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While commonly used piezoelectric materials contain lead, non-hazardous, high-performance 
piezoelectrics are yet to be discovered. Charged domain walls in ferroelectrics are considered 
inactive with regards to the piezoelectric response and, therefore, are largely ignored in this 
search. Here we demonstrate a mechanism that leads to a strong enhancement of the dielectric 
and piezoelectric properties in ferroelectrics with increasing density of charged domain walls. 
We show that an incomplete compensation of bound polarization charge at these walls creates 
a stable built-in depolarizing field across each domain leading to increased electromechanical 
response. Our model clarifies a long-standing unexplained effect of domain wall density 
on macroscopic properties of domain-engineered ferroelectrics. We show that non-toxic 
ferroelectrics like BaTiO3 with dense patterns of charged domain walls are expected to have 
strongly enhanced piezoelectric properties, thus suggesting a new route to high-performance, 
lead-free ferroelectrics. 
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In the last two decades, sensors and actuators based on lead- 
containing ferroelectrics gained a dominant position in appli-
cations ranging from delicate positioning systems, ultrasonic 

medical diagnostic tools and microsurgery devices to robust fuel 
injectors. These lead-containing materials have to be replaced by 
environmentally benign alternatives1,2. So far, the search for lead-
free ferroelectrics was mainly focused on the synthesis of new com-
positions exhibiting high-intrinsic piezoelectric properties3–5. The 
possibility to enhance piezoelectric properties of known lead-free 
ferroelectric crystals by so-called frustrated poling and domain 
engineering has also been explored6–10. In this approach, the pol-
ing electric field is applied along a nonpolar direction, which forms 
equal angles with at least two possible orientations of spontaneous 
polarization. During this poling, two or more ferroelectric states  
are equally preferred, creating an artificial domain structure with 
several coexisting domain states. Such a structure is macroscopi-
cally polar (has non-zero net polarization) and includes a certain 
volume fraction of domain walls.

It has been found that, in the classical lead-free perovskite fer-
roelectric BaTiO3, a high density of domain walls with spacing in 
the micrometre range can result in up to a fourfold enhancement 
of functional properties9, while it was established that the enhance-
ment is not associated with the domain wall motion. However, the 
body of available experimental data is insufficient to clearly relate the 
observed effects to features of the domain patterns in the samples. 
This experimental activity has drawn much attention by theorists11–15  
who were unable to explain the experimental observations unless 
unrealistic assumptions were taken. Thus, despite intriguing experi-
mental findings, the future of fine-scale domain patterns as systems 
with enhanced electromechanical properties remains obscure.

Here we demonstrate the existence of an enhancement mecha-
nism of the dielectric and piezoelectric response in ferroelectrics 
with fine-scale charged domain-wall patterns. This mechanism pro-
vides a realistic interpretation of the experimental observations and 
outlines a new direction in the search for high electromechanical 
response in lead-free ferroelectrics.

In the experimental reports on enhanced properties due to engi-
neered domain structures, we recognized that head-to-head and 
tail-to-tail domain configurations16–19, such as those shown in  
Fig. 1, must have been formed during the frustrated poling proc-
ess of BaTiO3 (refs 8,10). The reports8,10 describe poling techniques 
leading to the controlled formation of domain structures with vari-
ous domain-wall densities. Analysis of the domain walls and crystal 
orientations leads to indirect identification of 90°-charged domain 
walls10 which occupy an unspecified fraction of crystal volume. 
However, the significance of this formation of charged domain walls 
passed entirely un-noticed.

Here we report an analysis, based on Landau–Ginzburg– 
Devonshire theory and the theory of semiconductors, which estab-
lishes that the dielectric and piezoelectric response of such systems 
with charged domain walls increase strongly on the reduction of 
the domain period. This is expected to happen under two condi-
tions: the ferroelectric phase transition in the material should be  
of first order and a strong dielectric anisotropy must exist, namely 
the dielectric constant in the direction perpendicular to the spon
taneous polarization, εa, should be much larger than that in the 
direction parallel to it, εc. Both these conditions are met for BaTiO3 
(ref. 20) and KNbO3 (ref. 21).

