Chapter 13

A Set-Theoretic Method for Verifying Feasibility
of a Fast Explicit Nonlinear Model Predictive
Controller

Davide M. Raimondo, Stefano Riverso, Sean Summers, Colin N. Jones,
John Lygeros and Manfred Morari

Abstract In this chapter an algorithm for nonlinear explicit model predictive con-
trol is presented. A low complexity receding horizon control law is obtained by ap-
proximating the optimal control law using multiscale basis function approximation.
Simultaneously, feasibility and stability of the approximate control law is ensured
through the computation of a capture basin (region of attraction) for the closed-loop
system. In a previous work, interval methods were used to construct the capture
basin (feasible region), yet this approach suffered due to slow computation times
and high grid complexity.

In this chapter, we suggest an alternative to interval analysis based on zonotopes.
The suggested method significantly reduces the complexity of the combined func-
tion approximation and verification procedure through the use of DC (difference of
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convex) programming, and recursive splitting. The result is a multiscale function
approximation method with improved computational efficiency for fast nonlinear
explicit model predictive control with guaranteed stability and constraint satisfac-
tion.

13.1 Introduction

This chapter proposes a method of approximate explicit model predictive control
(MPC) for nonlinear systems. While it is possible to compute the optimal control
law offline for a limited number of cases (e.g., affine or piecewise affine dynam-
ics [5, 20, 29]), it is in general necessary to approximate, and therefore validation
techniques are required for the resulting approximate closed-loop system. In this
chapter, we present a new technique for approximation and certification of stability
and recursive feasibility for explicit NMPC controllers, in which the control law is
precomputed and verified offline in order to speed online computation.

The control law is approximated via an adaptive interpolation using second order
interpolets, which results in an extremely fast online computation time and low data
storage. The resulting suboptimal closed-loop system is verified by computing an
inner approximation of the capture basin and an algorithm is proposed that itera-
tively improves the approximation where needed in order to maximize the size of
the capture basin. The key novelty of this chapter is the use of difference of convex
(DC) programming and zonotope approximation in order to significantly improve
both the computational performance and efficacy of the calculation of the capture
basin.

Methods for the approximation of explicit solutions of nonlinear model predic-
tive control (NMPC) problems have been addressed recently by various authors
(e.g., see [8, 19]). In [8], the authors compute an approximate control law #(x) with
a bound on the controller approximation error (||u*(x) — #(x)]||), from which per-
formance and stability properties are derived using set membership (SM) function
approximation theory. In [19] the authors use multiparametric nonlinear program-
ming to compute an explicit approximate solution of the NMPC problem defined
on an orthogonal structure of the state-space partition. An additional example of the
approximation of explicit solutions of NMPC can be found in [26].

In almost all cases, the suboptimality of the resulting control law (and as a con-
sequence the stability of the feedback system) is valid under various strong assump-
tions. Examples include the approximation of the Lipschitz constant ([8]) and the
availability of global optimization tools ([19]). While these approaches often work
well in practice, in many problems the stability of the closed-loop system (and the
resulting region of attraction) cannot be guaranteed. Thus, in this chapter we exploit
advances in reachability analysis and adaptive interpolation to construct an approxi-
mate explicit control law that encompasses the strengths of the recent works ([8, 19])
while guaranteeing stability and feasibility and preserving a minimal representation
of the control law.
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Extending the results of [30, 31], in this chapter we introduce a constructive al-
gorithm for the approximation of an explicit receding horizon NMPC control law.
We approximate the optimal control law by adaptive interpolation using second or-
der interpolets, while concurrently verifying feasibility and stability of the resulting
feedback system via the computation of an inner approximation of the capture basin
(see, e.g., [12]). In contrast to the capture basin computational method considered in
[12, 31], we develop a mechanism for computing the capture basin using zonotopes
[22, 11, 33] and DC programming [3] that significantly reduces the complexity of
the combined function approximation and verification procedure. Using zonotopes
and DC programming rather than interval analysis [25, 6] additionally leads to an
approximate control law with less storage requirements and a larger verifiable re-
gion of attraction. With the approach we propose, we are able to construct a sparse
approximation of the optimal control law while taking into consideration perfor-
mance loss and the feasibility and stability of the feedback system. Further, since
the solution is defined on a gridded hierarchy, the online evaluation of the control
law is extremely fast, see [30].

The rest of the chapter is arranged as follows: Section 13.2 introduces the NMPC
problem. Section 13.3 provides background on multiscale sparse function approx-
imation and Secs. 13.4 and 13.5 discuss reachability analysis and the proposed
method of calculating the capture basin of an approximation NMPC explicit con-
trol law. Section 13.6 provides a numerical example indicating the effectiveness of
the approach.

