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Abstract— A novel model predictive control (MPC) scheme
that allows one to enforce hard constraints on the spectrum
of a constrained system’s output signal is presented. The
approach is based on a time-local analysis of the spectrum
of output signals by means of the short-time Fourier transform
(STFT), and its squared magnitude, called the spectrogram. It
is shown that an MPC problem with spectrogram constraints
can be formulated as a quadratically constrained quadratic
program (QCQP). We prove recursive feasibility and stability
of the proposed spectrogram MPC scheme via an ellipsoidal
invariant set, including spectrogram constraints. Moreover, it
is pointed out how the proposed spectrogram MPC approach
can be extended to MPC for tracking while ensuring recursive
feasibility. Finally, we present simulation results of spectrogram
MPC applied to a resonant system. Our simulations show
that, by employing the proposed spectrogram MPC approach,
oscillations can be attenuated in the system output, tracking a
reference signal, by explicitly enforcing hard constraints on its
spectrum.

Index Terms— Constrained Spectrum Control; Spectrogram;
Model Predictive Control; Set Invariance; Tracking.

I. INTRODUCTION

While MPC has proven very effective in handling hard
constraints on states, inputs and outputs in complex control
systems [11,12], it does not allow one to design the harmonic
response of a closed-loop system, which is a common target
of controller design. Feedback control methods such as H∞-
loop-shaping techniques are popular solutions for frequency
design [17]. However, when applied to constrained systems,
these control techniques fail to provide guarantees of
constraint satisfaction by the closed-loop system, contrary to
MPC. Moreover, since a constrained system is nonlinear, its
harmonic response cannot be defined through the Laplace
transform, which is the case for unconstrained linear
time-invariant systems. In this paper, we propose an MPC
method for shaping the harmonic response of a system
by applying hard constraints to its output spectrum, while
handling hard constraints on states and inputs. We recall
that the frequency content of an input signal passed through
a system is affected by the system’s harmonic response. The
effect can be observed by computing the spectrum of the
output signal using the STFT, for instance. Therefore, in this
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paper, the frequency shaping is performed by constraining
the squared magnitude of the STFT, called the spectrogram,
by employing an MPC framework.

Recent work [5,9] on power converters has shown that
frequency information can be incorporated into an MPC
optimization problem for the purpose of reducing the
harmonics level in an output signal. In [5], the spectrum of
the load current is shaped using a band-pass filter, the output
of which is penalized in the cost function of an MPC problem
in order to affect the system’s harmonic response. In [9],
the sliding discrete Fourier transform [8] was employed in
order to incorporate frequency domain information into the
cost functional of an MPC problem. Such techniques are
closely related to the ideas behind frequency-shaping LQR,
introduced in [7]. Another example of frequency-weighted
methods is proposed in [19], where high-frequency control
actions are penalized in the MPC cost via a high-pass Butter-
worth filter. Frequency-weighted approaches permit shaping
an output spectrum via tuning of the cost functional, but
do not facilitate enforcing hard constraints on the spectrum.
A practical application in which the ability to enforce hard
constraints on the output spectrum is relevant is, for instance,
to strategically comply with electromagnetic interference
emissions regulations in switch-mode power supplies [18].

In this paper, a novel MPC scheme to rigorously enforce
hard constraints on the spectrum of a signal is proposed. The
concept of imposing hard constraints on spectra was first
introduced in [6], where spectrum constraints are described
through an extended state-space modeling framework. In
this paper, convex spectrogram constraints are derived based
on the STFT providing time-localized frequency domain
information of a signal. The main contribution of this paper
is to propose a novel MPC scheme for the use of spectrogram
constraints and to prove recursive feasibility and closed-loop
stability by means of a terminal invariant set that is suitably
tailored for spectrogram constraints. The proposed method is
then extended to MPC for tracking, while ensuring recursive
feasibility, employing the approach proposed by [10].