Results
Charged domain walls. Charged domain walls contain a high 
density of bound charges, which must be strongly compensated by 
free carriers to prevent a huge depolarizing field that would prohibit 
formation of dense periodic domain structures. For realistic 
parameters of ferroelectric perovskites (unless these are heavily 
doped), such compensation cannot be provided with the typical 

carrier concentration in these materials16,22. Most of the screening 
charge originates from electron transfer across the forbidden energy 
gap, Eg. This means that, at the head-to-head wall (positive bound 
charge), the bottom of the conduction band of the material should 
approach the Fermi level, providing electrons for the screening. 
Analogously, at the tail-to-tail wall (negative bound charge), the top 
of the valence band approaches the Fermi level, providing screening 
holes. This implies the existence of a potential difference of about 
Eg/q (q is the elementary charge) between such couple of walls. As a 
result, the domain between these walls is exposed to an electric field, 
Edep, which depends on the forbidden gap and the domain width, w, 
as expressed in equation (1),

E E qwdep g / .

This field is a result of the incomplete compensation of bound 
polarization charge with free carriers at the domain walls. The 
imperfect compensation is a principal feature of the system because 
a perfect compensation would result in zero-band bending, and then 
the free carriers needed for compensation would not be available 
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Figure 1 | Free carrier concentration and band bending at charged domain  
walls. (a) An electroded (110)c plate of tetragonal BaTiO3. (b) A periodic 
structure of charged 90° domain walls where bound polarization charge 
( + ,  − ) induced by divergence of polarization, P0, is almost perfectly 
compensated by free charge (, ) whereas the imperfection of 
compensation creates built-in depolarizing field Edep. (c) Phase-field 
simulation-calculated band bending induced by Edep. The bending causes 
the edges of the conduction EC or valence EV bands (solid black lines) to 
approach the Fermi level EF (dashed black line) where high concentration 
of free electrons (red line) or holes (blue line) are generated and become 
available for compensation of the bound charge. The bandgap between 
the conduction and valence bands is assumed 3 eV. The competing band 
bending and charge compensation are in equilibrium when conduction and 
valence bands cross the Fermi level about ~0.22 eV at head-to-head and 
tail-to-tail domain walls, respectively.
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at all. Therefore, the system keeps an optimal trade-off between 
imperfect screening and a minimal necessary band bending. In the 
case of an electroded (110)c (the subscript c denotes the pseudocubic 
orientation) plate of tetragonal BaTiO3 (Fig. 1a) containing a pattern 
of charged domain walls (Fig. 1b), Eg = 3 eV and with domain width 
w of several micrometres, the depolarizing field Edep can readily 
reach values of 10–20 kV cm − 1 (equation (1)). It is this built-in field 
(growing with domain-wall density) that induces a polarization 
rotation leading to enhanced dielectric and piezoelectric response 
of each domain.

Polarization rotation. The mechanism of polarization rotation is 
qualitatively illustrated in Fig. 2 for the case of tetragonal BaTiO3.  
The contour plot of bulk free-energy density, Fig. 2a, shows two 
global minima corresponding to two different orientations of 
polarization in the tetragonal phase and one local minimum for 
the orthorhombic phase. The minimal energy path for polariza-
tion switching between the two tetragonal states inevitably fol-
lows a rotation-like path across the orthorhombic minimum. The 
key factor responsible for the enhanced properties is that polari-
zation rotated by Edep approaches a point of instability between 
tetragonal and orthorhombic phases. At this point, a small excita-
tion by an external electric field in the [110]c direction is able to 
induce a large change of polarization along the dash-dotted line 
in Fig. 2. The essential characteristic of a material that allows the 
enhancement effect is illustrated in Fig. 2b. It shows a surface that 
encloses a region where values of polarization lead to energy lower 
than  − 2.18 MJ m − 3. Polarization is stable in the tetragonal minima 
(white circles), but follows a minimal energy path during switching 
between the tetragonal states. The important feature is the non-zero 
change of the P3-component during switching. The energy profile 
corresponds to BaTiO3, but a qualitatively equivalent situation is 
available, for example, in a (111)c plate of KNbO3.

