
StagedSAC: A Case Study in Performance-Oriented DSL
Development

Vlad Ureche Tiark Rompf
EPFL

{first.last}@epfl.ch

Arvind Sujeeth Hassan Chafi
Stanford University

{asujeeth,hchafi}@stanford.edu

Martin Odersky
EPFL

{first.last}@epfl.ch

Abstract
Domain-specific languages (DSLs) can bridge the gap between
high-level programming and efficient execution. However, imple-
menting compiler tool-chains for performance oriented DSLs re-
quires significant effort. Recent research has produced methodolo-
gies and frameworks that promise to reduce this development effort
by enabling quick transition from library-only, purely embedded
DSLs to optimizing compilation.

In this case study we report on our experience implementing a
compiler for StagedSAC. StagedSAC is a DSL for arithmetic pro-
cessing with multidimensional arrays modeled after the stand-alone
language SAC (Single Assignment C). The main language feature
of both SAC and StagedSAC is a loop construction that enables
high-level and concise implementations of array algorithms. At the
same time, the functional semantics of the two languages allow for
advanced compiler optimizations and parallel code generation.

We describe how we were able to quickly evolve from a pure li-
brary DSL to a performance-oriented compiler with a good speedup
and only minor syntax changes using the technique of Lightweight
Modular Staging. We also describe the optimizations we perform
to obtain fast code and how we plan to generate parallel code with
minimal effort using the Delite framework.

Categories and Subject Descriptors D.1.2 [Programming tech-
niques]: Automatic Programming

General Terms Experimentation, Languages, Performance

Keywords Staging, DSL, Domain Specific Languages, Optimiza-
tion, SAC, Single Assignment C

1. Introduction
Developing compilers for performance-oriented domain specific
languages (DSLs) is a complex undertaking. DSLs form bridges
between high level programs and low level machine code, so their
development requires an in-depth understanding of both sides and
how they map to each other. Generating fast programs also re-
quires careful optimization at both ends, as both high-level and low-
level representations present their own unique optimization oppor-
tunities. In addition to this, the inherent complexity of a compiler
makes development a hard, costly and time consuming undertak-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PEPM’12, January 23–24, 2012, Philadelphia, PA, USA.
Copyright c© 2012 ACM 978-1-4503-1118-2/12/01. . . $10.00

ing. In this context we are looking at techniques that alleviate the
burden of compiler development.

An alternative to implementing DSLs from scratch as a stand-
alone tool chain is to embed them into a general-purpose host lan-
guage. This comes at the cost of losing many useful optimiza-
tions as the program’s structure is no longer available for analysis
and manipulation. Recent research produced methodologies [7] and
frameworks [22] that promise to significantly lower the develop-
ment effort. In this paper, we report on our experience developing a
multidimensional array DSL embedded into the programming lan-
guage Scala using the technique of Lightweight Modular Staging
(LMS) [21] and the Delite compiler framework [6].

The language and compiler we are studying is inspired by Sin-
gle Assignment C (SAC) [24], a language which features a well-
chosen set of high-level operations, enabling functional, concise
and high-level programs for manipulating multidimensional arrays.
The SAC compiler then transforms the programs into very fast low-
level code that runs in parallel.

Using Lightweight Modular Staging (LMS) and Delite, we were
quickly able to switch from a pure-library embedding to an opti-
mizing compiler. We began our development by building a purely
embedded DSL, which we call LibrarySAC. LibrarySAC is basi-
cally just a Scala library and, since it does not perform any opti-
mization, is very slow. Lightweight modular staging allowed us to
transform LibrarySAC into a complete compiler with only minor
changes to the DSL syntax. The core idea of using LMS is that as
the program is executed, the library calls it makes are transformed
into an intermediate program representation. Therefore the LMS
framework lifts the entire program representation and allows the
compiler to perform optimizations on it. Furthermore, along with
the Delite parallel execution framework, it automatically simplifies
the code by performing:

• common subexpression elimination, constant folding, dead-
code elimination

• code motion, loop invariant code hoisting (coarse grained, can
change the order of loops)

• task parallelism (using the Delite framework, data parallelism
is ongoing work)

The SAC compiler contains multiple optimizations that can
significantly improve performance. Most of these optimizations
rely on compile time information about the sizes of the arrays, also
called array shapes. In SAC, the type system is augmented to infer
array shape information, but it only performs top-down propagation
and function inlining.

We designed and implemented a new type system which is
able to infer array sizes in a Hindley-Milner fashion, by deriving
equations and solving them for a complete solution. Due to the
nature of the language, for some programs it is impossible to infer
complete array shape information. To overcome this limitation,

if the input files are available at compile time, we extract shape
information and use it to specialize the program for the given input.

Low level optimizations further improved performance. Our
prototype compiler generates Scala code, which in turn is translated
to Java Virtual Machine (JVM) bytecode. We performed several
changes on the generated code to provide fast execution and we
highlight our conclusions in Section 5.

We use the Delite [6] framework, an extension to LMS that al-
lows code to be executed in parallel on multiple CPUs and GPUs.
The framework offers parallel abstractions to DSL authors, repre-
senting common execution patterns such as Map, Reduce, ZipWith,
ForkJoin, etc. The code generated for these operations can be ex-
ecuted in parallel by the Delite runtime. It is worth noting that the
parallel abstractions are only visible to the DSL author, making
LMS and Delite languages indistinguishable to the DSL user.

StagedSAC benefits from the Delite framework on two fronts:
first of all, Delite enables parallel code generation for StagedSAC
with very limited additional effort. Furthermore, as part of our
current work, Delite will enable new optimizations that are present
in SAC but were not yet available in StagedSAC. The optimizations
are currently available for other DSL compilers [26], but need
to be generalized to fit the case of the multidimensional arrays
in StagedSAC. These optimizations will be further presented in
Section 6.

1.1 Related Work

Given the wide applicability to modeling physical and statisti-
cal computations, a number of programming languages were pro-
posed for efficient and high-level processing of multidimensional
arrays [5, 8, 16, 17, 19, 24]. Each language features its own pro-
gramming model, built-in array operations and restrictions. This
makes the compilation and optimization very different for each lan-
guage. Orthogonal to the means of obtaining fast array programs,
significant effort went into developing each and every language and
tool chain. This is where we hope the staging technique can alle-
viate the effort. The language chosen to evaluate the effectiveness
of the staging technique is Single Assignment C [24], due to its
shape-agnostic array objects, its expressive built-in operations and
the numerous optimization techniques developed over the years.
Therefore SAC met the two criteria for assessing whether the stag-
ing technique improves the state of art in DSL development: it has
a performance-oriented compiler and several man-years went into
developing the language and infrastructure.

