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Abstract: In recent years, noniterative Correlation-based Tuning (CbT) and Virtual Reference
Feedback Tuning (VRFT) have been proposed as an alternative to the standard model-based
approach for model-reference control design. In this work, the problem of input design for direct
data-driven controller tuning methods is investigated. For bounded input energy, the excitation
signal is designed such that the bias on the expectation of the control criterion is reduced. The
above strategy is numerically tested on a benchmark example.
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1. INTRODUCTION

In system identification theory, optimal experiment design
is about finding the operating conditions that provide the
most informative data for modeling the plant. However,
depending on the intended model application, the optimal
experiments appear to be very different. In control applica-
tions, the model is used to design a suitable controller, and
therefore the final aim for identification and input design
is not to accurately describe the mathematical structure
of the system, but to obtain a closed-loop behaviour with
some desired properties. Recently, the term “identification
for control” has been introduced to refer to identification
from a control-oriented perspective (see H. Hjalmarsson
[2005] for a survey). In this research area, assessing the
model quality by experiment design is of primary impor-
tance, as is witnessed by a large set of contributions, see
e.g. M. Gevers [1996] and M Gevers et al. [1986]. The
problem is generally difficult due to many reasons, one
of which is the fact that control-relevant criteria typically
depend on the ideal controller, designed with respect to the
true system. Moreover, to the authors’ knowledge, only the
case of full-parameterization is treated, i.e. the case where
the real system belongs to the model set, except for X.
Bombois et al. [2006], where upper bounds on modeling
error are considered to deal with undermodeling.
As far as the authors are aware, input design for direct
data-driven controller tuning, i.e. the case where a fixed-
order controller is directly identified from data without
modeling the plant, has not been considered yet. These
methods can be very useful when a mathematical descrip-
tion of the plant is a costly and time-consuming undertak-
ing. However, as in standard system-identification, a deep
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understanding of the asymptotic variability of the estimate
is needed, as this setting corresponds to all real situations.
This paper attempts to obtain some insight into statisti-
cal properties of noniterative data-driven techniques, i.e.
noniterative Correlation-based Tuning (CbT) and Virtual
Reference Feedback Tuning (VRFT), whereof the inter-
esting feature is that they provide a global solution to a
model-reference control issue via simple least squares tech-
niques. The above methodologies have been only recently
introduced, respectively in A. Karimi et al. [2007] and in
M.C. Campi et al. [2002]. Iterative data-driven methods
are instead not subjects of the present work.
The main goal of the paper is to carry out an input
design methodology to reduce the bias effect related to
the presence of noise that affects the expected value of
the final control criterion. This will be shown straightfor-
ward as, unlike the standard “model-based” approach, the
“direct” philosophy will allow one to establish an explicit
relationship between the aforementioned expected value
and the input spectrum.

The outline of the paper is as follows. In Section 2,
preliminaries on noniterative CbT and VRFT are briefly
recalled. The main analysis results and the input design
procedure are discussed in Section 3, while Section 4
demonstrates the effectiveness of the above method on the
benchmark simulation example proposed in I. D. Landau
et al. [1995]. Some concluding remarks end the paper.

2. BACKGROUNDS

Consider the unknown LTI SISO stable plant G(q−1),
where q−1 denotes the backward shift operator. The ob-
jective of the model-reference control problem is to design
a linear, fixed-order controller K(q−1, ρ), parameterized
through ρ, for which the closed-loop system matches the
given stable strictly proper reference model M(q−1) (see
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Figure 1). More specifically, let the controller parameteri-
zation be K(q−1, ρ) = βT (q−1)ρ, where β(q−1) is a vector
of n linear discrete-time transfer operators.
Formally, the aim is to find the vector of parameters that
minimizes the (filtered) L2-norm of the difference between
the reference model and the achieved closed-loop system:

J(ρ) =

∥∥∥∥
(

GK(ρ)

1 + GK(ρ)
− M

)
W

∥∥∥∥
2

2

, (1)

where W (q−1) is a user-defined frequency-weighting fil-
ter. Consider that an open-loop collection of input-output

Fig. 1. Model reference control problem.

