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Abstract— This paper deals with the finite horizon stochastic
optimal control problem with the expectation of the 1-norm as
the objective function and jointly Gaussian, although not neces-
sarily independent, disturbances. We develop an approximation
strategy that solves the problem in a certain class of nonlinear
feedback policies, while ensuring satisfaction of hard input
constraints. A bound on suboptimality of the proposed strategy
in the class of aforementioned nonlinear feedback policies is
given as well as a simple proof of mean-square stability of
a receding horizon implementation provided that the system
matrix is Schur stable.

I. Introduction

Stochastic control is a relatively mature field, yet there is

still a considerable number of unresolved problems mostly

due to the notorious inherent intractability of the vast ma-

jority of them. Only a handful of stochastic optimal control

problems (e.g., the linear quadratic control) can be solved

optimally, whereas the remainder has to be tackled by various

approximation techniques most frequently arising from the

dynamic programming paradigm [2].

Recent advances in computation and mathematical opti-

mization techniques have, however, opened new ways of

dealing with these problems. One of the simplest, yet in

most practical applications very effective, approaches is the

certainty equivalent model predictive control (CE-MPC) [1,

2] that solves a deterministic optimization problem with

stochastic disturbances replaced by their estimates based

upon the information available at the time, and proceeds in

a receding horizon fashion. Another popular class of control

strategies is the affine disturbance feedback policy which

turns out to be equivalent to the affine state feedback policy

via a nonlinear transformation similar to the classical Q-

design or Youla-Kučera parametrization [13, 14].

However convenient the paradigm of affine disturbance

feedback may be, its use is prohibitive whenever unbounded

stochastic disturbances enter the system in the presence

of hard control input bounds since then the linear part

necessarily vanishes, which, in effect, renders the policy

open loop. One way to overcome this problem is to use a

saturated nonlinear disturbance feedback as in [7], where

this approach was developed for the quadratic cost. In this

article we follow up on this work and develop a methodology

for solving this problem in the 1-norm with the additional

assumption of the disturbances being jointly Gaussian (but

not necessarily independent). Our methodology brings about

a significant performance improvement compared to the
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traditional certainty-equivalent approach while retaining rea-

sonable computational demands compared to sampling or

dynamic programming techniques.

Another branch of approximation techniques bounds the

disturbances a priori and solves a robust MPC problem,

while guaranteeing an open loop probabilistic bound on the

performance [3]. This approach, however, tends to be very

conservative, and thus the idea of bounding the disturbances

a priori based on their distribution appears more often in the

context of chance constraints; see, e.g., [9, 10].

The very important, though much neglected, question

of stability and recursive feasibility of stochastic receding

horizon schemes is addressed in a series of papers [5, 6, 8].

These papers, however, assume either compactly supported

disturbances or only probabilistic input and state constraints,

whereas [7] and [12] deal exclusively with stability in the

presence of hard input constraints. In this paper we prove in

a much simpler way a slight generalization of one of their

stability results.

There is a wide range of applications amenable to the

presented approach that has previously been tackled only

through certainty equivalence. A rich source of such appli-

cations is, for instance, building climate control, a typical

stochastic environment where 1-norm or similar cost func-

tions are ample [10, 11].

The current paper is organized as follows. In Section II we

state the problem to be solved, Section III presents the main

results on convexity of the stated problem, derives a bound

on the suboptimality of the approach, and proofs the stability

of the policy in a receding horizon mode under certain

conditions. Section IV presents two numerical examples

to illustrate our results. Finally, we conclude and give an

outlook in Section V.

A. Notation

Throughout the article R denotes the set of reals, N and Nc

denote the prediction and control horizons, respectively. The

positive integers m and n denote the number of control inputs

and the state-space dimension. The function satr(·) denotes

the standard elementwise saturation of the components of

a vector to r, and || · ||∞ denotes the induced infinity norm

of a matrix (in particular not the maximum absolute value

if the matrix is a row vector). The symbols ρ(·) and tr(·)
denote the spectral radius and the trace of a square matrix.

The expectation operator is denoted by E, and X ∼ N(µ,Σ)

indicates that X is a Gaussian random variable with the

expectation µ and the covariance matrix Σ. The symbols

vec(·) and ⊗ denote the vectorization and the Kronecker
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product respectively. Finally, Hess(·) and Jac(·) denote the

Hessian and the Jacobian of a function.