13.2 Nonlinear Model Predictive Control

Consider the following finite horizon optimal control problem (NMPC):
J*(x) = min J(uo, -, UN—1,X0, -, XN)
UQ, -« UN—1
subject to Xip1 = f(xiu), Vi=0,...,.N—1
(xiup) € X xU, Vi=0,....N—1 (13.1)
XN € XF,

Xp) =X,

where x; € R” is the state of the system, u; € R™ is the control input of the system,
and N is the prediction horizon length. The cost function J takes the form

N—1

J(uo, ... .un—1,%0,...,xx) :=Vy(xn) + 3, L(xi,ui) (13.2)
i=0

where L is the running (stage) cost and Vy is the terminal cost.
The system dynamics f: R” x R” — R" is a continuous and differentiable func-
tion, and the objective is to regulate the state of the system to the origin under state
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and control input constraints represented by the (compact) sets X C R", ¢/ C R",
respectively. We assume that the terminal set Xr is compact and positively control
invariant under a known stabilizing feedback law xr. For the sake of simplicity (as
in [8, 19]), it is assumed that the control input constraint set I/ is convex, although
the following results can be extended to the nonconvex control input constraint set-
ting.

A dual-mode NMPC control approach is taken, in which the optimal NMPC
control law k*(x) is defined as

Kr(x), ifxeX
K*(x) 1= i( ) o (13.3)
up(x), otherwise
where u*(x) = uj(x),...,ux_,(x) is an optimal sequence of inputs of NMPC prob-

lem (13.1) for the state x. Following [8, 19], we assume in this chapter that the
optimal receding horizon control law u((x) asymptotically stabilizes the origin of
the closed-loop system.

Remark 13.1. Note that the proposed approximation and analysis techniques can be
applied to any optimal control problem that generates a smooth control law. We
here use the MPC cost function given in (13.2) because it is a common target for ap-
proximation and because sufficiently fine approximation will result in a stabilizing
control law by construction.

13.3 Multiscale Function Approximation

The method we propose for approximating u(x) relies on coarsely gridding the
state space, and then regridding with increasing resolution only the regions which
have not been approximated sufficiently. At the same time, we keep only the grid
points that play a significant role in the function approximation [30].

Define the one-dimensional scaling function with support [—1, 1] by

) 1—x|, ifxe[-1,1],

o) { 0, otherwise. (13.4)
In one dimension, we consider a dyadic discretization on the unit interval Q = [0, 1].
The resulting grid €2; is characterized by the level of discretization / and the index
i. At level [ the distance between points is #; = 2~/ and the number of points is
N =2/ + 1. The index i determines the location of the grid points according to the
equation

xpii=i-hy, 0<i<2,

Given function (13.4), via translation and dilation we get
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$,.(x) =0 <x_””> (13.5)
5 hl

where ¢, ; represents a family of basis functions with support [x7;—hy,x1;+hy). The
family of univariate multiscale functions v, ; that make up the hierarchical basis is
given as

Vi =050 €1

where
{ieNo[1<i<2' —1,iodd}, 1>,
{ie Nol0 <i<2'}, 1=1l.

A multivariate multiscale basis on the unit cube Q¢ = [0,1]¢, where d is the di-
mension, can be constructed by tensor product expansion of the one-dimensional
multivariate functions v/, ;, i.e.

d
Vii= H Vii; (13.6)
=1

with the d-dimensional multi-index i € Ild and

M {ieNgo<i<2'}\{ieNJo<i<2lijevenVje[ld]} I>1]
! {ieNdjo<i<2} 1=1,

Ild is the full grid less those points seen at previous levels, as depicted in Fig. 13.1.
The d-dimensional hierarchical function spaces of piecewise d-linear functions can
be defined as Wy = span{y, ;i€ 19}, Let

d
914(x) = [T 01, (x))
=1

the family of d-dimensional nodal basis functions and Vld = span{¢ 1i:0<i<
2/} the d-dimensional nodal function space. It holds that V = Di<: W where @

denotes the direct sum. Therefore, any function u; € Vld can be represented in the
hierarchical basis by

/
u(x) = 2 2 Wii s Wi (%)

k=lhierd

where coefficients wy; € R (hierarchical details) correspond to the difference be-
tween the true function value u; (xk,i) and the value of the approximate function one
level below.
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Fig. 13.1 Grid points for subspaces W7 (circles), W7 (x’s), and 5 (dots).
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Fig. 13.2 Set of hypercubic regions R.

In [30], it has been shown that the function approximation by adaptive hierarchi-
cal basis function expansion generates a grid (of hypercubes (Fig. 13.2)) spanned
by an interpolation by barycentric coordinates. Given a set R of hypercubic regions,
for each hypercube R it holds that

ax)= Y aW)fix), ifxeRr (13.7)

veextr(R)

where extr(R) are the extreme points of R and f, (x) are compactly supported basis
functions of the form (13.6) centered at the corners of the hypercube R.