Paper structure: In Section II, spectrogram constraints
are introduced and it is shown that they can be represented as
convex quadratic constraints. In Section III, a semi-definite
program (SDP) is proposed, the solution of which defines
an appropriate terminal invariant set. In Section IV, recursive
feasibility and stability are proven. The proposed approach is
then extended to an MPC problem for tracking, in Section V.
In Section VI, the proposed method is demonstrated by a
numerical example.

Notation: We denote by ρ(A) the spectral radius of



matrix A, by j the imaginary unit, by {xk}mk=n a sequence
of elements xk for k varying from n to m, by 1 a vector
with all elements equal to 1 and by In the identity matrix
in Rn×n. The i-th eigenvalue of a matrix A ∈ Rn×n is
denoted by λi(A), where i ∈ {1, ..., n}.

II. SPECTROGRAM CONSTRAINTS

In this section, spectrogram constraints are introduced
and it is shown later how they can be enforced within an
MPC optimization problem. The purpose is to demonstrate
that the frequency content of a generalized output signal
can be locally constrained in a tractable way for MPC. The
spectrogram of a signal is obtained by computing, at each
time step, the squared magnitude of the Fourier transform
of a signal subject to a windowing function.

A. What are spectrogram constraints ?

Consider the constrained discrete-time LTI system

xi+1 = Axi +Bui
xi ∈ X, ui ∈ U

(1)

where xi ∈ Rn is the state and ui ∈ Rm is the input of
the system. The sets X and U are closed convex polytopes
defined as X = {x ∈ Rn | Gx ≤ 1} and U = {u ∈
Rm | Hu ≤ 1}.

Assumption 1: At each time step i, the state xi is known.
Assumption 2: The pair (A,B) is stabilizable.
Our goal is to enforce hard constraints on the spectrum of

a generalized output signal defined as

zi := Cxi +Dui ∈ R . (2)

Note that the generalized output zi does not necessarily
correspond to the measured output of the system, but is
chosen as the signal of which the spectrogram is to be
constrained.

We modify the approach described in [6] by proposing a
time-local analysis of the spectral content of a generalized
output signal. The goal is to locally enforce hard constraints
on frequency components of a signal. As MPC is the
only viable tool to handle common geometric constraints
on states and inputs of a system, we define spectrogram
constraints in an MPC framework. The local analysis is
based on a windowing of the generalized output signal z.
The windowing sequence {fp} is defined as

fp :=


0 if p < −M
f̂p if p ∈ {−M, ...,M}
0 if p > M

, (3)

where M is the half-length of the window.
Remark 1: There exist different windows that can be

chosen depending on the purpose of the analysis. The
simplest window is the rectangular window with f̂p = 1
for p ∈ {−M, ..., M}, although this window results in
the well-known spectral leakage [1]. In order to avoid
such a phenomenon, we consider windows that go to zero
at the boundaries, such as the Hamming window. The

methodology introduced in this paper can however be
applied with all window types satisfying (3).

The main ingredient of the proposed local frequency
analysis is the STFT. The STFT Z(ω, τ) of the windowed
signal z at time τ ∈ N is defined as

Z(ω, τ) :=

+∞∑
i=−∞

zifi−τe
−jωi . (4)

The goal is to constrain the amplitude of frequency
components of a generalized output signal z in a given
frequency band. Therefore, we impose hard constraints on
the weighted STFT Z(ω, τ) of the output z at time τ .

Remark 2: For clarity of presentation, we consider here
only a single spectrogram constraint on a single output.
The extension to multiple constraints on multiple outputs is
direct.

Constraints on the spectrogram of a discrete-time signal z
at time τ are written in the following way:

1

2π

∫ π

−π
|F (ω)Z(ω, τ)|2dω ≤ α , (5)

where the function F : R→ C is a design parameter, which
we call the frequency profile. It is assumed to be square-
integrable. For practical reasons, the frequency profile F
must be selected to correspond to the Fourier transform of
the impulse response of a stable proper LTI system. The
second design variable is a positive real coefficient α.