The StagedSAC language is heavily influenced by SAC [24].
Although the two languages are closely related, they are not ex-
actly the same, as had to we adapt StagedSAC to be embedded in
Scala [20] in order to use the LMS and Delite frameworks. In order
to adapt the language for embedding, we had to drop axis control
statements and rank notation in types [25]. Fortunately both can be
simulated using additional code, so no language functionality was
lost. On the compiler side the differences are drastic: the SAC com-
piler is a stand-alone application that translates SAC code to C and
uses any C compiler to obtain machine code. StagedSAC on the
other hand is embedded in Scala using the Delite framework and
generates Scala code, which is later translated to JVM bytecode.
Furthermore the set of optimizations in the two compilers are very
different: some optimizations are only available in StagedSAC, as
we will discuss in Section 5 while others [14, 15, 23] are only avail-
able in SAC. We are currently working on implementing more op-
timizations in StagedSAC by extending the Delite framework to
support them in a generic fashion.

The SAC compiler can speed up computation by targeting par-
allel architectures. It can produce code that runs in multithreaded
environments [18] and on graphical processing units (GPUs). We
added primitive support for parallel code generation in StagedSAC

using the Delite framework. As other domain-specific languages
already showed [26], the Delite framework can enable optimiza-
tions that speed up DSL programs to the same performance as
hand-tuned C code. We hope to obtain the same results for Staged-
SAC as part of our on-going work, adapting the generic Delite op-
timizations to StagedSAC arrays. Going one step further, the Delite
framework supports interleaving execution on heterogeneous archi-
tectures. Previous experiments [22] show that the best execution
speed is obtained by interleaving execution on different types of
processors, either CPUs of GPUs, depending on the task.

The Qube [27] compiler targets the same multidimensional ar-
ray domain but aims at offering strong compile-time correctness
guarantees. Qube compiles a modified subset of the SAC language
and uses dependent types and SMT solvers to obtain complete ar-
ray shape information. This benefits both safety and optimization,
as many program manipulations require array size information at
compile time. StagedSAC takes a more flexible approach: we use
type inference and input specialization to obtain array sizes at com-
pile time. Our approach does not guarantee full array shape infor-
mation, but in practice it is enough to perform the optimizations,
all without employing heavy machinery such as SMT solvers or
completely redesigning the language and compiler, as in the case
of Qube.

The techniques used in developing StagedSAC are related to
work in partial evaluation [13] and binding time analysis [9]. The
Lightweight Modular Staging [21] framework encodes the dynamic
or static nature of DSL expressions into types, thus offsetting the
binding time analysis to Scala’s type system. The binding time
analysis is thus performed as a single-pass, which is not always
enough to detect all static expressions in the SAC language. Fur-
ther refinement is performed in the shape analysis algorithm we
developed. We improve on the SAC type system [24] and follow
the formalization in [10]. We deliver a more fine-grained algebra of
shapes, including partially known shapes, and introduce a different
solving technique similar to Hindley-Milner unification [11].

The Repa system developed in Haskell implements optimiza-
tions typical to compilers at library level. The Repa system is stand-
ing proof that many of the optimizations available in multidimen-
sional array languages can be implemented at library level. Repa
relies on the Haskell type system and on programmer annotations
to sidestep the lack of an entire program overview, while still being
able to perform primitive loop fusion, data layout optimization and
dead code elimination (by lazy evaluation). However, the staging
technique can provide an overview of the entire program, as shown
by the shape inference in StagedSAC, while at the same time re-
quiring comparable implementation effort. By comparison to SAC,
the array traversal operations in Repa are more coarse-grained thus
easier to fuse together. SAC and StagedSAC provide more fine-
grained array traversal with bounds and strides, at the expense of
more complex fusing algorithms and the necessity to perform shape
inference.

1.2 Code Availability

All the code for StagedSAC, the LMS framework and the Delite
frameworks is available online, under open source license. The
StagedSAC compiler [4] is built as one of the domain specific lan-
guages in the Delite repository [1], which itself relies on LMS [2]
to function.

1.3 Paper Organization

The rest of the paper is organized as follows: Sections 2 and 3
introduce the reader to multidimensional arrays and the opera-
tions provided by SAC. Section 4 reports our experience with the
Lightweight Modular Staging framework while developing Staged-
SAC. Section 5 presents the optimizations in StagedSAC. Section

6 presents the Delite framework, parallel code execution and plans
for future improvements. Section 7 presents the evaluation and Sec-
tion 8 concludes.

2. Multidimensional Array Data Structure
This section will present the multidimensional array data structure
and will discuss some of the challenges of adding it to a language.
First-class multidimensional arrays and powerful optimization al-
gorithms are essential for compiling high-level and performance-
oriented programs. In the rest of the paper we will use the fol-
lowing notation: arrays of dimension 1 are called vectors, arrays
of dimension 2 are called matrices and arrays with more than 3
dimensions are called higher-dimensional. Furthermore, we’ll as-
sume scalar values to be 0-dimensional arrays, we’ll use the term
array to denote a multidimensional array with any number of di-
mensions and we’ll use the terms number of axes, rank or dimen-
sionality to denote the number of dimensions.

Accessing elements in a multidimensional array is done using
integer index vectors of a length equal to the array rank. In the
particular case of one-dimensional arrays, accessing elements is
done using an integer vectors of 1 element. The common problem
with accessing an element in either a vector or in any array is
that the access must be made within the bounds of the allocated
memory. To ensure this, multidimensional arrays introduce the
shape vector containing the number of elements along each axis.
The shape vector will always have a number of elements equal to
the dimensionality of the array. In the case of an n-dimensional
array with the shape vector s = [s0 . . . sn], an index vector iv =
[iv0 . . . ivm] is valid if m = n and:

ivi < si ∀0 ≤ i ≤ n

Selecting an index vector in a multidimensional array can also
return an entire block. If the index vector contains less elements
than the shape, m < n, instead of pointing to a value, it will point
to an array of size t = [sm+1, sm+2, . . . sn]. Figure 1 shows an
array of shape s = [2, 3, 5]. Selecting the value at iv = [0, 1, 0]
will produce the first element in the second row, a010. Selecting the
block at iv = [1, 0] will produce a vector of shape s = [5] which
is highlighted in the figure.

Figure 1. A 3-dimensional array with shape s=[2, 3, 5]. The high-
lighted elements represent the selection resulting from iv=[1, 0]

As we have seen with element access, other array operations
pose their own restrictions. Static knowledge about rank and shape
enables the compiler to prevent obviously incorrect operations. De-
spite the strong guarantees, requiring complete static shape infor-
mation at compile time prevents code reuse and flexibility. The op-
posite approach is to specify the rank and shape at runtime. This
pushes array checks at runtime, just before accessing the memory.
This takes an important toll on performance. A better approach
is to use static shape information whenever possible, resorting to
the shape-independent runtime checks only when necessary. As we
will see later, many optimizations require static knowledge about

ranks or shapes, so the more static information is available to the
compiler, the faster code it can generate.