(I/O) data {u(t), y(t)}t=1,...,N is available. Let the output
y(t) be affected by additive noise v(t) = H(q−1)e(t), where
H(q−1) is an unknown stable LTI system and e(t) is a zero
mean white Gaussian noise with variance of σ2.
In standard “indirect” data-driven approaches, the above
objective can be achieved by identifying from data a model
Ĝ of the plant and designing a model-based controller
K(Ĝ). Unfortunately, the controller that makes J(ρ) = 0
is given by Ko(q

−1) = M(q−1)/(G(q−1)(1 − M(q−1))),
that might be of very high order since it depends on the
unknown and possibly high-order plant G(q−1). Further-
more, Ko(q

−1) might be non-causal. It follows that model-
based design of fixed-order controller is not a trivial task
and the use of “direct” techniques that do not need the
plant model may sometimes be preferable.

2.1 Noniterative correlation-based Tuning

By using u(t) as reference signal and approximating the
actual sensitivity function with the ideal one, the model-
matching error ε(t, ρ) can be directly computed from data,
as in the noiseless setting it is expressed by

ε(t, ρ) = M(q−1)r(t) − (1 − M(q−1))K(q−1, ρ)G(q−1)r(t)

= M(q−1)u(t) − (1 − M(q−1))K(q−1, ρ)y(t).

In case of noiseless environment and full parameterization
of K(q−1, ρ), i.e. when Ko(q

−1) belongs to the controller
set, it is straightforward that the minimizer of the two-
norm of ε(t, ρ) is exactly Ko(q

−1). When data are collected
in a noisy environment, the method resorts to the corre-
lation approach to identify the controller. Specifically, an
extended instrumental variable ζ(t) correlated with u(t)
and uncorrelated with v(t) is introduced to decorrelate the
error signal ε(t) and the reference signal r(t). ζ(t) is defined
as

ζ(t) = [u(t + l), . . . , u(t), . . . , u(t − l)]T , (2)

where l is a sufficiently large integer. The correlation
function is defined as

fN,l(ρ) =
1

N

N∑

t=1

ζ(t)ε(t, ρ) (3)

and the correlation criterion as

JN,l(ρ) = fT
N,l(ρ)fN,l(ρ). (4)

The global minimizer of (4) tends to Ko as N and l tend
to infinity and l/N to zero (see K. van Heusden, A. Karimi
and D. Bonvin [2010] for technical details).
When the optimal controller does not belong to the con-
troller set, the criteria (4) and (1) no longer share the
same minimum point. However, it has been proven in K.
van Heusden, A. Karimi and D. Bonvin [2010] that the
optimizer of (4) tends w.p.1 to the optimizer of (1) as
N, l → ∞ and l/N → 0, if data in ε(t, ρ) are prefiltered by
LC(q−1), defined as

LC(e−jω) =

(
1 − M(e−jω)

)
W (e−jω)

Φu(ω)
, (5)

where Φu(ω) denotes the spectral density of u(t). Notice
that such prefilter may be non-causal but it can be
implemented off-line.

2.2 Virtual Reference Feedback Tuning

The idea of Virtual Reference Feedback tuning was first
proposed in G.O.Guardabassi et al. [1997] with the
name of Virtual Reference Direct Design (V RD2) and
subsequently fixed and extended in M.C. Campi et al.
[2002], S. Formentin et al. [2011] and M.C. Campi et al.
[2006], respectively for LTI, LPV and nonlinear systems.
The main idea to minimize (1) without identifying G(q−1)
is to build a “virtual” closed-loop system, where the input
and output signals are equal to u(t) and y(t) and the
closed-loop transfer function is assumed to correspond to
M(q−1). From such loop, the so-called “virtual reference”
rv(t) and “virtual error” ev(t) signals can be computed as
rv(t) = M−1(q−1)y(t) and ev(t) = rv(t)−y(t). The control
design issue is then reduced to an identification problem,
where the optimal controller is the one that generates u(t)
when fed by ev(t). The criterion to be minimized is then

JN
V R(ρ) =

1

N

N∑

t=1

(
uL(t) − K(q−1, ρ)eL(t)

)2

, (6)

where uL(t) = L(q−1)u(t), eL(t) = L(q−1)ev(t) and
L(q−1) is a suitable prefilter such that (6) is equal to the
second-order Taylor expansion of (1) in the neighborhood
of the minimum point (see M.C. Campi et al. [2002]).
More specifically, the frequency response of L(q−1) must
be such that

L(e−jω) =
M(e−jω)

(
1 − M(e−jω)

)
W (e−jω)

Φ
1/2

u (ω)
, (7)

where Φ
1/2

u (ω) denotes a spectral factor of Φu(ω).
For the final estimate not to be biased, instrumental
variables are used to counteract the effect of noise (see
L. Ljung [1999]).