II. Problem statement

We consider the problem of minimizing the cost function

J ≔ E















||QN xN ||1 +
N−1
∑

k=0

||Qk xk ||1 + ||Rkuk ||1















(1)

subject to the discrete-time system dynamics

xk+1 = Axk + Buk + wk, (2)

xk ∈ Rn, uk ∈ Rm, and hard input constraints

||uk ||∞ ≤ Umax, k = 0, . . . ,N − 1, (3)

where Qk ∈ Rnq×n, Rk ∈ Rnr×m are weighting matrices.

All the results derived here generalize with only minor

modifications to the case with different bounds on individual

control inputs and/or time varying bounds. The disturbances

w = [wT
0
, . . . ,wT

N−1
]T are assumed to be jointly Gaussian with

the covariance matrix Σ.

The minimization to be carried out is over all Borel

measurable causal disturbance feedback policies

uk = φk(x0,w0, . . . ,wk−1), k = 0, . . . ,N − 1. (4)

This problem is, however, in general intractable and various

approximation techniques exist; see, e.g., [2]. In this paper,

we adopt the approach of [7] where the authors propose

to search over a class of causal policies affine in certain

nonlinear functions of the disturbances, i.e.,

u = η + Ke(w) =
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e(w),

(5)

where u = [uT
0
, . . . , uT

N−1
]T . The matrix η ∈ RmN with blocks

in Rm and strictly lower block triangular K ∈ RmN×nN with

blocks in Rm×n are optimization variables. The choice of the

function e : RnN → RnN is discussed later, although it cer-

tainly must be bounded should the hard input constraints be

satisfied. The bound on ||e(w)||∞ is denoted by ε throughout

the article.

One of the main goals of the article is therefore to solve

(at least approximately) the optimization problem

minimize
η,K

E















||QN xN ||1 +
N−1
∑

k=0

||Qk xk ||1 + ||Rkuk ||1















subject to u = η + Ke(w)

xk+1 = Axk + Buk + wk

K is strictly block lower triangular

constraints on η,K such that (3) is satisfied.
(6)

III. Main results

Although sampling techniques are viable for small prob-

lems (see [13]), the optimization problem (6) is in its full

generality intractable owing to the 1-norm and the nonlinear

function e(w). We therefore propose to solve a relaxed

problem where u = η + Ke(w) in (6) is replaced with

u = η + Kw while keeping constraints on η, K such that the

hard input constraints are satisfied when the original control

policy is used. The relaxed problem must be convex since

the objective is convex for each disturbance realization [4].

In the sequel, we show that the relaxed optimization problem

is not only convex but also tractable. To this end, we need

an expression for the expectation of the absolute value of a

Gaussian random variable.

A. Tractability of the proposed approach

Lemma 1. If X ∼ N(µ, σ2) then

g(µ, σ) ≔ E|X| =
√

2

π
σ e
− µ

2

2σ2 + µ erf

(

µ

σ
√

2

)

, (7)

where erf(x) = 2√
π

∫ x

0
e−t2

dt is the error function.

Proof. Follows by a straightforward integration from the

definition of the expectation of a continuously distributed

random variable

E|X| = 1

σ
√

2π

(∫ 0

−∞
−xe

−(x−µ)2

2σ2 dx +

∫ ∞

0

xe
−(x−µ)2

2σ2 dx

)

, (8)

and by using the definition of the error function.

Next, we show that the continuous extension (to cater for

the σ = 0 case) of the expectation of the Gaussian random

variable modulus is convex under a certain composition, and

we also provide an expression for its gradient and Hessian.

Lemma 2. If X ∼ N(µ, σ2) for σ > 0, X = µ for σ = 0,

and µ(η, k) = µ0 + bTη, σ(η, k) = ||a+Ck||2 then the function

f (η, k) = (E|X|)(η, k) is jointly convex in (η, k).