In SAC and StagedSAC the layout chosen for multidimensional
array data is a contiguous block of memory. This layout, coupled
with data parallel operations, enables loop optimizations and paral-
lel code generation. In the contiguous block layout, element access
translates to computing an offset in the data block and accessing
the element. Therefore the array shape is attached to the data and
used to compute the memory block offset. Multiple shapes (with
different dimensions) may fit in the same memory block, as long
as the product of the elements in the shape vector is equal to the
memory block’s size. (all of the shapes [3, 4], [2, 3, 2] and [12] will
be correct for a block of size 12)

3. Single Assignment C
This section presents the SAC language and compiler. It will only
provide a brief overview of the most important operations in SAC in
order to give enough background for the next sections. For a better
understanding, the reader should consult the SAC tutorial [25]
and the SAC journal paper [24] both of which present detailed
descriptions and analyzes.

3.1 SAC Operations

SAC is a functional restriction over the C language with first-class
support for arrays. Multidimensional arrays are immutable data
structures: once created their contents cannot be changed. Element
updates create references to new arrays with the modified content.
The same happens for shape changes, as the shape is intrinsically
attached to the array. Making arrays immutable adds the referential
transparency property but takes an important toll on memory and
program speed. Since performance is a critical issue, the SAC
compiler generates code that updates arrays in place whenever
possible, as long as this is in line with the original semantics of
the program.

SAC uniformly treats all objects as arrays, since it allows to
globally reason about shapes. A list is seen as a 1-dimensional array
while a single scalar value is seen as a 0-dimension array. These
conversions take place automatically depending on the context and
are done without any annotation by the user. Index vectors and
shapes are also seen as 1-dimensional arrays of integers.

Single Assignment C provides operations to manipulate an ar-
ray’s dimensionality and shape. These operations are:

• dim(array) ⇒ returns the dimension count of array
• shape(array) ⇒ returns the shape of array
• sel(iv, array) ⇒ returns an element, vector of block from
array using the vector indexing semantics explained in the
previous section, where iv is the index vector

• reshape(shp, array) ⇒ returns a new array with the contents
in array and the shape given by shp

• cat(d, a, b) ⇒ returns the concatenation of the two arrays
around axis d. The shapes of a and b must be equal except for
the d-th position

• other selection and update procedures such as genarray, modar-
ray, tile, shift, rotate, etc.

SAC also provides common mathematical and boolean opera-
tions on arrays of equal shapes. The equality c = a × b, where
a and b are multidimensional arrays refers to element-wise mul-
tiplication and placing the result in a new array c, as opposed to
arithmetic matrix multiplication. In order for these operations to be
successful, the shapes of a and b have to be equal. Other operations
reduce the result to a single element. For instance prod(array) re-
turns the product of elements in array while all(array) returns
true if all elements in array, which have to be booleans, are true.

In SAC, the semantics of equality is similar to let blocks in
lambda calculus. Since arrays are immutable, assigning a different
value to an existing array does carry the common semantics of first-
class constructs in imperative languages. Instead, each equality
creates a new let block where the name on the left hand side is
bound to a new array.

3.2 SAC With-Loops

For complex operations SAC relies on a more generic construct
called the with loop. With loops let the programmer express com-
plex access patterns in a concise and safe construct. With loops
are composed of two elements: The with loop iteration and the op-
eration. The iteration relies on 4 parameters: lower bound, upper
bound, step and width.

with([low {< | ≤}] iv [{< | ≤} upp] [step [width]])

The with iteration generates a set of index vectors that will be
fed to the operation part. The index vectors will be bounded by low
and upp, respecting the inequality. The step distance is used to
generate non-consecutive index vectors, while the width distance
allows adding strides to the stepping process. The mathematical
rules for the index vectors are (assuming strict inequalities):

lowi < ivi < uppi

(ivi − lowi) mod stepi < widthi

The with loop can omit any of the bounds, the step and/or the
width. The missing elements will be constructed from the parame-
ters passed to the operation part.

Each with loop has one of the three possible operations:
genarray, modarray and fold. The genarray operation cre-
ates a new array based on a given expression that depends on the
index vector. The modarray takes an array and changes its values
according to the with loop iteration part and a given expression that
again depends on the index vector. The fold operation is similar to
reduce operations on blocks of an array. The three operations can
be written as:

genarray (shape, iv ⇒ expr(iv))
modarray (array, iv ⇒ expr(iv))
fold (oper, neutral, iv ⇒ expr(iv))

By combining genarray with the iteration part, SAC creates a
new array of shape with all the elements at iv equal to expr(iv).
The rest of the elements not visited get a default value (0 for
numeric types). Modarray does the same as genarray except for
the starting point: instead of having the array initialized with default
elements, it is initialized with the values from the parameter array.
The returned array has the same shape the one given to modarray.
Finally, the fold operation takes blocks of the matrix and applies
oper between each other. If IV = {iv0, iv1, . . . ivn} is the set
of index vectors generated by the with loop, the result of the fold
operation is:

fold(oper = �, neutral, expr(iv)) ={
neutral if IV = φ
expr(iv0) � expr(iv1) � . . . expr(ivn) if IV �= φ

It is easy to show that most arithmetic and boolean operations
can be expressed in terms of with loops. For instance addition can
be expressed as a genarray with loop. The index vector sweeps
all positions of the array while the expression adds the elements
together:

arr1 + arr2 = with(iv) genarray(shape(a),
iv ⇒ sel(iv, arr1) + sel(iv, arr2))

3.3 SAC Optimizations

The SAC compiler generates code after applying successive opti-
mizations to the AST. There are three main types of optimizations:

generic optimizations such as constant folding and propagation,
high-level optimizations that merge with loops together and low
level optimizations for data locality and caching.

With loop specialization. If the with loop iteration index vec-
tors’ rank is known at compile time, the with loop is subject to spe-
cialization: the generic looping code for any-dimensional arrays is
transformed into a series of nested loops that precompute indices
in the array, transforming backtracking index vectors into a linear
succession.

With loop folding [23]. In order to speed up successive with
loops, the SAC compiler can eliminate intermediate arrays. If array
C is built in a with loop from array B and array B is built in another
with loop from array A, the temporary array B can be eliminated
and C can be built from A directly, by intersecting the with loop
iteration domains and applying composition to the functions in the
two original with loops. This saves memory and computation.

With loop fusion [15]. If two with loops have the same iterator
values, SAC combines the computation in a single iteration, com-
puting the new values for each array in the same loop. Combined
with specialization, this can significantly speed up computation.

With loop scalarization [14]. Nested with loops can be elimi-
nated by scalarization. This leads to the elimination of the memory
for the temporary inner loop along with the useless copying be-
tween the temporary array and the result array.

All of the above optimizations require different degrees of com-
pile time knowledge about the shapes involved. Since the language
uses shape-invariant operations, the shapes involved may or may
not be known at compile time. It is therefore crucial to infer as
much of the shapes as possible, whether that’s the exact vector, its
length, or parts of it. The more is known about an array the more
optimizations opportunities arise.