3. OPTIMAL INPUT DESIGN

In this section, the expectation of the control criterion
is computed for noniterative CbT and VRFT in case of
large N and full-order controller parameterization and
input design is proposed to cope with bias reduction. Once
the optimal spectrum is known, the input signal can be
generated by means of well-known spectral factorization
techniques (see e.g. A.H. Sayed et al. [2001]).
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3.1 Noniterative correlation-based Tuning

A preliminary asymptotic analysis of the variability of the
controller parameter estimate for noniterative CbT has
been already published in K. van Heusden, A. Karimi and
D. Bonvin [2010]. The main result states that the expected
value of the correlation criterion (4) can be approximately
expressed by

E [JN,l(ρ)] ≈ J̃N,l(ρ)+

+
σ2(2l + 1)

2πN

∫ π

−π

|1 − M |4 |K(ρ)|2 |H|2 |W |2
Φu(ω)

dω
(8)

where J̃N,l(ρ) is a windowed estimate of J(ρ) over N in
the absence of noise.

Equation (8) clearly shows that the frequency shaping of
the input signal used in the experiment is strictly related
to the bias effect on the identification criterion (by inverse
relationship). Furthermore, the choice of the parameter l
represents a trade-off as, to find a good estimate of J(ρ), l
must be large as possible (see K. van Heusden, A. Karimi
and D. Bonvin [2010]), whereas (8) clearly shows that the
bias increases as l increases.
The following theorem provides a way to optimally shape
Φu(ω) in order to minimize the bias effect on E [JN,l(ρ)]
(and subsequently on E [J(ρ)]) for sufficiently large l.

Theorem 1. Let the input energy of u(t) be bounded by
the application-dependant parameter γu, i.e.

∫ π

−π

Φu(ω) dω < γu. (9)

The optimal expression of the input spectrum Φo
u(ω) for

bias minimization of (8) is given by

Φo
u(ω) = µ |1 − M |2 |K(ρ)| |H| |W | (10)

where

µ =
γu∫ π

−π
|1 − M |2 |K(ρ)| |H| |W |dω

. (11)

Proof. The proof follows the line of L. Ljung [1999]
(Chapter 13.6) for high-order black box models. In this
case, the result is not asymptotic in the controller order
as the derivation of (8) does not require this assumption.

2

Notice that the optimal signal with spectrum Φo
u(ω) can-

not be directly implemented as it depends on the identified
controller K(q−1, ρ) and on the noise model H(q−1). The
first problem is typical of any input design procedure (see
e.g. M. Gevers [1996]) and, in system-identification theory,
is addressed with a sequential approach, i.e. a preliminary
model is first estimated from a persistently exciting set of
data and such model is used to derive the optimal input.
The final result is certainly suboptimal, however, it can
be improved via iterative procedures (see H. Hjalmarsson
[2005]). Analogously, also the second task is typical of any
input design problem, as illustrated in M Gevers et al.
[1986], and can be managed via preliminary knowledge or
identification.

3.2 Virtual Reference Feedback Tuning

As already mentioned in Section 2.2, instrumental vari-
ables are used in VRFT to deal with measurement noise.
Specifically, for a given N , the parameter vector are com-
puted as

ρ̂N = R−1

N rN , (12)

RN =
1

N

N∑

t=1

φ2(t)φ
T
1
(t), rN =

1

N

N∑

t=1

φ2(t)uL(t).