Theorem 13.1. Given any hypercube R of R, ifti(v) € U, Vv € extr(R) and U is con-
vex, then i(x) € U, Vx € R. Moreover; if problem (13.1) is convex, then, feasibility
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at vertexes v of R is necessary and sufficient in order to get feasibility for all x € R,
ie, g(x,d(x)) <0, Vx € R

Proof: The result is obtained by exploiting the barycentricity of the interpolation.
See [30] for details.

Note that, in the general nonlinear case, the constraint satisfaction at the vertexes
of R is not sufficient in order to prove their satisfaction in the entire box. This is
because g and % are in general nonconvex. However, if U is convex, then control
constraint satisfaction at the vertexes of R guarantees their satisfaction in R.

Summarizing, we need an alternative method for verifying the stability and state
constraints satisfaction of system x;;1 = f(x;,u;) in closed loop with #(x). In the
following section, we present reachability analysis of nonlinear systems as a possi-
ble solution.

13.4 Reachability

The exact computation of the set
D =f(Q) (13.8)

given an initial set 2 C R"” and amap f: R” — R”, is not possible in general. Taking
this into account, the objective is to construct an outer approximation of @ in such
a way that the set is representable on a computer and the overestimation is kept as
small as possible [22]. Several solutions have been proposed in the literature, and
in the following sections we provide an overview of existing methods that apply
for nonlinear functions f before proposing a new method for guaranteeing tight
overbounds.

13.4.1 Interval Arithmetic

Given S, S, C R” the Minkowski sum is defined as S} @S, = {x+y:x € 51,y €S> }.
Given a,b € R, with a < b, [a,b] denotes the interval {x : a < x < b}. The center
of the interval [a,b] is denoted by mid([a,b]) = ”erb . Let I be the set of all inter-
vals [a,b], i.e. I = {[a,b] : a,b € R,a < b}. The set of all interval vectors in R”
is denoted by I". The unitary interval [—1,1] is denoted by B. A box is an in-
terval vector and a unitary box, denoted by B”, is a box composed of m unitary
intervals. With a slight abuse of notation, when the superscript is not indicated,
B denotes a generic unitary box. Given a box X = [a,b;] X [a2,b2]... X [an, byl,
mid(X) = (mid([a;,b1)),...,mid[a,,b,])” denotes the midpoint (or center) of X,

diam(X) = (b —ay,...,by, —a,)" and rad(X) = diam(X) /2. Interval arithmetic is
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based on operations applied to intervals. An operation e can be extended from real
numbers to intervals, i.e., given X, X, € I, X; e X5 = {xj exp : x1 € X,x € X}
The four basic interval operations as well as the interval extension of standard func-
tions (sin, cos, tan, arctan, exp, In, |,| sqrt), are defined in [25].

Definition 13.1. (Natural interval extension [21]) If /' : R” — R” is a function com-
putable as an expression, algorithm or computer program involving the four elemen-
tary arithmetic operations and standard functions, then a natural interval extension
of f, denoted by O/, is obtained by replacing the occurrence of each variable by the
corresponding interval variable and by executing all operations.

Theorem 13.2 ([21]). Given a function f: R" — R" and any box X C R" within the
domain of f, a natural interval extension Of : 1" — 1" of f satisfies f(X) C Of(X).

Definition 13.2. (Taylor interval extension of degree k) Let f: R” — R" bea k+ 1
times differentiable function, X C R” any box within the domain of f and y € X.
The Taylor interval extension of f of degree k is given by

k
1) = 3 /0) - (X )+ [ X.y)

where V' f(y) is the ith order differential of f at the point y and [z;ls an interval
extension of the Taylor remainder

M) = L T

By substituting X for & we obtain an overestimation of the remainder. Usually, y
is chosen to be the midpoint of the box X, and natural interval extension is used to
bound the remainder.

Theorem 13.3. Let : R" — R”" be a k+ 1 times differentiable function and X C R”"
any box within the domain of f. A Taylor interval extension of f of degree k satisfies

f(X) € O (X).

Because of the special form of 7, in practice the Taylor remainder usually de-
creases as |x—y|**!. Hence if |x— y| is chosen to be small, then the interval extension
of the Taylor remainder gets smaller for increasing £, i.e., higher order Taylor inter-
val extensions yield better enclosures on small boxes [24]. A comparison between
natural interval extension and Taylor interval extension of degree O (yellow) and 9
(green) is given in Figs. 13.3 and 13.4. While Fig. 13.3 shows the advantage of Tay-
lor interval extension on a small box, Fig. 13.4 shows its limits over big boxes. In
this work, interval arithmetic has been implemented using INTLAB [27].