The frequency profile F (ω) on the interval [−π, π] is taken
as the Fourier transform of the impulse response of a filter
defined as {

ξi+1 = Φξi + Ψzi
ψi = Γξi + ∆zi

, (6)

where ξi ∈ Rr is the filter state, the input is taken as the
generalized output zi in (2) and ψi ∈ R is the filter output.

We make the following standard assumptions on the
filter (6).

Assumption 3: ρ(Φ) < 1.
Assumption 4: The pair ((ΓΦ)>(ΓΦ),Φ) is observable.
In the next section, spectrogram constraints are incorpo-

rated into an MPC problem formulation.

B. Spectrogram constraints in an MPC problem

Before formalizing a spectrogram MPC problem, an aux-
iliary state feedback matrix K is introduced. Let K ∈ Rm×n

be such that
Ā := A+BK (7)

satisfies ρ(Ā) < 1. Note that such a K exists, by Assump-
tion 2.

We consider the following MPC regulation problem with
spectrogram constraints:

J∗({zp}−1p=−2M , x0) :=

min
u0,...,uN−1

N−1∑
p=0

(xTpQxp + uTpRup) + VN (xN ) (8a)



subject to :
System dynamics on {0, ..., N + 2M}

xp+1 = Axp +Bup p ∈ {0, ..., N − 1} (8b)
xp+1 = Āxp p ∈ {N, ..., N + 2M} (8c)
zp = Cxp +Dup p ∈ {0, ..., N − 1} (8d)
zp = (C +DK)xp p ∈ {N, ..., N + 2M} (8e)

Spectrogram constraints on {−M, ..., N +M}
1

2π

∫ π

−π
|F (ω)Z(ω, p)|2dω ≤ α

p ∈ {−M, ..., N +M} (8f)

Polyhedral constraints on {0, ..., N − 1}

xp ∈ X p ∈ {0, ..., N − 1} (8g)
up ∈ U p ∈ {0, ..., N − 1} (8h)

Terminal constraint

xN ∈ S (8i)

Although very close to a standard MPC problem, the
spectrogram MPC problem defined above has a major
difference : the integral terms (8f), which corresponds
to spectrogram constraints. Enforcing spectrogram
constraints (8f) requires to modify the standard MPC
set-up by extending the prediction horizon in the future and
in the past. Therefore, in a spectrogram MPC framework,
we introduce the following definitions:
• N is named prediction horizon, on which the opti-

mizer {up} is defined, after which the input is assumed
to take the value up = Kxp, as in standard MPC
formulations,

• N + 2M is named extended prediction horizon,
where M is the half-length of the filter window,

• −2M is named history horizon.
Remark 3: Note that the spectrogram constraint at predic-

tion times {−M, ...,M−1} involves the history {zp}−1p=−2M .
Matrices Q ∈ Rn and R ∈ Rm are such that Q � 0

and R � 0. The terminal state weight VN : Rn → R+ is a
positive definite quadratic function satisfying the following
standard stability assumption, as formalized in [16].

Assumption 5:

∀x ∈ S, VN (Āx)− VN (x) ≤ −xT(Q+KTRK)x . (9)

The Lyapunov function VN can be chosen as VN (x) =
x>PLx, where PL is the LQR matrix computed from {A,B}
and {Q,R}. The terminal set S in (8i) is chosen to be a
positively invariant set of system (1) subject to u = Kx, such
that all states, input and spectrogram constraints are satisfied.
The characterization of a suitable S is covered in Section IV.

At this point, one can notice a difference between standard
MPC and spectrogram MPC. In standard MPC, the feedback
law is generally introduced so as to enforce stability, for
instance, but does not appear in the MPC constraints. In

contrast, in the proposed spectrogram MPC scheme the
auxiliary feedback law u = Kx must be incorporated
explicitly within the MPC problem (8). The reason for this
will be explained in Section IV.

The main challenge of the proposed MPC formulation is
the spectrogram constraint (8f). This differs from standard
MPC constraints in that it involves several steps along
the prediction horizon. The main point of the following
subsection is to show that a quadratic formulation can be
derived for spectrogram constraints (8f).

