn/cm3]

cS [dyn·s/cm3]
EI

1 EI
2 EI

3 EI
4 EI

5

Abdominal aorta 25000 50000 75000 100000 125000 kS/10
Left / right common iliac 35000 70000 105000 140000 112500 kS/10
Left / right external iliac 37500 75000 112500 150000 187500 kS/10
Left / right inner iliac 42500 85000 127500 170000 212500 kS/10
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Figure 6: Flow rate and pressure comparison, at the third heart beat, for the sets of values given in Table 5 (elastic and
viscoelastic behavior of the external tissues), at the most significant coupling interfaces between the 3-D iliac (see Figure 2b)
and the 1-D network. The black line is the solution of the full 1-D network.

Table 6: Empirical external tissues coefficients at the bifurcations of the 3-D iliac (green and magenta wall regions in Fig-
ure 2c). From the reference case EI

4 (see Table 5), we define three additional configurations.

Artery
kS [dyn/cm3]

cS [dyn·s/cm3]
EI

4 EI
4a EI

4b EI
4c

Abdominal aorta (bifurcation) 100000 200000 300000 400000 kS/10
Left / right common iliac (bifurcations) 140000 280000 420000 560000 kS/10

3.3.5 Geometrical multiscale models comparisons

In this section we present several comparisons among differ-
ent geometrical multiscale models. More precisely we com-
pare the results of the full 1-D arterial tree described in Sec-
tion 3.1, which represents an average healthy patient, with
the two dimensionally-heterogeneous models introduced in
Sections 3.3.2 and 3.3.3, and a third model where the 3-D
aorta and iliac geometries are coupled together within the
same 1-D network. The purpose of the latest model is twofold:
on the one hand, it serves to prove the robustness of the pre-

sented algorithms in configurations where more than a sin-
gle 3-D FSI model is included; on the other hand, it is used
to analyze the combined effect of multiple disjoint 3-D ge-
ometries embedded in the same arterial network, compared
to the cases in which just one single 3-D geometry is con-
sidered. For all the configurations, we impose the continuity
of the vessel area through (6) at the interfaces between the
3-D geometries and the 1-D arteries. Regarding the values of
the elastic parameter of the external tissues, we select cases
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Case EI
4. Case EI

4a. Case EI
4b. Case EI

4c.

Figure 7: Wall displacement magnitude comparison, at the end-systole of the third heart beat (t = 2.0 s), for the sets of values
given in Table 6 (stiffening of the bifurcations), of the 3-D iliac (see Figure 2c) coupled with the 1-D network (not shown).
The color bar ranges from blue (0.0 cm) to red (0.5 cm).

Case EI
4. Case EI

4a.

Case EI
4b. Case EI

4c.

Figure 8: Lateral view of the top and low left bifurcations for the four cases in Figure 7.

EA
4 and EI

4b for the aorta and iliac, respectively, while the
viscoelastic parameter is given by (7).

The results of the flow rate waveform comparison at all
the coupling interfaces between the 1-D network and the
3-D aorta and iliac are summarized in Figures 11 and 12,
respectively. First of all, we observe that the presence of the
3-D iliac geometry has almost no effect on the upstream so-

lution (apart in the thoracic aorta B interface, which is quite
close to the iliac artery), while the 3-D aorta produces a vis-
ible, even if small, difference in the downstream flow (see,
e.g., the external iliac interfaces). In addition, the presence
of the 3-D geometries, which are not symmetric and whose
branches have different left and right vessel sizes, changes
the splitting of the flow in the network compared to the so-
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Lateral view. Top view. Bottom view.

Figure 9: 3-D aorta wall displacement magnitude difference, at the end-systole of the sixth heart beat (t = 4.4 s), between
the scaled area and the fixed area cases. The color bar ranges from blue (0.0 cm) to red (0.2 cm).

Lateral view. Top view. Bottom view.

Figure 10: 3-D iliac wall displacement magnitude difference, at the end-systole of the sixth heart beat (t = 4.4 s), between
the scaled area and the fixed area cases. The color bar ranges from blue (0.0 cm) to red (0.1 cm).

lution of the full 1-D arterial tree (see, e.g., the vertebral
arteries).

Regarding the behavior of the pressure and the radial
scale factor, which are shown in Figure 13, similar com-
ments hold. In view of these results, we conclude that 3-D
patient-specific geometries might have a significant effect
on the arterial flow, even in the case of healthy arteries. The
presence of geometrical singularities and pathologies, such
as aneurysms and stenoses, would probably increase this ef-
fect and will make the subject of future works.