The main drawback of interval analysis is that it always outer bounds the image
of a box with a box. The use of more complex domains can reduce the conservatism.
For this reason, the use of zonotopes as the class of approximates is considered in
the next section.
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Fig. 13.3 In this example

we considered the function

f defined in (13.14). The

starting set X is depicted on 08
the left. On the right, samples

of f(X) are depicted in black 06
while the red, yellow and x
green boxes represent the

natural interval extension, the 02
Taylor interval extension of

degree 0 and 9 (v = mid(X)) 02 04 06 08 1 =
respectively. ! 1

0.4

=
=
)
w

Fig. 13.4 In this example
we considered the function
f defined in (13.14). The
starting set X is depicted on 100
the left. On the right, samples

of f(X) are depicted in black

while the red, yellow and *
green boxes represent the

natural interval extension, the
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13.4.2 Zonotopes

Zonotopes are centrally symmetric convex polytopes. Given a vector p € R” and a
matrix H € R"*™ the zonotope Z of order n x m is the set

Z=poHB" ={p+Hz|zeB"}.

The zonotope Z is the Minkowski sum of the line segments defined by the columns
of the matrix H translated to the central point p. Z can be described as the set
spanned by the column vectors of H

m
Z:{p+2a,~h,~|—1§a,~§1}
i=1

where /%, also called the line segment generator, is the ith column of H. When the
matrix H is diagonal, the zonotope is a box composed of » intervals. The construc-
tion of zonotopes based on the Minkowski addition of convex polytopes is described
in [16] and here adopted and implemented using the MPT toolbox [23]. An example
of a two-dimensional (2D) zonotope is depicted in Fig. 13.5.

The image of a zonotope Z under a nonlinear function is not, in general, a zono-
tope. Kiihn developed a procedure that guarantees a tight approximation by bound-
ing f(Z) with a zonotope [22]. The following theorem introduces the zonotope in-
clusion operator that is needed for computing Kiihn’s zonotope extension.
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Fig. 13.5 A 2D zonotope.

Theorem 13.4. (Zonotope inclusion) Consider a family of zonotopes represented by
Z = p®MB", where p € R" is a real vector and M € I"*™ is an interval matrix. A
zonotope inclusion, denoted by ©(Z.), is defined by

. B”
o(Z)=p®[midM) G Bl = pOJB"
where G € R"*" is a diagonal matrix that satisfies
2 diam(M;;
G,‘izz fam( U),iZI,...,n.

j=1
Under these definitions it results that Z. C o(Z.).

Theorem 13.5. (Zonotope extension) Consider a function f : R" — R" with contin-
uous derivatives and a zonotope Z. = p ® HB™. Given an interval matrix M € T"*"
such that M D V f(Z)H, it results that

f(Z) C f(p) ®o(MB").

This theorem is a particular case of Kiihn’s method (see Proof in [2]). Note that,
Vf(Z)H, multiplication of a matrix of sets by a matrix, is a matrix of sets. A possi-
ble outer bound is M = [NJ( [ZJH.

The zonotope extension represents a Taylor extension of order 0, where the re-
mainder has been evaluated on Z. A comparison between zonotope Taylor extension
of order 0 and Taylor interval extension of order 0 is given in Fig. 13.6. As expected,
zonotopes better approximate the output set.

A first order Taylor zonotope extension was proposed in [11]

f(Z)C f(p)®Vf(p)Z—p)Dcr®[Zg ZuB
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Fig. 13.6 In this example we

considered the function f de- 4
fined in (13.14). The starting 34
set Z is depicted on the left.

On the right, samples of f(Z) <8
are depicted in black while 25
the red and yellow zonotopes 2

represent the Taylor interval
extension of degree 0 and the
zonotope extension of degree 1 2 3 p 5 -0. 3 4 5 5
0 respectively. 1 1

where cg and [Zp Zy] provide a less conservative approximation of the remainder
by making use of some interval analysis properties (see Eq. (14) in [11] for the

definition of cg and [Zp Zy)).
A Taylor zonotope extension of order &k can been obtained as follows:

k
fZ) S (P @VS(P)Z—p)Bcr ©ZgBS Y, .1, V' (p) (L3 p) & LI ZIL D).
i=3 b

Note that cg @ ZpB represents the second order Taylor expansion term computed
at p, center of the zonotope Z (see [11] for details). The higher order terms have been
obtained by applying the Taylor interval extension. Due to over-approximation of
zonotopes with boxes (i.e. (Z — p) is replaced by ( [Z3 p)?), there is no guarantee
that higher order Taylor zonotope extensions will produce tighter enclosures than
low order ones.

A comparison between zonotope Taylor extension of order 0 (red) and order 1
(yellow) (computed as in [11]) is given in Figs. 13.7 and 13.8. In Fig. 13.7, as one
would expect, the first-order extension is better, but in Fig. 13.8 it is the opposite.
This depends on the dynamics f (Eq. (13.13) in the case of Fig. 13.7 and Eq. (13.14)
in Fig. 13.8) and the size of the starting set Z, i.e., the larger the set, the worse the
approximation. Furthermore, the use of higher order extensions does not guarantee
improvement a priori. In Figs. 13.9 and 13.10, starting sets that are boxes (and not
generic zonotopes) have been considered. In the first figure, higher-order extensions
do better while in the second the opposite is observed. Again, this depends on the
dynamics f and the size of the starting set Z.