On the low level optimization front SAC offers cache aware
with loop generation. Since arrays are meant to be read and written
in a linear fashion (and even in a parallel) the operations must
access array elements in order. A common problem of with loop
folding is that it splits the array into multiple domains, each with
its own generation function. SAC is able to transform the with loop
domains, which do not access the elements in order, into a set
of linearly-accessing nested for loops. Again, this transformation
requires full shape knowledge at compile time.

4. StagedSAC Implementation
This section presents our experience with implementing the Staged-
SAC compiler. We first show the steps to create a staged compiler
from an embedded (library) DSL. Then we present the actual pro-
cess through which we converged to the first prototype of Staged-
SAC. Finally we visit the Lightweight Modular Staging framework
in more depth.

4.1 Embedded DSL to Staged Compiler in 5 Steps

The first phase in developing a staged compiler is building the em-
bedded DSL, as a library. The role of the first embedded DSL is
not to obtain performance but to decide on the syntax and oper-
ations. This is a critical step, as the DSL must be productive and
developer-friendly while at the same time conforming to the host
language syntax. In our case we built LibrarySAC, a prototype li-
brary that mimics the objects and the operations of SAC.

The next step in developing a staged compiler is transforming
the embedded DSL syntax to conform to the Lightweight Modu-
lar Staging (LMS) framework. The syntax transformation includes
simple, syntactic changes to the types in the DSL. As we will see
later, the framework makes a distinction between static expressions,
which are known at compile time and dynamic expressions, which
are given at runtime. The static expressions are automatically con-
verted to dynamic if necessary. The staging compiler works along

with the library DSL so an operation involving two static values
is executed by the library, while the same operation involving a
static and a dynamic value is lifted into an intermediary represen-
tation (IR) with the static value automatically converted to a dy-
namic one. Ultimately this creates an IR containing the operations
that will produce the program result.

The third step in developing a staged compiler is creating the
IR nodes for the operations in the embedded DSL and offering
semantic information to LMS. For example, StagedSAC contains
nodes for genarray loops. The semantic of a GenArray node is
the repetition of a block of instructions based on the index vector
iteration. This information is given to LMS in order to facilitate
scheduling: any node that does not transitively depend on the index
vector will be moved outside the loop. LMS can also track side
effects, so a Print node will never be moved outside a with loop,
as this would alter an observable effect.

The forth step in developing our staged compiler is generating
new code. The DSL program is now represented as an IR and can
be scheduled such that each node has all dependencies generated
before itself and the effect ordering is preserved. For each node
in the IR we generate code to perform the operation. In the first
version, we can call the library again. Thus a genarray operation
produced a GenArray node which is ultimately translated back to
a genarray operation. This is a very simple mirroring of the DSL
operations in the generated program. Still, we can already see the
benefits of LMS: code is moved outside loops, common subexpres-
sions and dead code is eliminated and constants are folded.

The fifth and final step is optimization. Since the IR of the
program is available it can be analyzed and manipulated to optimize
the program. Furthermore, the code generated does not need to call
the original library. If the operation can be performed faster, there’s
no reason to invoke the slow, generic library implementation.

The next two subsections will describe our experience during
step 1 for LibrarySAC and steps 2-4 for StagedSAC. The final step,
optimization, is presented in Section 5.

4.2 The LibrarySAC Embedded DSL

Developing LibrarySAC proved very useful in deciding the syntax
and how objects should be modelled. For the implementation we
were limited to the Scala programming language, as the LMS
framework is built on Scala. Fortunately, Scala is well suited for
embedding [12] and we were able to mimic the SAC syntax all
within Scala’s own syntax rules. Figures 2 and 3 show the similarity
between SAC and LibrarySAC code. Two SAC syntactic features
were lost in the process: axis control and array dimensionality
notation in type. Both of them can still be achieved using additional
code, so all the language functionality was kept in StagedSAC.

Implicit conversion functions are the key to the transparent
value-list-array equivalence. In the SAC specification both values
and lists are special kinds of arrays. Conversions between one and
the other are transparent to the programmer, as they are all hard-
coded into the SAC compiler. To simulate this functionality in Li-
brarySAC we used implicits, a Scala feature that allowed us to mark
the conversion functions as implicit and have the compiler automat-
ically invoke them whenever the expected types did not match. This
brought the LibrarySAC syntax very close to the original SAC.

As the Evaluation section shows, LibrarySAC is very slow com-
pared to compiled SAC programs and StagedSAC. The main rea-
son SAC was developed as a stand-alone language and compiler
instead of a library is performance. The SAC compiler will infer
shape information for the arrays and use it to optimize with loops,
as we have seen in Section 3.3. To compare, LibrarySAC executes
the most generic operations all the time, never reuses memory and
does not perform any with loop optimization. While we could dis-

int[*] gameOfLife(int[*] alive) {
dead =
with { (. < iv < .)

{ temp = computeIfDead(
sum(tile(value(dim(alive), 3),iv-1,alive)),
sel(iv, alive));

}: temp; }: genarray(shape(alive));

reborn =
with { (. < iv < .)

{ temp = computeIfReborn(
sum(tile(value(dim(alive), 3),iv-1,alive)),
sel(iv, alive));

}: temp; }: genarray(shape(alive));

result = alive - dead + reborn;
return(result);

}

Figure 2. The “game of life” simulation for any-dimensional ar-
rays in SAC

def gameOfLife(alive: MDArray[Int]) = {
val dead =
With (lowerStrict = true, upperStrict = true,

(iv => computeIfDead(
sum(tile(value(dim(alive),3),iv-1,alive)),
sel(iv, alive))

).GenArray(shape(alive));

val reborn =
With(lowerStrict = true, upperStrict = true,

(iv => computeIfReborn(
sum(tile(value(dim(alive),3),iv-1,alive)),
sel(iv, alive))

).GenArray(shape(alive));

val result = alive - dead + reborn;
result;

}

Figure 3. The “game of life” simulation for any-dimensional ar-
rays in LibrarySAC

def gameOfLife(alive: Rep[MDArray[Int]]) = {
< same code >

}

Figure 4. The “game of life” simulation for any-dimensional ar-
rays in StagedSAC

patch optimized versions of the operations in LibrarySAC, it still
wouldn’t be enough to compete against compiled SAC programs.

4.3 The StagedSAC Compiler

From a user point of view, LibrarySAC and StagedSAC are almost
identical. Figures 3 and 4 introduce Game Of Life, one of the
example programs we used for benchmarking our prototypes. The
difference between staged variables and constants is coded only in
the type: the Rep[.] type signals a dynamic, “delayed” expression
instead of a static, compile-time value. Using Scala’s type inference
feature, the Rep[.] type is propagated all the way to the return
type, so instead of returning MDArray[Int], like LibrarySAC,
StagedSAC returns an IR of type Rep[MDArray[Int]].