3.4 Stand-alone 3-D FSI modeling

In this section we set up a comparison between the results of
the geometrical multiscale models presented in Sections 3.3.2
and 3.3.3, and their stand-alone 3-D FSI simulations coun-
terparts. More precisely, the stand-alone 3-D problems are
set up by considering the same 3-D geometries and data used
in the two reference geometrical multiscale models (cases
EA

4 and EI
4b, respectively, where the viscoelastic parameter is

given by (7)). However, at the boundary interfaces, instead
of imposing the set of conservation equations with the sur-
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Figure 11: Flow rate comparison, at the sixth heart beat, for different configurations of the global arterial network, at the
eight interfaces of the 3-D aorta. The color of the 3-D images represents the pressure field at the end-systole of the sixth
heart beat (t = 4.4 s), where the color bar ranges from blue (80000 dyn/cm2) to red (165000 dyn/cm2). Positioning of 1-D
network elements is purely visual.

rounding models, as described in Section 2.3, we prescribe
either flow rate or stress time profiles, taken from a precom-
puted solution of a full 1-D arterial tree. Following the same
approach, we also impose the radial scale factor time profile
on the solid ring boundary interfaces, such that they are not
fixed.

The flow rate and pressure waveform comparisons, at the
most significant coupling interfaces between the 3-D aorta

and the 1-D network, are summarized in Figure 14. The re-
sults show significant differences between the reference con-
figuration, i.e., the geometrical multiscale model, and the so-
lution computed by solving the stand-alone 3-D aorta model.
For instance, let us consider the flow rate waveform. The red
lines coincide with the precomputed (and imposed) solution
of the full 1-D arterial tree, which is different from the one
of the geometrical multiscale model, as already discussed in
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Figure 12: Flow rate comparison, at the sixth heart beat, for different configurations of the global arterial network, at the five
interfaces of the 3-D iliac. The color of the 3-D images represents the pressure field at the end-systole of the sixth heart beat
(t = 4.4 s), where the color bar ranges from blue (80000 dyn/cm2) to red (165000 dyn/cm2). Positioning of 1-D network
elements is purely visual.

Section 3.3.5. On the contrary, the blue lines are computed
by imposing a stress boundary data. However, even in this
case, the resulting flow rate is significantly different from
the reference one. In particular, the flow rate prediction in
the left common carotid and vertebral arteries are clearly
incorrect. Regarding the pressure waveform, where the pre-
computed solution of the full 1-D arterial network coincides
with the blue lines, a visible mismatch between the reference
solution and the stand-alone cases is always present. In par-
ticular, the average pressure level is overestimated when the
flow rate is imposed, and underestimated when the stress is
prescribed. As a consequence of the different flow rate and
pressure waveform, also the displacement field changes, as
shown in Figure 15. The differences with respect to the ref-
erence case are more evident when imposing the flow rate,
where we also observe a non-physiological excessive strain
(overinflation) of the left common carotid artery, even if we

use the same values for the tissues parameters in both simu-
lations.

Regarding the stand-alone 3-D iliac model, similar con-
siderations hold, as shown in Figures 16 and 17. Among
other things, we highlight the totally incorrect flow rate pre-
diction in the left inner iliac artery when imposing a stress
boundary data.

The results of these comparisons prove the importance
of the geometrical multiscale approach in the modeling of
cardiovascular flows. The different behavior of the stand-
alone 3-D FSI simulations with respect to the geometrical
multiscale model reference cases is mainly due to the lack of
dynamic interplay between the dimensionally-heterogeneous
models. Indeed, on the one hand, the set of conservation
equations described in Section 2.3 provides a reliable and
automatic way to determine the boundary data of each cou-
pled model. On the other hand, they also provide bilateral
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Figure 13: Pressure and radial scale factor comparisons, at the sixth heart beat, for different configurations of the global
arterial network, at the most significant coupling interfaces of the 3-D aorta and iliac (see Figures 11 and 12).

information on both flow rate and pressure, independently
from the imposed boundary condition type.

4 Conclusions

In this work, we presented several numerical comparisons
of geometrical multiscale models. A brief description of the
main ingredients of the geometrical multiscale approach has
been recalled from previous works, together with the parti-

tioned solution strategy used to set up the global network of
dimensionally-heterogeneous models.

The purposes of this work were manifold. A first goal
was to provide a systematic approach to set up and solve
geometrical multiscale problems (particularly regarding in-
terface equations, network connectivity, and solution algo-
rithms), and to give more insight on the calibration of the
most critical parameters needed by the numerical simula-
tions. In this regard we first provided a short description
of the procedure required to plug one or more 3-D patient-
specific geometries in a 1-D arterial tree network, whose
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Figure 14: Flow rate and pressure comparisons, at the sixth heart beat, between the solution of the geometrical multiscale
problem and the one of the stand-alone 3-D aorta with flow rate or stress boundary data from the full 1-D network, at the
most significant coupling interfaces of the 3-D aorta.