The regressor is defined as

φ1(t) = β(M−1 − 1)Ly(t), (13)

that is

φ1(t) = β(M−1 − 1)Lyo(t) + β(M−1 − 1)Lv1(t)

= φo(t) + φ̃1(t),

where yo(t) is the noiseless output, i.e. yo(t) = Gu(t), and
v1(t) is the realization of noise v(t) in the identification
experiment.
The basic instrumental variable is instead defined as

φ2(t) = β(M−1 − 1)Ly2(t), (14)

where y2(t) is a second set of output data. Specifically,
y2(t) might be selected as the noiseless output, i.e. y2(t) =
yo(t), that can be obtained by feeding a full-order model
of the system, if available, with the same input u used in
the experiment. Otherwise, y2(t) can be derived by feeding
again the system with u; in this case, the output of this
second experiment would be y2(t) = yo(t) + v2(t), where
v2(t) is a second realization of the noise v(t). In the latter
case, analogously to φ1(t), the instrumental variable can
be rewritten as

φ2(t) = φo(t) + φ̃2(t), (15)

where
φ̃2(t) = β(M−1 − 1)Lv2(t). (16)

Basic instrumental variables asymptotically guarantee
consistent results but increase the variance of the esti-
mate (see T. Soderstrom et al. [2005]). In controller
identification, this fact may critically jeopardize the final
performance.
As a matter of fact, consider the expected value (with
respect to the noise) of the second order Taylor expansion
of J(ρ̂N ) around the global minimum ρo (recall that, in
the minimum, the first order derivative is zero)

E [J(ρ̂N )] ≈ J(ρo) +
1

2
E

[
(ρ̂N − ρo)

T ∂2J

∂ρ2
|ρo

(ρ̂N − ρo)

]
.

The previous expression can be rewritten, thanks to the
cyclic property of the trace operator, as

E [J(ρ̂N )] ≈ J(ρo) +
1

2
tr

{
E

[
(ρ̂N − ρo)(ρ̂N − ρo)

T
]
Λ

}
,

where Λ is the Hessian computed in ρo, that has been
taken out of the E [·] argument as it is deterministic. An
approximate expression of E [J(ρ̂N )] is

E [J(ρ̂N )] ≈ J(ρo) +
1

2N
tr {PIV Λ} , (17)

where PIV is the variance of the asymptotic distribution.

Analogously to the CbT case, the objective of reducing
the effect of noise would be to minimize the bias error on
E [J(ρ̂N )]. Note that tr{PIV Λ} ≤ tr{PIV }tr{Λ}. There-
fore by minimizing the trace of PIV an upper bound on
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the bias error will be minimized. This can be achieved
by making PIV as close as possible to the covariance
of the parameter estimates using optimal instrumental
variables, P o

IV . The following proposition provides a fast
way to suitably build the input signal according to the
aforementioned rationale.

Proposition 1. If φ2 is built according to (14), where
y2(t) = yo(t), P o

IV is achieved if

Φo
u(ω) = |1 − M |4 |Ko|2 |H|2 |W |2 . (18)

Proof. Since the controller is fully parameterized, uL =
φT

o ρo, that is uL = φT
1
ρo−φ̃T

1
ρo. Then, rN in (12) becomes

rN =
1

N

N∑

t=1

φ2(t)φ
T
1
(t)ρo −

1

N

N∑

t=1

φ2(t)φ̃
T
1
(t)ρo

and
√

N (ρ̂N − ρo) can be rewritten as

√
N (ρ̂N − ρo) = R−1

N

1√
N

N∑

t=1

φ2(t)φ̃
T
1
(t)ρo. (19)

According to L. Ljung [1999], as N → ∞,

1√
N

N∑

t=1

φ2(t)φ̃
T
1
(t)ρo → N (0, Po) (20)

where

Po = lim
N→∞

1

N
E

[
N∑

t=1,s=1

φ2(t)φ̃
T
1
(t)ρoρ

T
o φ̃1(s)φ

T
2
(s)

]
.

Following the same procedure in T. Soderstrom et al.
[1983] (Appendix A8.1), since dim(φ2) = dim(ρ) = n, the
variance expression can be rewritten as

Po = σ2
E

[
F (q−1)φ2(t)

] [
F (q−1)φ2(t)

]T
, (21)

where
F = Ko(1 − M)2HWΦ−1/2

u . (22)

Subsequently, PIV = R−1

o PoR
−1

o , where

Ro = lim
N→∞

1

N

N∑

t=1

φo(t)φ
T
o (t), (23)

as RN → Ro for N → ∞ (see T. Soderstrom et al. [1983]).
Since the optimal covariance is P o

IV = σ2R−1

o , the input
spectrum has to be selected such that Po = σ2Ro. From
(21) it follows that, under the hypothesis of φ2(t) = φo(t),
such optimal input is the one that makes |F |2 = 1, that is

Φo
u(ω) = |1 − M |4 |Ko|2 |H|2 |W |2 . (24)

As a matter of fact, when |F |2 = 1 and φ2(t) = φo(t),

Po = σ2
E

[
φ2(t)φ

T
2
(t)

]
= σ2Ro, (25)

and PIV = P o
IV , that is the thesis.