C. Spectrogram constraints are quadratic

In this subsection, we show that spectrogram constraints
of the form (8f) can be expressed in a convex quadratic way
by making use of Parseval’s theorem.

In (5), the term F (ω)Z(ω, τ) is the Fourier transform
of the signal {zp} windowed around time τ and passed
through the filter (6). Subsequently, it can be shown that the
constraint defined in (5) is equivalent to a constraint on the
filter’s output {ψτp}.

Theorem 1 (Parseval’s theorem, [14]): Let {yk} be a
real-valued signal and Y (ω) be its Fourier transform, of
which the absolute value is assumed to be square-integrable.
The following equality holds :

1

2π

∫ π

−π
|Y (ω)|2dω =

+∞∑
k=−∞

|yk|2 . (10)

One can see that constraining the integral of the
spectrogram over a frequency interval is strictly equivalent
to enforcing constraints on the L2-norm of the output
sequence of the filter (6), which is formalized in the
following lemma.

Lemma 1 (Spectrogram constraint): Denote by {ψτk}
the output signal of the filter (6) with input signal {fk−τzk}.
We have the following equivalence :

1

2π

∫ π

−π
|F (ω)Z(ω, τ)|2dω ≤ α⇔

∞∑
k=−∞

|ψτk |2 ≤ α .

(11)
Proof: The statement is a direct consequence of Par-

seval’s theorem applied to the output signal {ψτk} of the
filter, since the Fourier transform of the causal signal {ψτk}
is F (ω)Z(ω, τ).

Remark 4: It is important to notice that the filtered output
sequence {ψτk}, as well as the state sequence {ξτp} of the
filter (6), depend on the windowing time τ .

Based on Lemma 1, the remainder of this section
introduces a simple convex formulation that allows one
to impose the constraint (5) within an MPC optimization
problem. Contrary to [6] where the spectrum information
to be constrained was computed from historical data only,
in this paper we also make use of the predicted output
sequence in order to express the spectrogram constraints.
Including the predicted information allows one to compute
a terminal constraint, based on the actual system state,



not the augmented state, as in [6]. We assume that the
state xi of system (1) has been measured until time i, which
corresponds to the current time step in an MPC problem.

The resulting generalized output sequence {zi} can be
expressed as follows:

zi :=

 ẑi if i < 0
Cxi +Dui if i ∈ {0, ..., N − 1}
(C +DK)Āi−NxN if i ≥ N

(12)
The sequence {ẑi} corresponds to the known outputs of the
system, stored in the history horizon.

Theorem 2 (Quadratic spectrogram constraints): For
all time τ ≥ 0,

1

2π

∫ π

−π
|F (ω)Z(ω, τ)|2dω =

τ+M∑
k=τ−M

(
ξτk
zk

)T

Pk

(
ξτk
zk

)
+ (ξττ+M )TP(ξττ+M ) (13)

where
• {ξτk} is the sequence of states of the filter (6). Without

loss of generality, we assume that ξττ−M = 0.
• ∀ k ∈ {τ −M, ..., τ +M},

Pk :=

(
ΓT

f̂k−τ∆T

)(
Γ f̂k−τ∆

)
� 0 (14)

• P � 0 is the unique solution of the discrete-time
Lyapunov equation

P = (ΓΦ)TΓΦ + ΦTPΦ . (15)
Proof: From Parseval’s theorem, it results that

1

2π

∫ π

−π
|F (ω)Z(ω, τ)|2dω =

+∞∑
k=−∞

|ψτk |2. (16)

The generalized output expressed in (12) is windowed, which
results in the sequence {wk−τzk} that is passed through the
filter (6). At time τ , the output {ψτk} of the filter is given by

ψτk =


0 if k < τ −M
Γξτk + ∆f̂k−τzk if k ∈ {τ −M, ..., τ +M}
ΓΦk−M−τξττ+M if k > τ +M

.