parameters were calibrated to represent an average healthy
patient. Then we set up several comparisons to study the
sensitivity of the main quantities of interest (flow rate, pres-
sure, and solid wall displacement) with respect to the elastic
and viscoelastic external tissues parameters. These quanti-
ties, which appear in the Robin boundary condition on the
solid wall of the 3-D FSI models, are empiric coefficients
whose evaluation is rather difficult. The results of our anal-
ysis show that:

1. the use of purely elastic Robin boundary conditions to-
gether with a linear elastic structure might lead to spuri-
ous high-frequency oscillations in some arteries, due to
the total lack of damping terms in the structural model;

2. viscoelastic Robin boundary conditions can be used to
somehow compensate for the lack of damping terms in
3-D FSI model, at least in healthy arteries, where a lin-
ear elastic structure can still be considered a reasonable
approximation;
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Flow rate imposed (t = 4.4 s). Stress imposed (t = 4.4 s). Flow rate imposed (t = 4.8 s). Stress imposed (t = 4.8 s).

Figure 15: 3-D aorta wall displacement magnitude difference, at the end-systole and end-diastole of the sixth heart beat,
between the solution of the geometrical multiscale problem and the one of the stand-alone 3-D aorta with flow rate or stress
boundary data from the full 1-D network. The color bar ranges from blue (0.0 cm) to red (0.5 cm).
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Figure 16: Flow rate and pressure comparisons, at the sixth heart beat, between the solution of the geometrical multiscale
problem and the one of the stand-alone 3-D iliac with flow rate or stress boundary data from the full 1-D network, at the
most significant coupling interfaces of the 3-D iliac.

3. a simple empiric relation can be used to determine the
value of the viscoelastic parameter as a function of the
elastic one;

4. above a certain threshold, the sensitivity of the flow rate
and pressure waveform to a variation of the external tis-
sues parameters is very small.
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Flow rate imposed (t = 4.4 s). Stress imposed (t = 4.4 s). Flow rate imposed (t = 4.8 s). Stress imposed (t = 4.8 s).

Figure 17: 3-D iliac wall displacement magnitude difference, at the end-systole and end-diastole of the sixth heart beat,
between the solution of the geometrical multiscale problem and the one of the stand-alone 3-D iliac with flow rate or stress
boundary data from the full 1-D network. The color bar ranges from blue (0.0 cm) to red (0.5 cm).

In future works, additional investigations will be performed
to confirm the results of the first two points. A possible strat-
egy to do this is to try to reproduce the high-frequency os-
cillations observed in the vertebral arteries by using simpler
geometrical configurations, such as a cylindrical benchmark
case where the radius, the material properties, and the inflow
wave are chosen to be similar to those at the simulated ver-
tebral arteries. In addition, further sets of simulations will
be performed on the 3-D geometry of the aorta by varying,
for instance, the local thickness of the wall or by including
a more accurate model for the structure. Anyway, despite
these aspect, we showed that it is possible to estimate, in
a systematic way, an admissible range of values for these
parameters, such that they lead to reliable physiological re-
sults.

Another goal of this work was to prove the importance of
the geometrical multiscale approach in the modeling of car-
diovascular flows. To do this we compared the results given
by geometrical multiscale models with both the solution of
a full 1-D arterial tree, and the one of stand-alone 3-D prob-
lems, where the 3-D patient-specific geometries were fed
with boundary data taken from a precomputed solution of
the same full 1-D network. Main results of this analysis are:

1. 3-D patient-specific geometries might produce signifi-
cant changes in the 1-D arterial flow, even in the case of
healthy arteries;

2. stand-alone 3-D FSI simulations are not able to capture
the correct flow rate and pressure waveform, since they
lack the dynamic interplay among the dimensionally-
heterogeneous models;

3. the continuity of the vessel area between 3-D and 1-D
FSI models is not essential for cardiovascular applica-
tions, unless the focus of the analysis is on the study of
the dynamics and stresses of the wall near the boundary
interfaces.

In view of these results we proved that, despite their in-
creased complexity and computational cost, geometrical mul-
tiscale models provide more accurate results compared to
purely 1-D arterial networks or simpler stand-alone 3-D FSI
simulations. Indeed, they give the possibility to specifically
study regions of interest by the mean of 3-D FSI models,
evaluating local hemodynamics parameters (e.g., wall shear
stress, turbulent flow, regions of recirculation) without ne-
glecting the interaction with the global circulation.

In future works, the present methodology will be used
to set up numerical simulations in the context of patient-
specific medicine, i.e., for the diagnosis, treatment, and follow-
up of specific diseases and pathologies. To reach this goal,
a more complete and accurate model for the 3-D structure
will be employed together with high-order space and time
schemes for the numerical discretization of the 3-D FSI prob-
lem. In addition, experimental validations of the geometri-
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cal multiscale models by using particle image velocimetry
(PIV) methods will be possibly carried out.
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