In this paper a self-opening intrafascicular neural interface (SELINE) has been modeled using both a theoretical approach and a Finite Element (FE) analysis. This innovative self opening interface has several potential advantages such as: higher selectivity due to its three-dimensional structure and efficient anchorage system. Mechanical, structural and micro-technological issues have been considered to obtain an effective design of the electrode, as a feasibility study of the self-opening approach. A simple framework has been provided to model the insertion and partial retraction into peripheral nerves, resulting in the opening of wings.