2

It should be said that, when the instrumental variable is
selected using a second experiment, the previous result
no longer holds. However, such instrumental variable is
an unbiased estimate of the previous one, as E[φ2(t)] =
E[φo(t)]. Moreover, when (18) is employed in this setting,
(21) becomes

Po = σ2Ro + σ2
E

[
φ̃2(t)φ̃

T
2
(t)

]
. (26)

Then, if SNR is high, the additional term is one order
smaller than the σ2Ro and the input (24) can be reason-
ably used also in this case. In Section 4, the effectiveness

of this input choice with instrumental variable built from
a second experiment will be shown.

For energy-constrained signals with a given bound γu,
the optimal input can be, e.g., suitably scaled so as to
exploit all the available energy without changing the input
frequency weighting. This means that the optimal input
for VRFT becomes

Φo
u(ω) = ν |1 − M |4 |Ko|2 |H|2 |W |2 , (27)

where

ν =
γu∫ π

−π
|1 − M |4 |Ko|2 |H|2 |W |2 dω

. (28)

Remarks

• (27) is different from (10) in the power of frequency
weighting and in the expression of the controller
(K(ρ) is substituted by Ko). However, the latter is
only a formal distinction, since the desired value of ρ
is exactly ρo. Moreover, as in practice neither K(ρ̂N )
and Ko are known “a-priori”, the optimal input
expression can only employ a preliminary estimate
of the controller.

• Notice that, in the VRFT case, the time-realization
of a suitably shaped input signal can be straightfor-
wardly found without using complex spectral factor-
ization techniques. As a matter of fact, in order to
get such an input, it is sufficient to feed the filter
Lu =

√
ν(1 − M)2KoHW by means of a white noise

with unit variance.
• Also in identification for control, quantitative mea-

surements of the expected value of J(ρ) can be de-
rived from variability of G and K (see e.g. H. Hjal-
marsson [2005], M. Gevers [1996] and M Gevers et
al. [1986]) but computations become complicated.

4. A SIMULATION EXAMPLE: THE FLEXIBLE
TRANSMISSION SYSTEM

The example proposed herein for testing the above input
design strategy is the flexible transmission system intro-
duced as a benchmark for digital control design in I. D.
Landau et al. [1995].

The plant is described by the discrete-time model

G(q−1) =
0.28261q−3 + 0.50666q−4

A(q−1)
(29)

where A(q−1) = 1−1.41833q−1+1.58939q−2−1.31608q−3+
0.88642q−4 and the sampling time is Ts = 0.05s. The
measurement noise is supposed to be white and such that
the signal-to-noise ratio is the parameter SNR such that
H(q−1) = var[yo(t)]/SNR, where var[yo(t)] is the vari-
ance of yo(t). Moreover, the frequency-weighting function
W (q−1) = 1 and the set of available controllers is

K(q−1, ρ) =
ρ0 + ρ1q

−1 + ρ2q
−2 + ρ3q

−3 + ρ4q
−4 + ρ5q

−5

1 − q−1
.

The control objective is defined by a reference model that
allows the perfect matching to be achieved, i.e.

M(q−1) =
G(q−1)K(q−1)

1 + G(q−1)K(q−1)
, (30)

where the optimal controller is in the controller set and its
parameters are

ρo = [0.2045,−0.2715, 0.2931,−0.2396, 0.1643, 0.0084].
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Table 1. Mean values (100 iterations) of the
achieved performance J for different SNRs and

sizes N of the dataset: the CbT case.