From a DSL author perspective, the LibrarySAC and Staged-
SAC are very different. While for each operation LibrarySAC re-
turns a value, StagedSAC creates nodes that represent the opera-
tions and returns the intermediary representation (IR). The IR is
somewhat similar to lazy evaluation, as calls return trees of de-

layed operations rather than results. The difference is that once a
value becomes a Rep[.] in the first execution, it can never return
to its former non-wrapped type, as its computation is now delayed
to the next execution. There is no force command to bring lazy IR
nodes back to values. All operations that take at least one wrapped
type always return wrapped types. StagedSAC also handles other
aspects that are invisible for the DSL programmer: analysis, opti-
mization, scheduling and code generation.

The analysis and optimization phases obtain more information
on the program and optimize the IR. In the prototype StagedSAC
compiler, the analysis phase consists of the array shape inference
while the optimization phase specializes with loops for the index
vectors’ rank, if it was inferred. The DSL author can provide a set
of rewriting rules for each language operation, so the compiler can
optimize the IR. Since the StagedSAC prototype was developed,
several more optimization phases were added, as we will see in
Section 5.

The effort for the DSL author is limited: compared to a normal
compiler, StagedSAC does not include a frontend at all. The opera-
tions are declared like a library and parsing, semantic analysis and
typing are all done by the host language.

Running a StagedSAC program will output optimized code,
which, when compiled and executed, computes the result. We call
the first phase, while the program is being optimized, staging time
and the second run, when the optimized code outputs the result,
the runtime. We can now give the meaning of wrapped types:
Rep[T] means a value of type T that will be computed at runtime
instead of staging time. Values can still be computed at staging
time, as constant folding: any operation involving non-wrapped
values will be computed at staging time and its value will not
be wrapped. As soon as it interacts with a wrapped value, it also
becomes wrapped, meaning its current value will become available
at runtime. The Lightweight Modular Staging framework can also
lift control structures such as if conditionals and for loops, if the
predicates or ranges involved are wrapped expressions.

4.4 Lightweight Modular Staging

When developing a DSL one may start from scratch by providing
a full language compiler or may embed the DSL in a general lan-
guage, as a library. The main advantage of building a full compiler
is the freedom to choose any language syntax and the ability to op-
timize the generated code. The price to pay is writing a complete
implementation of the compiler, from the parser to the code gen-
erator. On the contrary, when embedding a DSL the only required
effort is to implement the library, but a full program representation
is no longer available, so it’s significantly more difficult to optimize
code.

The Lightweight Modular Staging technique is a middle ground
approach, taking the advantages of both compilers and embedding
for DSLs. Lightweight staging is based on embedding the DSL
while at the same time offering a compiler-like view of the code.
Instead of providing concrete library implementations of the DSL
primitives, the LMS embedding provides only declarations. From
the declarations, the framework builds an IR, that can be further
used to optimize the operations and generate the code.

LMS scheduling performs generic compiler optimizations with
very little effort from the programmer. Once the DSL operation
nodes specify their semantics, the LMS framework automatically
performs common optimizations such as code motion (moving
code outside loops, inside if branches), common subexpression
elimination and dead code elimination. These very generic opti-
mizations are enabled by the internal representation of the DSL
nodes, as a sea of nodes linked by dependencies. The dependen-
cies can track both data dependencies and effects. Along with con-

Sym(1) wi th V1=[10 10] and S1=[2]
 KnownAtCompileTime(Vector(2): 10 10)

Sym(3) with V3=[U205 U204 U203 . . . U108 U107 U106] and S3=[10 10]
 Reshape(Sym(1), Sym(2))

Sym(2) with ?!?
 KnownAtRuntime(input)

Figure 5. The IR for reshape([10, 10], input)

trol flow information given by each node, the framework can com-
pletely change the order of operations to make execution faster.

The LMS framework can lift entire programs, including con-
trol flow operations. Using a modified version of the Scala com-
piler, dubbed scala-virtualized [3], LMS can lift control flow op-
erations such as if clauses and for loops involving wrapped values.
A very useful implication is that control flow decisions involving
non-wrapped expressions are taken at staging time, while any con-
trol flow depending on wrapped values is lifted. In fact, the LMS
framework provides nodes, semantics, optimizations and code gen-
eration for many common language constructs, such as if clauses,
loops, variables, side-effecting operations, etc. They are provided
as predefined building blocks that can be imported into the DSL,
enabling quick development. So a DSL author only needs to model
the domain specific bits of the language and import the common
building blocks at no cost.

The LMS framework can flatten higher-order constructs. A
function passed as a value can be considered a higher-order con-
struct. While Scala allows this and DSL programs certainly make
use of it, LMS can force flattening of functions: for example, ex-
pecting types Rep[A => B] and Rep[A] => Rep[B] is signifi-
cantly different: In the first example, passing a function will just
get it wrapped, but the second signature will force the passed func-
tion to be inlined at the location. StagedSAC uses this because SAC
with loops only take expressions, not higher-order functions.

5. StagedSAC Optimizations
This section will present the optimizations added by StagedSAC.
StagedSAC features optimizations at several levels:

• High-level optimizations: Array Shape Inference, With Loop
Specialization, Input Specialization and Generic Optimizations
provided by the LMS framework

• Low-level optimizations: JVM-Friendly Code Generation and
Loop Tiling

5.1 Array Shape Inference

Many optimization transformations rely on shape information. As
we have seen before, all with loop optimizations require shape
information. Since the language constructs are shape-independent,
the IR needs to go through a shape inference stage that determines
as much information about the shape as possible.

Shape inference requires storing both the shape and the value
for each IR node. In SAC shapes are 1-dimensional integer arrays.
Operations like reshape and sel use 1-dimensional integer arrays
as the shape of their result. In order to infer shapes on such nodes
we need to also reason about the values of integer arrays. Inferring
the shape of reshape([10, 10], i) as shown in Figure 5, we
need to store both the shape and value of the [10, 10] array, as its
value becomes the shape of the reshape node. If we did not reason
about values, we could only infer that the reshape node has rank
two but not its exact shape. While this is a very simple example
that could as well be treated as a special case, in the general shape
inference algorithm there are many situations that require reasoning
about values.

Each IR node introduces constraints on the variables, which
are later solved to produce the final shapes. The shape and value
inference algorithm is done in three steps:

• Gathering the constraints on each node, where each constraint
is an equation between variables

• Solving the constraints into variable substitutions
• Applying the substitutions to the shape variable of each node to

produce the final shape

Constraints are gathered from each of the IR nodes. We can fol-
low the constraint gathering on the example of reshape([10,10],
input). The IR is shown in Figure 5. The constraints gathered for
the [10, 10] node contain its shape and value, V 1 = [10, 10]
and S1 = [2], both of which are known at compile time. There
are no constraints generated for input as nothing is known
about it. Finally, the constraints for reshape are: S3 = V 1 and∏

i S3(i) =
∏

i S2(i). The role of the second constraint is to
ensure that the transformation corresponds to the same memory
block size, as we have seen in Section 2. For all nodes we intro-
duce a generic constraint V x = unknownV alues(Sx). Its role
is to fill the value variable with unknown position variables iff the
shape is known. It might seem useless, but there is a strong reason
to use the unknown position variables in values: after the substi-
tutions such variables retain implicit relations between values. In
some cases, by solving unknown values independently the entire
shape or value can be discovered. This notion of partially known
shapes is our contribution. In the case of SAC, shape information
is more coarse-grained (e.g. entire shape available, rank (length of
the shape) available and shape unknown).