(17)
Then it directly follows that

+∞∑
k=−∞

|ψτk |2 =

τ+M∑
k=τ−M

(
ξτk
zk

)T(
ΓT

f̂k−τ∆T

)(
Γ f̂k−τ∆

)(ξτk
zk

)

+

+∞∑
k=1

(ξττ+M )T(Φk)TΓTΓΦkξττ+M . (18)

Since the filter matrix Φ is stable by Assumption 3, the
infinite sum on the right hand-side converges and is the
unique solution to the discrete-time Lyapunov equation (15),
with P positive definite. The fact that matrix P is unique
results from Assumption 3 and Assumption 4.

We have thus shown that constraints on the spectrogram
of a system’s output signal can be expressed in a convex
quadratic way, resulting in an MPC problem with quadratic
constraints. Then the spectrogram MPC problem defined in
Subsection II-B can be recast in the following form:

J∗({zp}−1p=−2M , x0) :=

min
u0,...,uN−1

N−1∑
p=0

(xTpQxp + uTpRup) + VN (xN ) (19a)

subject to :
System dynamics on {0, ..., N + 2M}

xp+1 = Axp +Bup p ∈ {0, ..., N − 1} (19b)
xp+1 = Āxp p ∈ {N, ..., N + 2M} (19c)
zp = Cxp +Dup p ∈ {0, ..., N − 1} (19d)
zp = (C +DK)xp p ∈ {N, ..., N + 2M} (19e)

Filter dynamics on {−M, ..., N +M}

ξpp−M = 0, ξpq+1 = Φξpq + Ψzq (19f)

p ∈ {−M, ..., N +M}, q ∈ {p−M, ..., p+M}

Spectrogram constraints on {−M, ..., N +M}
p+M∑

k=p−M

(
ξpk
zk

)T

Pk

(
ξpk
zk

)
+ (ξpp+M )TPξpp+M ≤ 1 (19g)

Polyhedral constraints on {0, ..., N − 1}

xp ∈ X p ∈ {0, ..., N − 1} (19h)
up ∈ U p ∈ {0, ..., N − 1} (19i)

Terminal constraint

xN ∈ S (19j)

The MPC problem (19) is a convex QCQP. We prove
recursive feasibility of MPC problem (19), ensuring that
spectrogram constraints are satisfied along the closed-loop
trajectory of the system. In MPC theory, the key tool to
prove recursive feasibility is set invariance [2], which is
investigated in the following.

III. INVARIANCE OF SPECTROGRAM
CONSTRAINTS

In this section, our goal is to derive invariance conditions
for spectrogram constraints. We prove that an ellipsoidal in-
variant set that guarantees recursive feasibility of the spectro-
gram constraints can be derived. More precisely, it is shown
that containment in the invariant ellipsoid at a given time step
implies satisfaction of the spectrogram constraint M steps
in the future. The goal is to derive a terminal constraint
for the state xN , where N is the prediction horizon of
the spectrogram MPC problem. Therefore, we consider the
autonomous system

xi+1 = Āxi, (20)



where Ā has been introduced in (7).
First we show that the spectrogram at prediction time p+M ,
where p ≥ N , is a function of the system’s state xp at
prediction time p.

Lemma 2 (Spectrogram constraint at p+M , p ≥ N ):

1

2π

∫ π

−π
|F (ω)Z(ω, p+M)|2dω = xTp T xp (21)

where
• Z(ω, p + M) is the STFT of the generalized output z

of the autonomous system at time p+M .
• The matrix T is defined as

T = HT
2M

(
P 0
0 0

)
H2M +

2M−1∑
l=0

HT
l PlHl(22)

with Pl defined by (14) and
∀l ∈ {0, ..., 2M},

Hl :=

(∑l−1
k=0 ΦkΨ(C +DK)Āl−k−1

(C +DK)Āl

)
(23)

Proof: The output of system (20) at time k ≥ p is
zk = (C +DK)Āk−pxp and the filter state is

ξp+Mk =

k−1∑
l=0

ΦlΨ(C +DK)Āk−l−1xp , (24)

for all k ≥ p. Then, equality (21) is a direct result of
Theorem 2.
From Lemma 2, it follows that enforcing a constraint on the
spectrogram Z(ω, p + M) of the output z at time p + M ,
with p ≥ N , is equivalent to imposing that the state xp lies
within the following ellipse

Eα = {x ∈ Rn | xTT x ≤ α} . (25)

Note that the frequency ellipsoid Eα is non-degenerate,
which is expressed in the following lemma.