Proof. The proof proceeds directly by computing the Hes-

sian of f for σ > 0, and then a continuity argument is used

to complete the proof. For σ > 0, f (η, k) coincides with

g(µ(η, k), σ(η, k)) and the gradient is

∇ f (µ, σ) =
∂ f

∂µ
∇µ + ∂ f

∂σ
∇σ = erf

(

µ

σ
√

2

)

∇µ +
√

2

π
e
− µ

2

2σ2 ∇σ
(9)

with

∇µ =
[

b

0

]

, ∇σ =
[

0

CT a+Ck
σ

]

. (10)

The expression for ∇σ follows from the fact that ∇||x||2 =
x
||x||2 and the multivariate form of the chain rule. Now since

Hess( f ) = Jac(∇ f ) and Jac(hg̃) = g̃(∇h)T + hJac(g̃) for real-

valued function h and multivariate g̃, it follows that

Hess( f ) =

[

b

0

] {

∇erf

(

µ

σ
√

2

)}T

(11)

+

[

0

CT a+Ck
σ

]
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with

Jac(∇σ) =

















0 0

0 1
||x||2 CT

(

I − xxT

||x||2
2

)

C

















≥ 0, (12)

where x = a +Ck since, again by the chain rule,

Jack ∇σ = CT Jac
a +Ck

||a +Ck||2
= CT

[

Jac

(

y

||y||2

)

◦ (a +Ck)

]

C,

(13)

where ◦ denotes the standard function composition. The

remaining two terms in (11) are

∇erf

(

µ

σ
√

2

)

=

[

b

0

]

1

σ

√

2

π
e
− µ

2

2σ2 −
[

0

CT a+Ck
σ

]

√

2

π

µ

σ2
e
− µ

2

2σ2 ,

(14)

∇














√

2

π
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2
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= −
[

b

0

]

√

2

π

µ

σ2
e
− µ

2

2σ2 +

[

0

CT a+Ck
σ

]

√

2

π

µ2

σ3
e
− µ

2

2σ2 .

(15)

Rewriting the Hessian with

q ≔

[

0

CT a+Ck
σ

]

(16)

then yields

Hess( f ) =

√

2

π
e
− µ

2

2σ2













1

σ

[

b

−q
µ

σ

] [

b

−q
µ

σ

]T

+ Jac(∇σ)













≥ 0.

(17)

It is easily seen that f (η, k) is continuous and

that the sequence of smoothed functions fn(η, k) =

g

(

µ(η, k),

√

1
n
+

∑

i x2
i

)

converges pointwise to f . The

functions fn are readily shown to be convex by computing

their respective Hessians in the same fashion as above. The

function f (η, k) is therefore convex since it is a limit of

convex functions.

Note that a simpler argument for convexity can be given

because f (η, k) = E|µ0 + bTη + (a + Ck)w̃| for some w̃ ∼
N(0, I), which must be a convex function since the argument

of the expectation is convex for every realization of w̃ [4].

Now we are ready to formulate a tractable approximation

of (6).

Theorem 1. The optimization problem

minimize
η,K

E















||QN xN ||1 +
N−1
∑

k=0

||Qk xk ||1 + ||Rkuk ||1















subject to u = η + Kw

xk+1 = Axk + Buk + wk

K is strictly block lower triangular

|ηi| + ε||Ki||∞ ≤ Umax, i = 1, . . . ,mN

(18)

with w ∼ N(0,Σ) is convex and tractable in the variables

(η,K). Furthermore the hard input constraints (3) are satis-

fied under the control policy u = η + Ke(w) if ||e(w)||∞ ≤ ε.
Here Ki denotes the i-th row of K.

Proof. The objective function is a sum of terms of the form

E|qT
jk

xk | or E|rT
jk

uk |, where q jk, r jk denote the j-th rows of

Qk, Rk respectively. Denote also

Bk = [Ak−1B, . . . , B, 0, . . . , 0], Ck = [Ak−1, . . . , I, 0, . . . , 0]F,

where Σ = FFT , and observe that

qT
jk xk = qT

jk(Ak x0 + Bku + Ckw̃)

= qT
jkAk x0 + qT

jkBkη + qT
jk(Ck + BkKF)w̃

with w̃ ∼ N(0, I). It is clear that qT
jk

xk is Gaussian with the

expectation

µ(η, k) = E(qT
jk xk) = qT

jkAk x0 + qT
jkBkη, (19)

and standard deviation

σ(η, k) = ||qT
jk(Ck + BkKF)||2 = ||CT

k q jk + (FT ⊗ qT
jkBk)S k||2,

(20)

where S k = vec(K) with S being a certain matrix of zeros

and ones, and k containing only the nonzero elements of K.