It is important to note that if a linear system is considered, zonotopes provide an
exact description of the reachable set, unless a bound on the number of line gener-
ators is imposed. If the system is instead nonlinear, and the starting set is a small
box, then high order extensions are generally better than low order ones, although
the dynamics of the system plays an important role in determining which approach
provides the best approximation. The drawback of high-order extensions is the need
to compute the derivatives \4 f,i=1,--- k4 1. For this reason, we are interested
in finding other techniques that are less computationally expensive while still rea-
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Fig. 13.7 In this example we
considered the function f de-
fined in (13.13). The starting
zonotope Z is depicted on
the left. On the right, sam-
ples of f(Z) are depicted in
black while the red and yel-
low zonotopes represent the
Taylor zonotope extension of
degree 0 and 1 (computed as
in [11]) respectively.

2
1

-

.5 1 X
3 -2
x

®

0 15
-1 o
1
5 1 15
X1
0 5
1

Fig. 13.8 In this example we
considered the function f de-
fined in (13.14). The starting
zonotope Z is depicted on
the left. On the right, sam-
ples of f(Z) are depicted in
black while the red and yel-
low zonotopes represent the
Taylor zonotope extension of
degree 0 and 1 (computed as
in [11]), respectively.

1

Fig. 13.9 In this example
we considered the function
f defined in (13.14). The
starting box Z is depicted on
the left. On the right, samples
of f(Z) are depicted in black
while the red, yellow and
green zonotopes represent the
Taylor zonotope extension of
degree 0, 1 (computed as in 0855 ; 15
[11]), and 5, respectively. 1

Fig. 13.10 In this example

we considered the function 4 80
f defined in (13.13). The . 600
starting box Z is depicted on 400
the left. On the right, samples 2 200
of f(Z) are depicted in black 1 &0
while the red, yellow and 0 20!
green zonotopes represent the —40
Taylor zonotope extension of - —60!
degree 0, 1 (computed as in

A =) -2 -1 o 1 ~59%0 500 0 00 1000
[11]), and 8, respectively.

X X

sonably good in approximating the real set. In next section, we consider a method
based on DC programming that provides a better first order zonotope Taylor exten-
sion than the one proposed in [11] when the function f is C2.
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13.4.2.1 DC Programming

Definition 13.3 (DC function). [17] Let 2 be a convex subset of R”. A real-valued
function f: Q2 — R is called DC (difference of convex) on €2, if there exist two
convex functions g,/ : £ — R such that f can be expressed in the form

If Q =R”, then f is simply called a DC function.

Every continuous function can be approximated by a difference of two convex func-
tions (DC functions) ([17]) and every C?-function is a DC function ([32]). Even if f
is a C*>-function, finding a DC decomposition of /—namely, the functions g and h~—
is often a challenging problem, although suitable procedures exist. In this work we
use the method described in [1]. Given f: £2 — R and recalling that a C2-function
is convex in €2 if and only if sz(x) > 0,Vx € Q, we search for a parameter o > 0
such that V2 f(x) > —2al,Vx € Q. Then f(x) = g(x) — h(x) is a DC function with
g(x) = f(x) + oxTx and h(x) = oxTx.

Programming problems dealing with DC functions are called DC programming
problems. In [3] the authors propose a DC programming-based method for con-
structing a tight outer approximation of f(Z) (where f is a nonlinear C? function
and Z a zonotope). First they linearize /" and compute the image of Z under this
linearization. A parallelotope that bounds the approximation error between f and
its linearization for the given set Z is then added to the image. By exploiting the
convexity of g(x) and /(x), a tighter approximation than the one achievable by sim-
ply bounding the remainder of the first-order Taylor approximation is thus obtained.
The results are summarized in the following.

Definition 13.4 ([3]). Let f(x) : R” — R” be a nonlinear differentiable function and
Z = p® HB™ a zonotope. Given f%(x) = f(p) + V.f(p)(x — p), the error set € is
defined as

e={ecR":e=f(x)— fr(x),x€Z}.

Lemma 13.1 ([3]). Let Z = p ® HB™ be a zonotope and f(x) : R" — R" a non-
linear DC function, i.e. f(x) = g(x) — h(x), with g and h convex. Let gk(x) =
2(p) +Vg(p)(x — p), hk(x) = h(p) + Vh(p)(x — p) and define the parallelotope
Eas

E={xeR":y; <x;<vy', i=1,....n}, (13.9)

with

= max(ei () = h () = fF(3)

¥ = min(gf (x) = hi(x) = £ (%))

xXEZL

Then, the parallelotope & is an outer bound of the set €, i.e., € C €.
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Fig. 13.11 Comparison of a
DC zonotope (cyan) with a 1%
order one (yellow, computed
as in [11]) calculated for a
big starting box (blue). The
black dots represent sampling
of f(Z), with f defined in
(13.14).