Lemma 3 (Non-degeneracy of frequency ellipsoid):
Matrix T is positive definite.

Proof: Follows from the choice of the filter matri-
ces {Φ,Ψ,Γ,∆}.

Now that spectrogram constraints are described by an
ellipsoidal set, an invariant terminal set can be derived.

Theorem 3 (SDP program for set invariance):
Consider the polyhedral state and input constraint sets X
and U previously defined. Consider T defined by Lemma 2.
If X∗ is the solution of the SDP

min
X�0
− log detX (26a)(
X XĀT

ĀX X

)
� 0 (26b)

1− gTi Xgi ≥ 0, i ∈ {1, ..., r} (26c)

1− hTl KTXKhl ≥ 0, l ∈ {1, ..., s} (26d)

αT −1 � X (26e)

where the row vectors gTi and hTl are the rows of matrices G
and H, then the ellipsoid S = {x ∈ Rn | xT(X∗)−1x ≤
1} ⊆ Eα is such that if xN ∈ S, then
• Āk−NxN ∈ S (invariance under the Ā-dynamics),
• Kxk ∈ U (input constraints),
• xk ∈ X (state constraints),

for all k ≥ N .
Proof: Follows from standard results on LMIs [4].

The above procedure produces an ellipsoidal invariant
set that is used as a terminal set in the spectrogram MPC
problem in (19j). In the following section, we investigate
the salient result of this paper, which is recursive feasibility
of spectrogram MPC, along with stability.

IV. RECURSIVE FEASIBILITY AND STABILITY
OF SPECTROGRAM MPC

The spectrogram MPC problem (19) has a key difference
from standard MPC problems: spectrogram constraints
involve multiple steps along the horizon. Therefore,
recursive feasibility and stability do not follow from
standard MPC arguments, but are shown in the following.

One should notice that xN contained in the invariant
ellipsoid S does not imply that spectrogram constraint (5)
is satisfied at time N + 1, but only at time N +M .

Theorem 4 (Recursive feasibility of spectrogram MPC):
The spectrogram MPC problem (19) is recursively feasible.

Proof: Assume that a feasible solution u =
[u0, ..., uN−1] is available at time t. Consider the spec-
trogram MPC problem at time t + 1 and the shifted se-
quence ũ = [u1, ..., uN−1,KxN ]. Since the control law K
is enforced in the MPC constraints, it follows that all shifted
sequences of filter outputs satisfy the spectrogram constraints
at prediction time p ∈ {−M, ..., N + M − 1} in the MPC
problem at time t + 1. By Lemma 2, the spectrogram
constraint is satisfied at prediction time N +M in the MPC
problem at time t+ 1.

Theorem 5 (Stability of spectrogram MPC): The
closed-loop system resulting of the spectrogram MPC
problem (19) is asymptotically stable.

Proof: Follows from Theorem 4 and Assumption 5.

V. SPECTROGRAM MPC FOR TRACKING

In this section, we demonstrate that the proposed theory
can be directly extended to MPC for tracking. The classic
approach of MPC for tracking involves a shift of the origin
in the dynamics, which affects the constraints of the MPC
problem depending on the reference change. Subsequently,
spectrogram constraints on the history may be violated
when a reference change occurs. On the contrary, in the
approach proposed by [10], constraints are not influenced by
a reference change. Therefore we make use of the tracking
approach proposed in [10], where recursive stability and
asymptotic steering are ensured by introducing an artificial
steady state and input, as well as an invariant set for



tracking. We show that the invariant set for tracking can be
modified by incorporating spectrogram constraints.