In view of the strong dielectric anisotropy of BaTiO3 (experimen-
tally at room temperature εa/εc30) (ref. 20), it is the value of εa that 
controls the total dielectric response of the system. For this reason, 
we discuss the impact of the built-in field Edep on this quantity alone. 
Let us consider the case where the application of the field leads to 
small changes of the ferroelectric polarization. In this approximation, 
the relative reduction of the absolute value of the polarization can 
be evaluated as is d e= /( 2 )E Pdep c 0  (P0 is the spontaneous polari-
zation) with the transverse component being γδP0 where γ = εa/εc 
is the dielectric anisotropy factor. Using the polarization equation 
of state in the X–Z plane, one can readily describe an impact of 
the built-in field on εa in terms of the following relation between  
the modified value of the transverse component of the dielectric 
constant εa and δ :

e d e
gd g gda

a( ) = (0)
1 ( )

.2− −A B

Here factors A and B can be readily expressed in terms of  
the coefficient of the Landau expansion23: for BaTiO3 at room 
temperature A≈0.3 and B≈0.6. The sign of the coefficient B has an 
essential role in the enhancement mechanism and it can only be 
positive in materials that exhibit a first-order phase transition. The 
A-containing term in equation (2) describes the elongation and 
contraction of polarization, whereas the B-containing term controls 
the effect of polarization rotation. In the linear approximation, the 
rotation angle θ can be expressed in terms of relative change of the 
polarization δ : θ = γδ. Keeping this in mind, one sees that the posi-
tive sign of B implies that the polarization rotation leads to a per-
mittivity enhancement. Conversely, if the ferroelectric transition in 
the material were of the second order, B would be negative and the 
polarization rotation would not lead to enhancement of permittivity.  

(2)(2)

With a large value of γ, one concludes from the equation (2) that 
polarization rotation is the leading effect. The angle corresponding 
to substantial enhancement of εa can be evaluated from the condi-
tion Bγθ21, yielding |θ|13° for BaTiO3. Such a level of polariza-
tion rotation can be reached under realistic values of the built-in 
field. This is clear from Fig. 3a, which shows the calculated depend-
ence of θ on Edep. Thus for the domain pattern addressed, the elec-
tric field arising from incomplete compensation of the bound charge 
on head-to-head and tail-to-tail walls is strong enough to dramati-
cally enhance the dielectric response of the system. Similar effects 
of enhancement of the dielectric and piezoelectric properties can be 
expected also in KNbO3 and in ferroelectrics at their morphotropic 
boundary.

The semi-quantitative arguments following from equation (2) 
are supported by more detailed Landau-theory calculations (see 
Methods) that show the unlimited growth of the transverse compo-
nent of the dielectric constant when approaching a critical angle as 
shown in Fig. 3b.