Theorem 13.6 ([3]). Let Z = p & HB™ be a zonotope and f(x) : R" — R" a DC
function. Then

fzycrtzwe.

Theorem 13.6 is the main result of [3] and shows how to bound the image of a
zonotope under a nonlinear DC function. A comparison betweeen DC programming
(cyan) and first-order Taylor zonotope extension (yellow, computed as in [11]) is
provided in Fig. 13.11. In this case, the DC programming-based approach produces
a better approximate. Several experiments confirmed this tendency.

Summarizing, DC programming is generally better than first order Taylor zono-
tope extension. If the starting set is small, then high order zonotope extensions could
be better. The main drawbacks of the latter approach are the computational complex-
ity and the efficacy just for small starting sets. The reason is that Taylor approxima-
tion is a local property, i.e., it is accurate around mid(Z) but gets worse as soon as
the set becomes large. In any case, zonotopes have an intrinsic limitation in that,
being symmetric and convex, they are poor at bounding nonconvex sets, while, in
general, the output of f(Z) is nonconvex.

In this chapter, we use reachability analysis in order to evaluate the image of the
sets R € R introduced in Sec. 13.3 through the nonlinear dynamics of the system
in closed-loop with the approximate MPC control law. What is important to note is
that R can be arbitrarily big a priori. For this reason, in the next section we propose
a method for partitioning R in subsets. A similar idea has been proposed in [13].
We apply DC programming to each one of the subsets and the union of the output
sets is used to contain f(R). This approach should provide better performance be-
cause the starting sets are smaller and the output, being a union of zonotopes (hence
not necessarily convex anymore), could be a tighter approximation to the real set.
DC programming is preferred to high order zonotope extensions for computational
reasons.

13.4.3 Splitting the Starting Set

First of all, we introduce the operator bisecty(-) (see [33] for details) that splits
a zonotope into two. Given Z = p ® HB™ the operator bisect;(Z) generates two
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Fig. 13.12 An example of a
split. bisect(Z).

subzonotopes
h h
L __ Mk k m
zt=(p-"J)el... ) . B
h h
28 = (p+ )@ i B

where 7y, is the kth column of H. Figure 13.12 shows an example of the operator
bisect;(Z) applied to the zonotope Z in Fig. 13.5. In this case, Z* and Z* intersect.
This is because the line segment generators 4y, ..., A, are not linearly independent.
If H € R™*™, with rank(H) = m, then, bisect(Z) provides two subzonotopes that
do not overlap. As stated above, given a generic nonlinear function f, zonotope ex-
tensions as well as DC programming work better on smaller boxes. This is because
Taylor approximation is a local property, i.e., it is effective for a neighborhood of
mid(Z). How big this neighborhood is depends on how close to linear the system
is. For this reason, the approach we propose consists of splitting more where the
system in more nonlinear, i.e., where the Taylor approximation is less effective. We
evaluate this by considering €, the remainder of the first order extension with the DC
programming-based approach. The procedure is summarized in Algorithm 13.1. A
comparison between DC programming with Z split into 5 and 10 subzonotopes is
reported in Table 13.1 and is depicted in Fig. 13.13. The case with 10 zonotopes
produces, as expected, a tighter approximation (smaller volume) at the expense of a
higher computational time and a higher number of evaluations.

Table 13.1 Algorithm 13.1. Comparison between the case of 5 and 10 splits. The algorithm has
been applied in combination with the DC programming-based approach.

#of Z; in output  # of evaluated Z;  Comp. Initial Final
time (s) Volume  Volume

DC prog. 5 17 2.28 1811 647
DC prog. 10 37 5.01 1811 3.06
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Algorithm 13.1 Splitting the starting set by using the € criteria

Require: Nonlinear function f': R” — R”, a starting set Z and ny, number of required splits.
Ensure: Union of n; zonotopes, which is an outer approximation of f(Z).
1: Compute Zg, outer approximation of f(Z) using DC programming.

2: Stack =7, Stacky: = Lo.

3: while length(Stackou ) < ng do
4: Find in Stack,. the zonotope Zo, with the biggest € (see (13.9) for the definition) in terms

of volume.
5: Select from Stack Z; = p; ® H;B?, the starting zonotope associated with Zo,.
6: for j=1topdo
7: Generate ij and Zf} by applying the operator bisect(-) to the jth column of matrix H;.
8: Compute Zf)l_i and Zgii’ outer approximations of f(Zf;) and f(Zf).
9: Calculate the volumes of éle and éf}.
10:  end for
11:  Find the index j with the smallest sum of volumes of éfj and éf}.

12:  Stack = (Stack\{Z;}) U {Zt Zg}'
13: Stackou = (Stackouu\{Zo, }) U{Z, . L5, }-

14: end while

Fig. 13.13 In this example
we considered the function
f defined in (13.14). The
starting sets Z are depicted
on the left. In one case, Z
has been split into 5 while in
the other into 10. The splits
have been done according to
Algorithm 13.1. The results
are depicted on the right, in
cyan the output obtained with
5 splits while in red the one
with 10 splits.