Let yt be a target output. In this section, it is assumed
that yt = z, where z is the generalized output. As in [10],
consider the artificial steady state and input xs and us.
The target output, artificial steady state and input can be
parameterized as follows:xsus

yt

 = Mθ (27)

where θ ∈ Rnθ and

M =

M (x)
θ

M
(u)
θ

Nθ

 . (28)

The columns of M form a basis of the kernel of the matrix(
A− In B 0n,1
C D −Iq

)
. (29)

To derive a terminal set ensuring recursive feasibility of the
spectrogram MPC approach for tracking, the state is extended
as follows:

w =

(
x− xs
θ

)
, (30)

which is a slight modification to [10] allowing for a decou-
pling of the dynamics. The autonomous system is now the
following:

wi+1 = Āwwi , (31)

where

Āw =

(
Ā 0
0 I

)
. (32)

It follows that the frequency ellipsoid T (w)
α is computed in

the w-space in the same way as in Section III, but using
matrices Āw and Cw instead of Ā and C+DK respectively,
where Cw is defined as follows :

Cw := (C +DK)
(
In M

(x)
θ

)
. (33)

Finally, the invariant set of spectrogram MPC for tracking
can be computed from an SDP in the same way as in
Section III. Since the Āw-dynamics are marginally stable,
the Lyapunov condition is enforced on the Ā-dynamic only.
We denote by Sw the invariant ellipsoidal set resulting of the
SDP. It corresponds to an invariant set for tracking, as de-
scribed in [10]. Moreover, it guarantees recursive feasibility
of the spectrogram constraints, as asserted in Section III.

The spectrogram MPC problem for tracking is essentially
the same as in Section II-C, apart from two changes:
• The cost functional is defined as

Jt({ẑp}−1p=−2M , x0) :=

N−1∑
p=0

((xp − xs)TQ(xp − xs)

+ (ui − us)TR(ui − us)) + (xN − xs)TS(xN − xs)
+ (xs − x̂s)TT (xs − x̂s), (34)

where

– x̂s is a feasible target steady-state corresponding to
the target output yt,

– S ∈ Rn×n is a positive definite matrix such that

ĀTSĀ− S = −(Q+KTRK) . (35)

– T ∈ Rn×n is a positive definite matrix.

• The terminal constraint is

(
xN − xs

θ

)
∈ Sw . (36)

Since we enforce a terminal constraint for tracking and
spectrogram constraints, recursive feasibility and asymptotic
steering to x̂s of the closed-loop system follow from the
same arguments as in Theorem 4 and in [10].

VI. NUMERICAL EXAMPLE

The objective of this example is tracking of a piecewise
constant reference signal while damping oscillations caused
by a system’s resonant frequency. Oscillations are very
common in mechanical systems and are responsible, e.g., for
fatigue and failure of engines. Torsional vibrations in drive
shafts are a case in point [3]. Active vibration damping is a
broad control topic [15]. In this paper, we restrict ourselves
to an illustrative toy example.

Consider the constrained resonant system defined as fol-
lows:



(
ẋ1
ẋ2

)
=

(
0 1
−ω2

0 −2ξω0

)(
x1
x2

)
+

(
0

100

)
u

z =
(
1 0

)(x1
x2

)
|x1| ≤ 15, |x2| ≤ 100
|u| ≤ 10

(37)

The parameters are the resonant frequency ω0 = 2π ·12 rad/s
and the damping coefficient ξ = 0.05 N·s/m. The continuous-
time system is sampled at 50 Hz. The system’s magnitude
response is shown in blue in Fig.1. The step response of
system (37) is highly oscillatory. Our objective is to track
a piecewise constant reference while keeping oscillations
below a specified bound. To do so, we enforce hard con-
straints on the spectrogram of the output signal z in an MPC
scheme. The key tool to target a specific frequency band in
the spectrogram of the output is a bandpass filter tuned to
the resonance frequency ω0 of the system. We choose the
filter to be a 3rd order Butterworth filter with the following
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Fig. 1. Magnitude frequency response: plant (blue) and 3rd order
Butterworth filter (red).