Similarly

rT
jkuk = rT

jkvkη + rT
jkvkKFw̃,

where vk is a vector that selects k-th block row of the size m.

Consequently, the expectation and standard deviation become

µ(η, k) = rT
jkvkη, σ(η, k) = ||(FT ⊗ rT

jkvk)S k||2. (21)

Application of Lemma 2, in the proof of which the

gradient and Hessian were computed, now completes the

convexity and tractability part of the proof. Satisfaction of

the input constraints follows immediately from the definition

of the induced infinity norm and from the assumption that

||e(w)||∞ ≤ ε.

B. Bound on suboptimality

In this section we provide a bound on the suboptimality

in (6) (with the same constraints on η, K as in (18)) of

the solution to the relaxed problem problem (18). The idea

is to bound the difference of the costs under the policies

u = η+Kw and u = η+Ke(w) for given η, K, which in effect

bounds the difference of the respective optima. For ease of

notation, the result is derived with time invariant weights,

i.e., Qk ≔ Q, Rk ≔ R (and thus q jk ≔ q j, r jk ≔ r j) for all k,

but generalizes immediately to the time varying case.

Lemma 3. The cost Je incurred under the policy u = η +

Ke(w) and the cost Jw incurred under the policy u = η+Kw

differ not more then

(nq(N + 1)||Q||∞||BN ||∞ + nrN||R||∞)E||e(w) −w||∞||K||∞ (22)

Proof. We have

|Je − Jw| ≤
N

∑

k=0

nq
∑

j=1

|E(|qT
j xe

k | − |q
T
j xw

k |)| (23)

+

N−1
∑

k=0

nr
∑

j

|E(|rT
j ue

k | − |r
T
j uw

k |)|.

Next, by Jensen’s inequality,

|E(|qT
j xe

k | − |q
T
j xw

k |)| ≤ E
∣

∣

∣|qT
j xe

k | − |q
T
j xw

k |
∣

∣

∣ ≤ E|qT
j xe

k − qT
j xw

k |
= E|qT

j BkK(e(w) − w)|, (24)

where

xe
k = Ak x0 + Bkη + BkKe(w) + Ckw,
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xw
k = Ak x0 + Bkη + BkKw + Ckw.

Furthermore

E|qT
j BkK(e(w) − w)| ≤ ||qT

j BkK||∞E||e(w) − w||∞ (25)

≤ ||qT
j Bk ||∞||K||∞E||e(w) − w||∞

≤ ||Q||∞||BN ||∞||K||∞E||e(w) − w||∞.

Similar procedure can be carried out for control inputs to

yield

|E(|rT
j ue

k | − |r
T
j uw

k |)| ≤ ||R||∞||K||∞E||e(w) − w||∞.

Summing up all terms in (23) now leads to the desired result

|Je−Jw| ≤ (nq(N+1)||Q||∞||BN ||∞+nrN ||R||∞)E||e(w)−w||∞||K||∞,

which completes the proof.

Now it is rather straightforward to derive the subopti-

mality bound. Denote J∗e the optimal value of (6) and the

corresponding minimizer K∗e , η∗e. Denote also J∗w the optimal

value of (18) and the corresponding optimal solution K∗w,

η∗w. Finally denote Je the cost J under the control policy

u = η∗w + K∗we(w) and Jw the cost J under the policy

u = η∗e + K∗e w.

Theorem 2. The solution η∗w, K∗w of (18) is not more than

β := 2(nq(N + 1)||Q||∞||BN ||∞ + nrN ||R||∞)E||e(w) − w||∞
Umax

ε
(26)

suboptimal in (6).

Proof. It follows from Lemma 3 that

|Je − J∗w| ≤
β

2
, |Jw − J∗e | ≤

β

2

since ||K∗e ||∞ ≤ Umax/ε, ||K∗w||∞ ≤ Umax/ε because of the

constraint on K and η in both optimization problems

|ηi| + ε||Ki||∞ ≤ Umax, i = 1, . . . ,mN,

which implies ||K||∞ ≤ Umax/ε.

Now since J∗e ≤ Je and J∗w ≤ Jw the bound immediately

follows

0 ≤ Je − J∗e ≤ Je − J∗w + Jw − J∗e = |Je − J∗w + Jw − J∗e | ≤ β,

which completes the proof.