The constraints are solved to substitutions during the unification
algorithm. Following our previous example the substitutions gen-
erated will be: S3 ⇒ [10, 10] and V 3 ⇒ [U205 . . . U106]. Ap-
plying the substitutions to the variables yields the exact shapes in
Figure 5. Even though this example showcases only shape equality,
product equality and unknown values constraints, the full inference
algorithm contains 15 types of constraints, such as prefix less than
and suffix equals used in sel nodes, length equality, concatenation
and others. A constraint may or may not be solvable at a given time.
For example the unknown values is not solvable if the exact shape
is not known. Once a constraint becomes solvable, it returns a sub-
stitution that is applied to all other constraints. This brings more
information in existing constraints thus enabling them to be solved.
The final list of substitutions is then applied to the shape variable
of each node to produce the final solved shape.

The unification algorithm is sound but not complete. As we have
seen above, not all constraints are solvable immediately. This leads
to situations where none or very little information is known about
the shapes. Fortunately, the shape inference algorithm is always
sound. Any solution that satisfies:

• the shape and value equalities (including the unknown position
variable equalities)

• the constraints which the unification was not able to solve

is a correct typing solution in the context of the program. Despite
this, the algorithm is not complete, since not all sets of constraints
are solvable all the way to concrete shapes.

We keep specific nodes in the IR to infer more information. The
generated IR contains high-level operations whereas the final IR
for code generation contains only low level operations. The reason
is that high-level operations offer stronger constraints on data com-
pared to their low-level equivalents. The low level translation of a
+ b only mandates shape length equality and less or equal shapes
between a and b, while the high level operation a + b mandates
stronger and more useful shape equality. After the shape inference

Figure 6. Top-down shape propagation vs Shape inference. The
small “RC” nodes are runtime checks to verify shape compatibility.

algorithm is run, the high-level operations are transformed into low
level with loops that can be specialized and folded.

Eliminating redundant checks while generating code. Each IR
node generates two sets of constraints: the prerequirements that are
necessary for the operation to be successful and the postrequire-
ments that describe the result, once the node has been executed. We
separate these two sets of constraints. While generating code, the
prerequirements that are not always satisfied are transformed into
runtime checks that safeguard the correct operation of the program.
Since the postrequirements will always be satisfied by the DSL se-
mantics, there is no need to transform them into runtime checks.
The same goes for satisfied prerequirements, which are satisfied by
virtue of the postrequirement constraints.

The shape inference system in StagedSAC can fill in gaps in
the SAC shape system. SAC propagates the shape information top-
down, from the input nodes to the output. SAC’s main strength is
the function specialization based on input shapes, which could be
seen as shape inference with all functions inlined. Using function
specialization SAC is able to infer shapes most of the time if the
input is given at compile time. However, if the array is read from
file along with its rank and shape, SAC will not be able to infer
anything about it. On the contrary StagedSAC is likely to infer
at least the dimension, if not the complete shape, by propagating
shape information upwards, as can be seen in Figure 6.

Based on inferred shapes, StagedSAC can generate early tests
that triage invalid input. By propagating shape information up-
stream, StagedSAC constrains the inputs earlier in the execution
and moves runtime shape checks outside loops. While runtime
checks have a small impact on performance by themselves, they
can have a visible impact when iterated in with loops. Figure 6
shows the difference between shape propagation and full inference
in terms of runtime checks. In SAC programs, the runtime checks
take place late in the execution, but in StagedSAC programs they
“bubble up” to the top nodes, making the execution fail faster in
case of invalid input.

5.1.1 With Loop Specialization

With Loop Specialization is one of the two with loop optimization
currently implemented in StagedSAC. While further optimizations
will be implemented with the Delite framework, the current opti-
mization provides significant speedups for big arrays. It works by
transforming the generic loop code into a set of nested for loops.
This provides a faster execution compared to the backtrack-like
code in the case of generic with loops that support any rank. The
evaluation section will present the exact numbers to show how with
loop specialization speeds up execution.

5.1.2 Input Specialization

The program code is generated and compiled at staging time. In
order to gain more information about shapes, the StagedSAC com-

 0 ns

 5 ns

10 ns

15 ns

 0 500 1000 1500 2000

Matrix Size

 0 ns
100 ns
200 ns
300 ns
400 ns
500 ns

 0 500 1000 1500 2000

E
le

m
en

t T
im

e
(n

s/
m

at
rix

 e
le

m
en

t)

Figure 7. SAC - Total matrix transposition time divided by the
total number of elements.
Top: Specialization for 1000× 1000 - 1100× 1100, none outside.
Bottom: Specialization for 2 dimensions, showing cache thrashing
starting at 500× 500 matrices.

piler can read program input files ahead of time and extract shape
information. While shape information can provide at least rank in-
formation in most common cases, for very generic code it may be
unable to infer anything. Therefore we can use just in time input
specialization to augment shape inference and provide the com-
piler with the necessary information to optimize the code. If the
running time of an algorithm is significant compared to the com-
pile time, just in time input specialization can provide an important
speedup. The idea of input specialization is also featured in SAC,
but requires a manual annotation in the source code, which is more
cumbersome for the developers. The impact of specializing a ma-
trix transposition function in SAC can be seen on the top graph in
Figure 7.

Input Specialization only extracts shape information from input
files. While reading the program input files, StagedSAC could
in theory extract the entire program input. The reason we limit
input specialization to shapes is that StagedSAC is meant to be an
optimizing compiler with partial evaluation and not an interpreter.
If all inputs were read at compile time, StagedSAC’s optimizations
could theoretically interpret the entire program down to a single
value. We want to avoid this, as interpreting the entire program
using the slow library code is clearly the worst solution in terms of
total execution time.

5.2 Generic Optimizations

After giving LMS the specific semantics of operations, such as
nested repetitions in the case of with loops, it can automatically
perform generic compiler optimizations:

• common subexpression elimination, constant folding, dead-
code elimination

• code motion, loop invariant code hoisting (coarse grained, can
change the order of loops)

• task parallelism (using the Delite framework, data parallelism
is ongoing work)

5.3 JVM-Friendly Code Generation

StagedSAC is embedded in the Scala programming language and
generates Scala code, which is in turn compiled to JVM bytecode.
While programming in Scala is simple and concise, generating
efficient code proved to be more challenging. We will highlight two
difficulties we faced in the code generation part.