13.5 Capture Basin

ij

0.5

-0.5|

Consider the following system

0.5

-0.5|

-1

Yoy — S (i Kp(x)), Vx € Xp (13.10)

fR(x,'), Vx € R.R g Xp

the system x; ;1 = f(x;, ;) in closed-loop with the approximated control law (13.7),
for all sets R € R under the dual mode approach. Given (13.10), we define with R;
the capture basin [4, 28], i.e., the set of initial states such that the terminal invariant
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Algorithm 13.2 Computation of the capture basin

Require: Discrete time system (13.10) and R, set of all hypercubic regions.
Ensure: Capture basin Ry.
1: Initialize Ry = Xr and = = {R: R C R, R Z R,}.

2: while = # () do

3: AXtemp =R;.

4:  forall R € Z, compute an outer approximation Rp(1) of the 1-step ahead reachable set by
using Algorithm 13.1.

5: Add to Xiemp all the boxes R that satisfy Ro(1) C Ry. Xiemp represents an inner approxima-
tion of the 1-step backward reachable set of Rj.

6: Set Ry = Xiemp.

7: Eprec = E. )

8: Update =,as =={R:RCR, RZR}.
9: if =) == Z then

10: Return R;.

11: end if

12: end while

set Xr is reached in finite time while at the same time satisfying the state and the
control constraints X’ and /. Note that, since system constraints are satisfied in
Xr and AXF is by definition invariant for the closed-loop system (13.10), one has
Ry O Xf.

The exact computation of the capture basin R; is a difficult problem for the case
of nonlinear systems. For this reason we suggest Algorithm 13.2 to compute an
inner approximation of R,. Algorithm 13.2 makes use of Algorithm 13.1. With Al-
gorithm 13.2 we check which boxes R belong to R,. Since the interpolated control
law guarantees the satisfaction of the control constraints if I/ is convex (see [30]),
and state constraint X are satisfied by requiring R C X', Algorithm 13.2 has just to
check from which boxes the set X is attainable in finite time.

13.5.1 Approximate Explicit NMPC

In the following we introduce a recursive algorithm for multiresolution approxima-
tion of explicit nonlinear model predictive control laws. The algorithm is initialized
with a user-defined coarse uniform grid before a dyadic refinement strategy is used
to improve the approximation to a specified accuracy. Exploiting the fact that the
state space can be decomposed into a union of hypercubes R (with respect to the
approximate receding horizon control law), the algorithm restricts the dyadic re-
finement to the hypercubes intersecting the current invariant set. In this way the
basin of attraction is constructed from the inside out (starting from the terminal set).
The procedure is summarized in Algorithm 13.3. The algorithm requires the NMPC
problem (13.1) and the NMPC cost function (13.2). The index set A is initialized
at level [y along with all indices and details. The set of stored detail coefficients is
given by the set w. When the grid is refined, A stores the levels of resolution & and
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Algorithm 13.3 Adaptive Hierarchical Approximate NMPC

Require: NMPC problem (13.1), NMPC Cost Function (13.2), /y, and /max.

Ensure: detail coefficients w and index set A such that the system x;.; = f(x;,u;) in closed-loop
with the approximate control law #(x) (see (13.7)) has guaranteed feasibility and stability over
the capture basin Rj.

1: Initialize the index set A = {(k,i) : i € I,k = [y} and the initial set of hypercubes
2: Initialize the capture basin Ry = X and the set of intersecting hypercubes R. = {R € Ryctive :
RN R # 0} where Ryciive 18 the set of hypercubes not contained within Ry
3: Compute the initial details w = {wy; : (k,i) € A} by solving the NMPC problem (13.1) point-
wise at the vertices of all R € Ry¢tive
4: while R, # 0 do
5:  Compute the capture basin Ry with Algorithm 13.2.
6: Recompute the set of candidate refinement hypercubes R = {R € Ryciive : RNRs # D, Ig <
Imax } where I is the level of the hypercube
7:  Refine all hypercubes R € R,
8: Update R,.ive and define the set of new vertices as A,
9:  Solve the NMPC problem (13.1) at the new vertices and compute the new detail coefficients
Wn

10: Update the index set A = A UA,

11:  Update the detail set w = wUw,

12: end while

indices corresponding to the set of hierarchical details that are not discarded due
to being initial conditions not feasible for problem (13.1). The maximum level of
resolution is given as /m,x. The capture basin is computed using Algorithm 13.2.
The set of hypercubes R, intersecting R, represents the set of refinement candidate
sets. Ryciive 1S the set of hypercubes not contained within Ry; note that R, C Ryctive-
See [30] for details about the complexity of the real-time implementation of the
approximate control.

The main theorem is now stated. It proves that Algorithm 13.3 always provides
a stabilizing receding horizon control law and verifiable region of attraction for
the NMPC problem (13.1). Note that we adopt a dual mode strategy, i.e., once the
terminal set is attained, the stabilizing feedback law defined in X is applied.