SNR ↓ N → 100 500 1000

5 WN: 0.1344 WN: 0.0690 WN: 0.0527
OI: 0.0547 OI: 0.0273 OI: 0.0183

10 WN: 0.0931 WN: 0.0478 WN: 0.0379
OI: 0.0400 OI: 0.0187 OI: 0.0135

20 WN: 0.0661 WN: 0.0356 WN: 0.0267
OI: 0.0285 OI: 0.0131 OI: 0.0092

With simulation parameters above and γu = 1, the optimal
input spectra for CbT and VRFT are shaped as illustrated
in Figure 2, where the magnitude plot of G(q−1) is also
showed. Notice that in both the cases, the input energy
is low in the frequencies corresponding to the resonances,
whereas it is higher around the desired bandwidth and
at high frequencies, where the desired sensitivity function
S(q−1) = 1 − M(q−1) is high.
To verify the effectiveness of the proposed strategy, a

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

frequency [rad/s]

 

 

Fig. 2. Normalized magnitude plot of G (solid), optimal
input spectrum for CbT (dashed) and for VRFT
(dotted) on the linear scale.

Monte-Carlo simulation with 100 running experiments is
performed, using a different noise realization for each ex-
periment, and an estimate of E [J(ρ̂)] in the minimum ρ̂
is computed by sample mean. The case of PRBS and the
case of optimal input signal are then compared for different
values of signal-to-noise ratios SNR and number of data
N . Results for CbT and VRFT are illustrated respectively
in Table 1 and in Table 2, while Figures 3 and 4 show the
case of SNR = 5 and N = 1000 as an example. In each fig-
ure, the ideal closed-loop behaviour M(q−1) is also shown.
For CbT, the length of the instrumental variable vector
is l = 35, which corresponds to the length of the impulse
response of M . Notice that since VRFT requires two sets of
data for using the instrumental variable, each experiment
is characterized by half the samples for a fair comparison
between the methods. From numerical results, it is clear
that the use of the optimal input not only improves the
closed-loop performance but also makes CbT and VRFT
comparable in terms of statistical behaviour. Obviously,
this fact is not completely costless as a first experimental
session is required to estimate K(ρ) and H required by
(10) and (27). However, the proposed approach seems
to the authors a very good trade-off for all applications
where experiments are not too costly and high accuracy is

(a)

(b)

Fig. 3. Magnitude Bode plots of M (black line), achieved
closed-loop performance with PRBS input for the
100/100 stabilizing CbT controllers (blue lines,
above), with optimal input signal for 100/100 stabi-
lizing controllers (blue lines, below). In the example,
N = 1000, SNR = 5.

Table 2. Mean values (100 iterations) of the
achieved performance J for different SNRs and

sizes N of the dataset: the VRFT case.

SNR ↓ N → 100 500 1000

5 WN: 0.3028 WN: 0.1841 WN: 0.1769
OI: 0.2664 OI: 0.1296 OI: 0.0378

10 WN: 0.2392 WN: 0.1179 WN: 0.1333
OI: 0.0907 OI: 0.0363 OI: 0.0333

20 WN: 0.1993 WN: 0.1048 WN: 0.0560
OI: 0.0857 OI: 0.0313 OI: 0.0172

required.
Finally notice that when the uncertainty is high, some
VRFT controllers may destabilize the system (see again
example in Figure 4). Bias reduction via optimal input
design also allows one to reduce the probability of ob-
taining such controllers without adding any additional
(and conservative) constraint (see e.g. K. van Heusden,
A. Karimi and D. Bonvin [2010]) to the design procedure.

5. CONCLUSIONS AND FUTURE WORKS

In this work, statistical properties of direct data-driven
controller tuning have been analyzed and optimal input
design have been proposed to increase closed-loop per-
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(a)

(b)

Fig. 4. Magnitude Bode plots of M (black line), achieved
closed-loop performance with PRBS input for the
95/100 stabilizing VRFT controllers (blue lines,
above), with optimal input signal for 100/100 stabi-
lizing controllers (blue lines, below). In the example,
N = 1000, SNR = 5.

formance. Specifically, the innovative contributions of the
paper can be summarized as follows:

• CbT and VRFT have been demonstrated to have the
same problem for large N ; specifically, the expected
value of the cost function is biased when data are
noisy;

• the analytical expression of the control-relevant input
signal has been provided; an open-loop experiment
with such input allows the bias effect to be reduced;

• the proposed methodology directly connects the final
cost function and the input spectrum expression in a
straightforward way. The latter can then be directly
exploited to improve the closed-loop performance;

• the benchmark numerical example has shown to be-
have much better when the control-relevant input is
used; moreover, unstabilizing controllers are no longer
obtained.

Future work will focus on the analysis of controller un-
derparameterization and iterative approaches for input
design.
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