The term E||e(w)−w||∞ in (26) can be computed to virtually

arbitrary precision by means of a Monte Carlo simulation.

The bound also provides an intuitively obvious guide to

selecting the function e(w) in such a way that e(w) and w

do not differ very much with high probability. For instance

with the choice of e(w) as the elementwise saturation ei(wi) =

satr(wi) with r & 4
√

ρ(Σ) it is highly likely that the bound

will be close to zero and, consequently, the solution to the

relaxed problem will be almost optimal in the original one.

Note also that this fairly crude bound can be significantly

improved by terminating one inequality earlier in (25) at the

cost of a slightly more complicated expression.

C. Receding horizon stability

In this section we provide a slight generalization and a

much simplified proof of a result that already appeared in

[7].

Theorem 3. Let uk, wk be two stochastic processes defined

on the same probabilistic space with ||uk ||∞ ≤ Umax a.s. and

supk≥0 E||wk ||22 < ∞. The state of the system xk+1 = Axk+Buk+

wk then stays mean-square bounded (i.e., supk≥0 E||xk ||22 < ∞)

provided that E||x0||22 < ∞ and ρ(A) < 1.

Proof. E||xk ||22 = tr(E{xk xT
k
}) and consequently it suffices to

show that E{xk xT
k
} is bounded in any norm because of the

norm equivalence on finite dimensional vector spaces and the

fact that tr(·) coincides with the nuclear norm on the space of

positive semidefinite matrices. The proof proceeds by direct

evaluation:

E(xk xT
k ) = E{(Ak x0 + BkUk + CkWk)(Ak x0 + BkUk + CkWk)T }

(27)

= AkP0(Ak)T + AkE{x0UT
k }B

T
k + BkE{Uk xT

0 }(A
k)T

+ BkE{UkUT
k }B

T
k + BkE{UkWT

k }C
T
k + CkE{WkUT

k }B
T
k

+ CkE{WkWT
k }C

T
k ,

where

Uk = [uT
0 , . . . , u

T
k−1]T , Wk = [wT

0 , . . . ,w
T
k−1]T ,

Bk =
[

Ak−1B, . . . , B
]

, Ck =
[

Ak−1, . . . , I
]

.

The boundedness of the first term is obvious, the bound-

edness of the second and third terms follows from the fact

that ||E{x0UT
k
}||2 ≤ Umax

√

mkE||x0||22 (this follows directly

by Jensen’s and Cauchy-Schwarz inequalities). The bound-

edness of Bk is obvious by the assumption that ρ(A) < 1,

and therefore the second and third terms actually go to zero.

Consider now any family of matrices Mrq such that

||Mrq|| ≤ ∆ for all r, q. For such a family and any sub-

multiplicative norm || · || we have
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

k−1
∑

i=0

k−1
∑

j=0

AiMrqA j

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
k−1
∑

i=0

k−1
∑

j=0

||Ai||||Mrq||||A j|| (28)

≤ ∆
k−1
∑

i=0

k−1
∑

j=0

||Ai||||A j||.

The first term in (28) is therefore bounded since the last

series is convergent by the assumption that ρ(A) < 1.

The theorem then follows since the last four terms in (27)

can be casted in the stated form with r = k − i − 1, q = k −
j−1 and Mrq componentwise bounded (by Cauchy-Schwarz

inequality and the assumptions on uk, wk) and hence || · ||
bounded due to the norm equivalence.

Corollary 1. The receding horizon implementation of the

control policy defined by solving the optimization problem

(18) every Nc ≤ N steps and applying the first Nc control

inputs generated by the policy u = η + Ke(w) renders the

state xk mean-square bounded provided that ρ(A) < 1.
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Proof. Follows directly from Theorem 3 since the constraints

in (18) ensure that the inputs stay bounded.

In the case of ρ(A) = 1 with the deterministic part of the

system (2) Lyapunov stable, the sole assumption of bounded

control inputs is insufficient, and another constraint must

be embedded into (18) in order to ensure the mean-square

boundedness of the state; see [12] for details.