Properties of ferroelectrics with charged domain walls. We verified 
the enhancement mechanism described above by means of phase-
field simulations of a poly-domain system, where the ferroelectric 
was treated as a wide-bandgap semiconductor in the effective mass 
approximation (see Methods). First, stability of 90°-charged domain 
walls was confirmed. Then, we have calculated piezoelectric, d33 
and d31, and dielectric ε33 coefficients as functions of domain-wall 
spacing w, which are experimentally measurable parameters of  
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Figure 2 | Enhancement of the dielectric response by polarization 
rotation. The path for the rotation of the polarization vector P0, which is 
induced by electric field Edep, is given by the profile of the bulk free energy 
(a). The dash-dotted line illustrates a path with minimal energy barrier for 
switching between domain states of the tetragonal phase (end points of 
the dash-dotted line). The key feature of the illustrated mechanism is the 
Edep-induced polarization rotation by an angle θ that is accompanied by 
a change of P3-component of the polarization, approaching the point of 
thermodynamic instability. The three-dimensional contour plot (b) shows 
the surface of a region where the values of spontaneous polarization give 
energy lower than  − 2.18 MJ m − 3. The enhancement effect is available 
when the minimal energy paths between the tetragonal minima (white 
circles) are curved into the P3 direction.
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the system. The phase field results (circles and squares in Fig. 4a–c) 
include contributions of domain response and intrinsic response of 
domain walls. To identify the magnitudes of these contributions, 
we performed the Landau-theory calculations for a single domain 
that is artificially exposed to depolarizing electric field applied along 
x axis (Fig. 1b). The magnitude of this electric field was obtained 
from phase-field simulation as approximately Edep = ∆Veff/w where 
∆Veff = 3.5 V is an ‘effective’ potential difference between domain walls. 
This potential difference is larger than Eg /q = 3 V due to the shape of  
the band bending (Fig. 1c). However, as seen in Fig. 4a–c, the 
intrinsic domain wall contribution, which is the difference between  
single-domain and poly-domain response, is negligible. This con-
clusion is surprising with respect to the huge domain-wall thick-
ness (Fig. 4d), but it agrees with studies done in the past11–13, where 
intrinsic domain-wall response failed to explain the experimental 
observations7–10. The large thickness of charged domain walls, 
DW > 100 nm, compared with neutral ones, DW~1 nm, is qualita-
tively consistent with a recently published theory16 that explains the 
widening mechanism of charged domain walls in detail. Our calcu-
lations also show temperature T and Eg dependence of the smallest 
theoretically possible domain-size wlim (Fig. 4e).

The phase-field calculated band-bending profile and free-charge 
concentrations are shown in Fig. 1c, where the difference between 
the edge of the conduction (or valence) band and the Fermi level in 
the wall centre, ∆E, can be evaluated for the condition that the charge 
density of the free carriers at this point, q m E( 2 ) (3 )3/2 2 3 1− −

eff ∆ p   
(meff and  are the effective mass of electrones/holes, and the reduced 
Planck constant, respectively) is about the mean bound charge den-
sity in the walls, √2P0/w. Such estimates, with meff = 0.12me (me 
is the free electron mass), w = 100 nm and P0 = 0.26 C m − 2 yield 
∆E = 0.24 eV in reasonable agreement with the results of phase-field 
simulation where ∆E≈0.22 eV.
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The large concentration of free carriers at charged domain walls 
(Fig. 1c) may raise the question as to whether the expected high 
domain-wall conductivity cannot short-circuit the electrodes and 
hence make the enhancement phenomena practically unavailable. To 
answer this question, we simulated a finite–6 m thick–electroded  
sample. One can see, in a colour-scale map in Fig. 5, that the free-
carrier concentration dramatically drops in the vicinity of the elec-
trodes. This results in the formation of ~300 nm or ~1 m gaps 
between electrodes and regions with higher free-charge concentra-
tion. These gaps are formed because of the flat profile of the elec-
tric potential (constant potential) at the electrodes that prohibits 
band-bending and, hence, a high concentration of free-carriers in 
the vicinity of the electrodes. The results in Fig. 5 correspond to the 
situation where the work functions of the electrode and ferroelectric 
are identical, but, in general, the size of the gaps is dependent on the 
difference between the work functions.

Discussion
Our analysis shows that the built-in electric field, created in  
periodic domain patterns with charged domain walls, grows  
significantly with increasing domain-wall density. Once the  
domain period is in the range of several micrometres, the built-in 
field can lead to an appreciable enhancement of the dielectric and 
piezoelectric response of the polydomain system. We identify the 
features that control this phenomenon, namely a very high dielec-
tric anisotropy factor γ = εa/εc and a first-order ferroelectric phase 
transition.