JVM arrays are the key to obtaining good speed. Java natively
supports base types such as integers, booleans, single and double
precision floating point and characters. Arrays containing these
base elements are translated to packed arrays in the bytecode,

case class BinaryOp[A:Manifest:Arith](
inA:Exp[MDArray[A]], inB:Exp[MDArray[A]], op:(A,A)=>A)

extends DeliteOpForEach[A,MDArray[A],A,MDArray[A]] {

def alloc = new Array[A](prod(shape(inA)))
val iter = SpecialOps.internalIterate(shape(inA))
def func = iv => alloc(flatten(iv, shape(inA))) =

op(inA(iv), inB(iv))
}

Figure 8. Using DeliteOps for data-parallel execution semantics

exactly like in C. But Java also allows creating arrays of any class
in the language. Instead of storing the actual object, it creates
an arrays of pointers to objects allocated on the heap, adding a
level of indirection and affecting memory locality. When targeting
the JVM platform, performance-conscious code generators should
always use arrays of natively-supported elements. Scala has the
same limitation, but provides a more uniform representation on the
language-side. This makes it trickier to reason about the memory
layout, as arrays of integers may actually be represented using
pointers if the array is generic.

Object creation destroys locality and adds one more level of in-
direction. Scala provides support for tuples, so carrying the multi-
dimensional array as a tuple of shape and values would seem like a
natural decision. While at first this might seem like a good decision,
in fact it’s not. Creating tuples and throwing them away produces
redundant calls that can be avoided by creating separate variables
for the shape and values. Ranks need not be stored in the structure,
as they can be quickly obtained from the length of the shape ar-
ray. The LMS and Delite code generation is structured as a layered
set of code generators, each of which outputs code for a limited
set of nodes. This lead to a representation incompatibility between
the StagedSAC code generator and LMS built-in generators for if
statements, variables and loops. While the StagedSAC code gen-
erator expects multidimensional arrays to be unpacked, the LMS
generators expect them to be wrapped in tuples. We were able to
overcome this problem in the implementation by wrapping arrays
in tuples only when they are used outside the StagedSAC code gen-
erator.

5.4 Loop Tiling

StagedSAC limits the negative effect of irregular, cache-unfriendly
access patterns by providing loop tiling. With loops provide data
parallel, cache friendly looping in the arrays they create. But the
expression passed to the with loop can access data in a cache-
unfriendly way, such as in the example of matrix transposition
or matrix multiplication. This can severely impact performance.
StagedSAC splits the with loop into blocks and iterates over the
blocks instead of linearly accessing the data structure. This limits
the impact of cache-unfriendly access but incurs a significant over-
head for very small arrays. We plan to detect irregular access pat-
terns in the future, so we only add loop tiling where if it is strictly
necessary. The effects of exceeding the cache memory for SAC can
be seen in the bottom graph in Figure 7.

6. StagedSAC Parallel Execution using the Delite
Framework

Delite [6, 22] is both a compiler framework and runtime for embed-
ded, parallel DSLs. The Delite compiler framework extends LMS
to provide parallel abstractions to DSL authors. These abstractions
are Delite ops, and represent common parallel execution patterns
such as Map, Reduce, ZipWith, ForkJoin, etc. Figure 8 shows how
a simple StagedSAC operation is represented as a Delite op.

By using Delite ops, DSLs also inherit a set of parallel opti-
mizations that Delite provides on top of the generic optimizations
provided by LMS. The most important of these is fusing; all Delite
ops are represented internally as loop-based operations of a fixed
size, and multiple loops are fused into a single loop when possible
(i.e. when there are no unsatisfiable dependencies across the loops).
Fusion helps eliminate unnecessary allocations for temporary ar-
rays, which is crucial to obtaining high performance in a language
with immutable semantics such as SAC. Furthermore, Delite han-
dles code generation for all Delite ops, and translates Delite ops to
efficient parallel implementations for both CMPs and GPUs. This
translation is possible because the semantics of Delite ops repre-
sent well known execution patterns; the optimized implementation
of these patterns for each device is handled once and for all by the
Delite framework and runtime, and all Delite DSLs can leverage
them.

Every op in a Delite DSL is emitted as a kernel for multiple
platforms. Not all operations can be generated for every platform
(e.g. operations with dynamic memory allocation are usually not
well suited for GPUs), but the code generation is successful if
the op can be generated for at least one platform. Any operation
in the application that is not a Delite op is implicitly wrapped
as a DeliteOpSingleTask, or a sequential operation that will be
generated as a Scala kernel. Besides the kernels for each platform,
Delite also generates an execution graph that captures data and
control dependencies between kernels. The execution graph and
generated kernels form the inputs to the Delite runtime.

The Delite runtime maps the execution graph and kernels to
parallel, heterogeneous hardware. Based on the resources avail-
able (e.g. number of processor cores and GPUs), Delite determines
which device to run an op on and when to schedule it. Delite
transparently handles difficult issues such as communication (even
across address spaces, e.g. to a GPU) and synchronization across
ops. These are tasks that any embedded DSL or stand alone DSL
would traditionally have to implement individually to achieve par-
allel performance, despite their commonality across DSLs.

StagedSAC’s operations naturally mapped to the existing set of
Delite ops (although required extending Delite to support strided
access patterns). Any embedded DSL that is targeted at Delite
that can match their domain operations to existing Delite ops can
easily take advantage of heterogeneous parallelism, as we have
shown. The situation is more complicated, though not hopeless, if
a new kind of parallel pattern is needed. Delite is designed to be
extensible, but adding new Delite ops still requires knowledge of
how Delite works. In the future, we plan to make this process even
more modular. Furthermore, we believe that the set of Delite ops
correspond to a ”parallel instruction set”, and that as more Delite
ops are added to cover a broader set of DSLs, the coverage of this
instruction set will continue to increase while the corresponding
incremental cost of building a new DSL on top of Delite will
decrease.

7. Evaluation
As stated in the contributions, the evaluation contains three parts:

• the evaluation of the time required to develop StagedSAC
• the development of SAC in terms of performance and compar-

isons to SAC
• the preliminary results on generating parallel code using the

Delite framework

7.1 Development Time

The StagedSAC was developed by the first author, without previous
knowledge of Scala, LMS and Delite. It was developed during two
semester projects. We can split StagedSAC’s evolution into three
phases:

• From scratch to the LibrarySAC implementation, which took
approximately 2 months, including learning Scala and SAC

• From LibrarySAC to the first StagedSAC prototype, which took
approximately 2 months, including learning how to use the first
versions of the LMS framework

• From the first StagedSAC prototype to the current StagedSAC
compiler, which took approximately 3 months, including learn-
ing Delite

The same three phases are benchmarked in the performance
evaluation. Each stage of the evolution reduced the running time
for the benchmarks by an order of magnitude.

7.2 Testing Setup

For testing we used a Core 2 Duo machine running at 2GHz. The
processor had 32K data + 32K instructions level 1 cache and 2048K
level 2 cache. The RAM memory limit was set at 2GB. For all
the tests the input was loaded into memory before the algorithm
execution and stored back into memory, therefore the hard-drive
was not involved in the benchmark.