Theorem 13.7. Let #iy be the resulting receding horizon approximate control law
computed from Algorithm 13.3 for the NMPC problem with cost (13.2), Iy € N, and
Imax € N. The following properties hold for ily:

a) Asymptotic stability to the origin for all xy € R;

b) fig € U for all x € Ry

¢) Forallxy € Ry, x; € X foralli=1,2,3,...

d) RS 2 XF

e) As lmax — 00, then iy — uy and Ry — R where R is the maximum invariant set

for (13.1).
See proof of Theorem 12 in [31].
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13.6 Numerical Example

Consider the following two-dimensional continuous-time nonlinear system (e.g., see
[10, 19, 9]):

X1(t) = x2(t) +[0.54 0.5x1(2)]u(?) (13.11)
XZ(t)le(l)-l—[O.S—ZXQ(t)]u(t) (13.12)

It is well known (see [10]) that the origin of the system governed by (13.11) and
(13.12) is unstable, and that the linearized system is stabilizable (but not control-
lable).

In consideration of the NMPC problem (13.1), the system (13.11) and (13.12)
is discretized using a forward difference Euler approximation with sampling time
T =0.1. The input and state constraint sets are f = {u € R: |u| <2} and X = {x €
R? : ||x||[oc < 1}. The cost function is defined over a prediction horizon of length
N=15as

N—1
T T T
J(UQ,y - - UN—1,X0,- -, XN) =Xy Pxn + 2 x; Ox; + u; Ru;

i=0
where
0= 0.01 0 R=001, P= 19.6415 13.1099 .
0 0.01 13.1099 19.6414
The terminal penalty matrix P as well as the auxiliary controller # = —Kx, are com-

puted using a linear differential inclusion (LDI, see [7]), in place of the original non-
linear system, and thus determine an invariant ellipsoid X7 = {x € R2:xTpx < 1}
for an uncertain linear time-varying system. With /y = 2 and /nax = 8, we compute
a stabilizing control law using Algorithm 13.3. In Table 13.2 we compare the re-
sults obtained by computing the capture basin with pure interval arithmetic (i.e.,
the splitting procedure has not been used) and Algorithm 13.1. As we can see, Al-
gorithm 13.1 with 5 and 10 splits provides a capture basin that is sligthly bigger
than the one obtained with interval arithmetic but, at the same time, the number of
points describing the interpolated control law is 40% less. This motivates the use
of Algorithm 13.1 instead of pure interval arithmetic. Note that, by the comparison
to Algorithm 13.1 with 5 and 10 splits, we conclude that the use of more than 10
splits will not add further value since it will imply more computational effort for a
very small improvement in the volume of the capture basin. It is important to note
that the number of splits necessary to better describe the capture basin is problem
dependent. In Figure 13.14 and Figure 13.15 the approximate receding horizon con-
trol law and an approximation of the capture basin, obtained with Algorithm 13.1
and 10 splits are shown.
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ACADO [18] Toolkit has been used in order to solve the pointwise NMPC prob-
lem (13.1), while MPT toolbox [23] and the INTLAB interval toolbox [27] have
been used to recursively compute the capture basin and the outer approximations.

Fig. 13.14 Approximate control law o (x).

13.7 Conclusion

The approximate explicit NMPC method we have presented combines an adaptive
hierarchical gridding scheme with a verification method based on reachability anal-
ysis. The approach approximates the optimal control law directly, and because of the
basis functions used to build the function approximation, can be tuned in order to
control the complexity and accuracy of the solution. This ability to guarantee a level
of accuracy at the grid points enables an adaptive approach based on thresholding

Table 13.2 Comparison between pure interval arithmetic and Algorithm 13.1.

# of points describing #ip(x)  capture basin volume
Interval analysis 5808 2.5857
5 splits 3571 2.6035
10 splits 3439 2.5996
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- -0.5 0 0.5 1

Fig. 13.15 Feasible and stable region.

that can lead to sparse representations of the explicit control law, while preserv-
ing guaranteed feasibility and stability of the solution. By employing reachability
methods based on zonotopes and DC programming, the complexity of the function
approximation and verification procedure is significantly decreased. A direct result
of this reduction in complexity is a smaller storage requirement for the receding
horizon control law and a larger verifiable region of attraction.

Appendix
13.7.1 Models Used in the Examples

The examples given in Sec. 13.4 are based on the following models.

Model 1:
Cxi(k)? 4 (k) (k)
7 4+x(k)

3x1 (k)x2 (k)
4+ x(k)

xi(k+1) =3x(k)
(13.13)
xo(k+1) =—-2x(k)+

Model 2:
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xi(k+1) =x1(k)+0.4x,(k)

(13.14)
xa(k+1) = —=0.132e(=1®)x; (k) — 0.213x (k) 4+ 0.274x, (k)
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