The presented results are qualitatively in good agreement with 
experimental observations of domain-wall density effects on mac-
roscopic properties of [111]c-poled BaTiO3 crystals7–10 (Fig. 6). In 
these experiments, the piezoelectric and dielectric constants were 
subject to a fourfold enhancement when domain size reached three-
to-five microns. We suggest the presented mechanism as a new 
degree of freedom in the search for ferroelectrics with high piezo-
electric response that is particularly attractive in light of the need for 
lead-free piezoelectrics.

Methods
The phase-field model. The presented results were obtained primarily by means 
of phase-field simulation that incorporates coupling between ferroelectric and 
wide-bandgap semiconductor properties. Our simulation includes elastic  
interactions that results in stable 90°-charged domain walls.

Model equations are obtained by Lagrange principle from Helmholtz  
free-energy density24:

f P P e D f f f f fe[{ , , , }] = ,( )
i i,j ij i bulk ela es grad ele+ + + +

where Pi is the polarization, Pi,j its derivatives (the subscript ‘,j’ represents  
the operator of spatial derivatives ∂/∂xj), Di the electric displacement and eij =  
1/2(ui,j + uj,i) is the elastic strain where ui is a displacement vector.

The bulk free-energy density
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is expressed for a zero strain as a six-order polynomial expansion13, where αi, aij
( )e ,  

αijk are parameters fitted to the single-crystal properties (Table 1). The remaining 
contributions represent bilinear forms of densities of elastic energy fela[{eij}] =  
1/2cijkleijekl, where cijkl is the elastic stiffness, electrostriction energy fes[{Pi, eij}] =   
− qijkleijPkPl, where qijkl are the electrostriction coefficients, gradient energy 
fwall[{Pi,j}] = 1/2GijklPi,jPk,l, where Gijkl are the gradient energy coefficients, and 
electrostatic energy fele[{Pi, Di}] = 1/(2ε0εB)(Di − Pi)2, where ε0 and εB are permittiv-
ity of vacuum and relative background permittivity, respectively. The zero-strain 
coefficients aij

( )e  can be expressed in terms of usually introduced stress-free  
coefficients αij as follows:
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By using the Legendre transformation to electric enthalpy
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where Ei i= ,−j  is the electric field and ϕ the electric potential, and using  
Lagrange principle, we can uniformly express the set of field equations that govern 
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the kinetics of ferroelectrics:
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Equation (5) defines the mechanical equilibrium while inertia is neglected.  
Equation (6) represents Gauss’s law of a dielectric including a non-zero  
concentration of free electrons n and holes p. Equation (7) is the time-dependent  
Landau–Ginzburg–Devonshire equation25 which governs the spatiotemporal 
evolution of spontaneous polarization with kinetics given by coefficient Γ.

Coupling between the ferroelectric/ferroelastic system with its semiconductor 
properties is introduced by considering a non-zero density of free carriers  
(electron-hole) in the electrostatic equation (6). The semiconductor properties 
were introduced under the assumption of zero concentration of dopants, which 
was shown to be an acceptable approximation to a small concentration of defects 
and dopants17. The distribution of free carriers is governed by continuity  
equations:

q n
t

J qRn∂
∂

+ i,i n
( ) = ,

q p
t

J qRp∂
∂

+ i,i p
( ) = ,

where electron and hole currents J n
i
( ) and J p

i
( ), respectively, are governed by drift 

and diffusion as follows: J qnE k Tnn
i n i B ,i
( ) = ( )m +  and J qpE k Tpp

i p i B ,i
( ) = ( )m − .  

