Abstract

Self-aligned lateral dual-gate suspended-body single-walled carbon nanotube (CNT) field-effect transistors (CNFETs) have been demonstrated. A nano-precision assembly method using resist-assisted ac-dielectrophoresis is applied. Superior I-V characteristics controlled by two independent lateral gates spaced sub-100 nm away from the CNT body are experimentally observed and studied. The dual-gate operation mode effectively boosts the device performance: 34% smaller subthreshold slope, three times larger on-current, and four times higher transconductance. The proposed dual-gate suspended-body CNFETs hold promise for bottom-up fabrication of advanced complementary metal-oxide-semiconductor circuits and nano-electro-mechanical systems devices, such as tunable/switchable resonators for sensing and radio-frequency applications. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3682085]

Details

Actions