000175935 001__ 175935
000175935 005__ 20181203022651.0
000175935 0247_ $$2doi$$a10.1109/TNSRE.2011.2151878
000175935 02470 $$2ISI$$a000293754800001
000175935 037__ $$aARTICLE
000175935 245__ $$aA Computational Model for the Stimulation of Rat Sciatic Nerve Using a Transverse Intrafascicular Multichannel Electrode
000175935 269__ $$a2011
000175935 260__ $$c2011
000175935 336__ $$aJournal Articles
000175935 520__ $$aNeuroprostheses based on electrical stimulation could potentially help disabled persons. They are based on neural interface that aim at creating an intimate contact with neural cells. The efficacy of neuroprostheses can be improved by increasing the selectivity of the neural interfaces used to stimulate specific subsets of cells. Selectivity is strongly influenced by interface design. Computer models can be useful for exploring the high dimensional space of design parameters with the aim to provide guidelines for the development of more efficient electrodes, with minimal animal use and optimization of manufacturing processes. The purpose of this study was to implement a realistic model of the performance of a transverse intrafascicular multichannel electrode (TIME) implanted into the rat sciatic nerve. A realistic finite element method (FEM) model was developed taking into account the anatomical and physiological features of the rat sciatic nerve. Electric potentials were calculated and interpolated voltages were applied to the model of a rat sciatic nerve axon, based on experimental biophysical data. Results indicate that high intra-fascicular and inter-fascicular selectivity values with low current levels can be achieved with TIMEs. The selectivity of TIMEs was also compared to an extraneural electrode, showing that higher selectivity with less current can be obtained. Using this model, the robustness of electrode performances for translational and rotational displacements were evaluated.
000175935 6531_ $$aElectrical neural stimulation
000175935 6531_ $$afinite element method
000175935 6531_ $$atransverse intrafascicular multichannel electrode (TIME) electrodes
000175935 6531_ $$arat axon model
000175935 6531_ $$arat sciatic nerve
000175935 6531_ $$aselectivity
000175935 6531_ $$aEpidural Electrical-Stimulation
000175935 6531_ $$aMyelinated Nerve
000175935 6531_ $$aIntraneural Stimulation
000175935 6531_ $$aFiber Stimulation
000175935 6531_ $$aSpinal-Cord
000175935 6531_ $$aCurrents
000175935 6531_ $$aNeuroprostheses
000175935 6531_ $$aSensitivity
000175935 6531_ $$aSelectivity
000175935 6531_ $$aPotentials
000175935 700__ $$0246240$$g221044$$uScuola Super Sant Anna, BioRobot Inst, I-56126 Pisa, Italy$$aRaspopovic, Stanisa
000175935 700__ $$0246965$$g229408$$uScuola Super Sant Anna, BioRobot Inst, I-56126 Pisa, Italy$$aCapogrosso, Marco
000175935 700__ $$aMicera, Silvestro$$uScuola Super Sant Anna, BioRobot Inst, I-56126 Pisa, Italy$$g218366$$0246201
000175935 773__ $$j19$$tIeee Transactions On Neural Systems And Rehabilitation Engineering$$q333-344
000175935 909C0 $$xU12522$$0252419$$pTNE
000175935 909C0 $$xU12599$$0252517$$pCNP
000175935 909CO $$pSTI$$particle$$ooai:infoscience.tind.io:175935
000175935 937__ $$aEPFL-ARTICLE-175935
000175935 973__ $$rREVIEWED$$sPUBLISHED$$aOTHER
000175935 980__ $$aARTICLE