Here µn and µp are electron and hole mobilities, respectively. Because we 
analyse only the stationary solution in thermal equilibrium, we can introduce 
computationally convenient form of recombination rates Rn and Rp as follows: 
Rn =  − (n − n0)/τ and Rp =  − (p − p0)/τ, where τ is life-time constant and n0 and p0 

(5)(5)

(6)(6)

(7)(7)

(8)(8)

(9)(9)

are electron and hole concentrations in thermal equilibrium:
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Here F1/2 is the Fermi-Dirac integral. Density of states is given by effective mass 
approximation:

N m k T
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3
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
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
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where effective mass meff = cme is assumed equal for electrons and holes.  
As the effective mass of free carriers in BaTiO3 varies in literature, we tested the 
model with a wide range of effective mass constants, c∈〈0.05, 50〉, showing an 
insignificant impact on the enhancement phenomena. However, the constant c 
controls the screening regime (classical/degenerate) and width of the domain  
walls. Results presented in the graphs correspond to c = 0.117, that is, N = 1024 m − 3 
used by Xiao et al.26

The ferroelectric-semiconductor model was designed as a subdomain of size 
2w×0.25(µm)2 with applied periodic boundary conditions joining the solution of 
all solved variables between opposite parallel boundaries. The numerical solution 
of equations (5)–(9) on the defined subdomain was performed by a finite element 
method with linear triangular elements of size 4 nm in the vicinity of domain walls 
and 40 nm inside domains. The simulation starts from initial conditions that are 
defined as zero for all variables except polarization which is P P= 2(1,1) 0 and 
P P= 2( 1,1) 0− , for P0 = 0.262 C m − 2, in regions separated by 70 nm gap, where 
P = (0,0). The simulation reaches thermal equilibrium in  < 5 ns and gives solutions 
for the spatial distribution of polarization Pi, mechanical displacement ui, electric 
potential ϕ, and concentrations of electrons n and holes p. We used these to calculate 
the band-bending and charge concentrations in Fig. 1c and domain-wall width and 
critical domain size in Fig. 4d,e. Then the domain structure is exposed to (i) small 
compressive stress, 100 kPa, and (ii) small electric field, 4 V mm − 1, when the average 
change of electric displacement is integrated and (i) the direct piezoelectric and  
(ii) dielectric coefficients are calculated (Fig. 4a–c). This calculation also shows 
almost zero domain-wall widening when small electric field or stress are applied.

The single-domain Landau-theory approximation. The phase-field results are 
accompanied by Landau-theory calculations of a single domain, which is subjected to 
an artificially introduced depolarizing field obtained from the phase-field model. This 
approach calculates macroscopic properties of domains by minimization of Gibbs 
free energy. It allows domain wall and domain contributions to be distinguished.

The Gibbs free energy of homogeneous stress-free sample is defined as

G P E f P D P E E( , ) = ( ) ( , ) .bulk i i−

Here the non-indexed symbols P,E represent vectors. The bulk free-energy density 
fbulk is defined as f f f fe

bulk bulk ela es= ( ) + +  for stress-free homogenous sample, 
that is, at eij = QijklPkPl. Here Qijkl are the coefficients of the direct electrostriction 
effect.

The calculation searches for the minimum of G(P, E) for non-zero electric  
field E that gives polarization as follows:

P E G P E
P

( ) = ( , ),
2 >0

argmin if min exists.

Using P(E) and strain induced by electrostriction effect eij(E) = QijklPk(E)Pl(E), 
we calculate effective piezoelectric coefficients:

d E
e E E e E

E3jk dep
jk dep jk dep

3

*
* *

*( ) =
( ) ( )+ ∆ −

∆

and permittivity

e
ei3 dep

i dep i dep

3

*
* *

0
*( ) =

( ) ( )
,E

D E E D E

E

+ ∆ −

∆

where the starred symbols are expressed in the coordinate system of a (110)c crystal.
The presented results correspond to phenomenological parameters as  

introduced in Table 1. 
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