state-space matrices :

Φ =


0.343 −1.22 0.278 −0.999 0.114 −0.546
2.00 0 0 0 0 0

0 1.00 0 0 0 0
0 0 1.00 0 0 0
0 0 0 1.00 0 0
0 0 0 0 0.500 0


Ψ =

(
0.125 0 0 0 0 0

)T
Γ =

(
0.00710 −0.0564 0.00580 0.0104 0.00240 −0.0321

)
∆ =

(
0.00260

)
.

The filter’s magnitude response is plotted in red in Fig.1.
Constraints on the output of the filter are defined as in (11),
where the half-length M of the Hamming window is chosen
equal to 20. The prediction horizon N is set equal to 50.

As previously mentioned, our goal is to include the
frequency features in an MPC problem for tracking, which
is described in Section V. For tracking, the artificial steady-
state xs and input us are characterized by the matrices

Mθ =

0.577
0

0.577

 , Nθ =
(
0.577

)
.

The weighting matrices of the cost functional presented
in (34) are

1) Q = 0, R = 1 and T = I2 ,
2) K is chosen as the LQR control law.
3) S � 0 is computed as the solution of (35).

The weighting matrices have been chosen such that in the
absence of spectrogram constraints the MPC controller does
not damp the oscillations. After computing a terminal invari-
ant set Sw, we simulate the resonant system controlled by an
MPC controller with spectrogram constraints. The frequency
bound α is set to α = 0.2. The closed-loop output trajectory
is shown in Fig.2. The effect of frequency constraints can be
seen very clearly: closed-loop oscillations remain within a
specified bound when spectrogram constraints are enforced.
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Fig. 2. Enforcing spectrogram constraints: reference signal (blue), output
signal with standard MPC (green) and output signal with spectrogram
constraints enforced (red). Spectrogram bound is set to 0.2.
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Fig. 3. Sum of squared filter’s output Σ (38): spectrogram bound (red),
spectrogram constraints not enforced (green) and spectrogram constraints
enforced (blue). Spectrogram bound is set to 0.2.

Next, we compute the sum of the squared outputs of the
Butterworth filter, computed along the output trajectory fol-
lowing (11), denoted by

Σ(τ) =

+∞∑
i=−∞

|ψτi |2 , (38)

where τ is a simulation time step and ψ is the filter output.
The result is presented in Fig.3, for the same frequency
bound α = 0.2.
From Fig.3, it can be asserted that spectrogram constraints
are satisfied by the closed-loop output. It can be noticed
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Fig. 4. Spectrograms: frequency constraints not enforced (top), frequency
constraints enforced (bottom) with frequency bound set to 0.2. The Ham-
ming window is applied to derive spectrogram constraints.

that they are active at some points of the trajectory, showing
that they have a significant impact on closed-loop signals.
Finally, it is interesting to observe the effect of spectrogram
constraints on the frequency content of the closed-loop
signal. We thus plot the spectrograms of output signals
when frequency constraints are enforced (α = 0.2) or not,
shown in Fig.4. When spectrogram constraints are enforced,
the time length of oscillations is reduced and the resonant
peaks disappear.

VII. CONCLUSION

In this paper, a novel approach for constrained spectrum
control was presented. The salient ingredient was the short-
time Fourier transform, incorporated into the constraints
of an MPC problem. It was shown that a spectrogram
MPC problem could be formalized as a QCQP. By means
of an ellipsoidal invariant set, it was shown that the
spectrogram-constrained MPC problem is recursively
feasible and the closed-loop system asymptotically stable.
It was demonstrated how the approach can be extended to
MPC for tracking. Finally, the proposed control method
was successfully applied to a resonant system for vibration
damping and reference tracking.
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