IV. Numerical examples

We present two numerical examples that compares our

method to other control strategies. With the gradient and

Hessian on hand, the problem (18) can be solved by a

nonlinear solver with guaranteed convergence because of

convexity or by a general purpose convex solver. For our

small scale examples we managed with the Matlab non-

linear solver implemented in the fmincon function with the

‘interior-point’ option as well as with a custom interior-point

solver. Nondifferentiability of the objective is not a problem

in our case since the optimization path and the solution itself

lie outside the nondifferentiable region. If this were not the

case, which can happen if the penalty on control effort is

large leading to zero mean and zero variance of one of the

control inputs, various techniques for nodifferentiable convex

optimization can be employed.

In the first example we consider a fixed horizon stochastic

control problem. For the system matrices and the noise

covariance matrix we chose

A =

[

1 −0.4

0.1 1

]

, B =

[

0.6

0.4

]

, Σ = I ⊗
[

8 5

5 6

]

with wk zero-mean jointly Gaussian. We set the weighting

matrices Q = I, R = 0.1I, and the input constraints to Umax =

30. The optimization horizon is T = 12 and the initial state

x0 = [1, −1]T . The function e(w) was chosen as suggested

above to be the componentwise saturation that saturates the

disturbances at 4
√

ρ(Σ) = 13.9.

We compared our control policy (NDF) (with Nc = N = T )

with the standard certainty equivalent MPC (Nc = 1, N = T )

and with the shrinking horizon certainty equivalent MPC

(SH-MPC) (Nc = 1, N(k) = T − k, k = 0, . . . ,T − 1).

Furthermore, we tried out the proposed method with K = 0

against the certainty equivalent open loop control (OL) (i.e.,

CE-MPC with Nc = N = T ). For the sake of completeness

we also tried out our method in the shrinking horizon mode

(SH-NDF) with Nc = 2, N(k) = T − k. The respective

objective functions were evaluated using 2000 Monte Carlo

runs. The results are summarized in Table I, which shows

that our method (without shrinking) outperforms the others

by a significant margin except perhaps for SH-MPC where

the difference is smaller and, naturally, our method in the

shrinking horizon mode. On the other hand, unlike with MPC

strategies, there is no need for online optimization with our

method in this setting. It is also worth noting that our method

with K = 0 (i.e., an open loop policy) slightly outperforms

the certainty equivalent open loop control, which is in

contrast with the quadratic cost case where this strategy is

optimal in the class of open loop policies. Figure 1 shows

histograms of the proposed policy and the two MPC policies.

Finally, we evaluate the bound (26) which yields β = 0.005

showing that the solution found by (18) is in this case

basically optimal in (6).

TABLE I

Comparison of control policies over the optimization horizon T = 12.

Policy NDF-SH NDF SH-MPC MPC NDF, K = 0 OL

J 86.8 92.1 98.3 119.2 140.4 143.9

Our second example compares the proposed method with

the certainty equivalent MPC in a receding horizon mode. In

this example we consider the respective matrices

A =

[

1 1

−0.5 0

]

, B =

[

0

1

]

, E{wiw
T
j } =

[

8 5

5 6

]

δi j,

where wk is an i.i.d. sequence of zero-mean Gaussian random

variables, and δi j denotes the Kronecker delta. The weighting

matrices were set to Q = I and R = 0.1I, the input constraints

to Umax = 10, and the initial state to x0 = [1, −1]T . We

compared our control policy with N = 12, Nc = 4 against

CE-MPC with N = 12, Nc = 1 in a receding horizon fashion

over the simulation time T = 100. Again, we used the 4-

sigma rule to get ε = 13.9. Figure 2 shows the accumulation

of the cost over the simulation time, whereas Figure 3 depicts

the evolution of the estimated mean-square of the state. The

latter is bounded, which is in accordance with Corollary 1

since ρ(A) =
√

2/2 < 1. One hundred Monte Carlo runs were

used to evaluate the cost functions.

V. Conclusion

In this article, we dealt exclusively with the expectation

of the 1-norm stochastic optimal control problem for which

we developed an approximate solution technique ensuring

bounded control inputs in the presence of Gaussian distur-

bances. Moreover, we constructed a suboptimality bound

of our method in a certain class of nonlinear disturbance

feedback control policies. Finally, we provided a simple

proof of receding horizon stability of the proposed policy,

and demonstrated our results by means of two numerical

examples.

Future work will concentrate on extending the results of

this article to a general p-norm and to the output feedback

case. Furthermore, the question of the mean-square stabiliz-

ability of Lyapunov unstable systems with the system matrix

of spectral radius one remains, at least to our knowledge,

open.
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