StagedSAC generates Java bytecode, therefore special bench-
marking had to be done to ensure stable results. The Java Virtual
Machine performs Just-In-Time compilation of the bytecode and
optimizes the code on the fly. For the benchmarks we ran the code
several times in the same Java Virtual Machine in order for the code
to be fully compiled and optimized. Indeed, the first 2 or 3 runs of
the same algorithm provided very long running times. We also no-
ticed that after 5 runs, the time stabilized and we could measure an
almost-constant value. Another problem we faced was garbage col-
lection: since the memory management is done automatically when
running out of heap space, we wanted to avoid this affecting the re-
sults. Therefore between any two runs we ran the garbage collector.

7.3 Benchmarks

The evaluation was performed on two different algorithms: The
game of Life simulation and the PDE1 benchmark. We will present
the two benchmarks in detail and present the results.

The “game of life” benchmark is a simulation of cells dying
and being born, with discrete generations. The benchmark has
been implemented in both SAC (Figure 2), LibrarySAC (Figure 3)
and StagedSAC (Figure 4). We ran 1000 iterations of a 10 × 10
simulation board and measured execution time.

The PDE1 benchmark represents a three dimensional approxi-
mation of Poisson equations. It was presented in the SAC journal
paper [24]. We use this benchmark since it was also used in HPF
and the SAC paper. From all implementations of the PDE1 bench-
mark we picked the lowest running times, since a real world pro-
grammer would use the fastest implementation available. We tested
PDE1 on 64× 64× 64 arrays.

Benchmark PDE1-64 Game of Life-10
1 iteration 1000 iterations

LibrarySAC 3123ms 417357ms
StagedSAC - Prototype 1932ms 2672ms

StagedSAC - Current version 379ms 323ms
SAC Compiler 22ms 99ms

The evolution from LibrarySAC to the StagedSAC prototype
roughly corresponds to the set of high-level optimizations. These
include the generic optimizations provided by the LMS framework,
the simple with loop specialization using the shape inference algo-
rithm we presented. These provided an initial speedup that showed
with the little effort of embedding the compiler it was possible to
obtain a significant speedup.

StagedSAC’s evolution form prototype to the current version
roughly corresponds to the set of low-level optimizations. They
impact the code generation and are intended to be aware of the

 0

 10

 20

 30

 40

 50

 60

 0 2000 4000 6000 8000 10000 12000

T
ot

al
 T

ra
ns

po
si

tio
n

T
im

e
(s

)

Matrix Size

Generic Shapes (*)
Input Specialization, no Loop Tiling

Input Specialization, Loop Tiling

Figure 9. Automatic input specialization using JIT-compilation in
StagedSAC, running matrix transpose

platform they are running on. The only new high-level optimization
is input specialization, which was meant to complement shape
inference for the cases where the code was very generic.

The effect of the loop tiling can be seen in Figure 9. If the
index vector’s rank is known at compile time, the with loop can
be specialized. The total time to transpose a square matrix n×n is
shown as a function of the matrix size n. The 3 lines, in the order
highest (longest time) to lowest, represent:

• StagedSAC matrix transposition without shape knowledge, us-
ing the most generic algorithm

• StagedSAC matrix transposition, with input specialization
without loop tiling

• StagedSAC matrix transposition, with input specialization and
loop tiling

While it is clear that StagedSAC is not as fast as the SAC com-
piler, each new optimization brings performance improvements at
a fraction of the cost of implementing it in SAC.

7.4 Parallel Execution

For now, we have a very coarse-grained parallel model and the
overhead is comparable to the gains for most of the programs. How-
ever, if the program executes parallel operations of almost-equal
size, a speedup can be observed (in the Game Of Life benchmark).
For 2 cores we obtained a speedup of 1.65×. We expect to obtain
almost linear speedups when using data parallel DeliteOps and loop
fusion and folding.

Benchmark PDE1-64 Game of Life-300
10 iterations 10 iterations

StagedSAC - 1CPU 3918ms 3841ms
StagedSAC - 2CPU 3906ms 2326ms

8. Conclusions
We presented our experiences with StagedSAC, a DSL developed
to mimic the functionality of the multidimensional array language
SAC. We showed how Lightweight Modular Staging significantly
reduced the effort necessary to develop the StagedSAC compiler.
We showed it is possible to augment the LMS-based compiler with
complex analysis phases such as shape inference and optimized
code generation.

References
[1] The Delite framework repository. URL https://github.com/

stanford-ppl/Delite.

[2] The Lightweight Modular Staging framework repos-
itory. URL https://github.com/TiarkRompf/
virtualization-lms-core.

[3] The Scala-virtualized fork of the Scala compiler. URL https:
//github.com/TiarkRompf/scala-virtualized.

[4] StagedSAC repository, built as a DSL insde Delite. URL https:
//github.com/stanford-ppl/Delite/tree/mdarrays.

[5] T. Brandes and F. Zimmermann. ADAPTOR - A transformation tool
for HPF programs. Birkhuser Basel, 1994. ISBN 3764350903.

[6] K. Brown, A. K. Sujeeth, H. Lee, T. Rompf, H. Chafi, M. Odersky, and
K. Olukotun. A heterogeneous parallel framework for domain-specific
languages. PACT, 2011.

[7] H. Chafi, Z. DeVito, A. Moors, T. Rompf, A. K. Sujeeth, P. Han-
rahan, M. Odersky, and K. Olukotun. Language virtualization for
heterogeneous parallel computing. OOPSLA, 2010.

[8] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an object-oriented
approach to non-uniform cluster computing. OOPSLA, 2005.

[9] C. Consel and O. Danvy. Tutorial notes on partial evaluation. In
Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL, 1993.

[10] C. Consel and S. C. Khoo. Parameterized partial evaluation. ACM
Trans. Program. Lang. Syst., 15:463–493, July 1993.

[11] L. Damas and R. Milner. Principal type-schemes for functional
programs. In Proceedings of the 9th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL, 1982.

[12] G. Dubochet. Embedded Domain-Specific Languages using Libraries
and Dynamic Metaprogramming. PhD thesis, EPFL, 2011.

[13] Y. Futamura. Partial evaluation of computation processan approach to
a compiler-compiler. Higher-Order and Symbolic Computation, 12:
381–391, 1999.

[14] C. Grelck, S.-B. Scholz, and K. Trojahner. With-Loop Scalarization
Merging Nested Array Operations. IFL. 2005.

[15] C. Grelck, K. HinckfuB, and S.-B. Scholz. With-Loop Fusion for
Data Locality and Parallelism. IFL. 2006.

[16] K. E. Iverson. A Programming Language. AIEE-IRE ’62 (Spring),
pages 345–351, New York, NY, USA, 1962. ACM.

[17] C. B. Jay. The FISh language definition. Technical report, 1998.

[18] S. Kuthe. A Hybrid Shared Memory Exection Model for SAC.
Diploma thesis, Institute for Software Technology and Programming
Languages, University of Lubeck, 2005.

[19] J. McGraw, S. Skedzielewski, S. Allan, D. Grit, R. Oldehoeft,
J. Glauert, I. Dobes, and P. Hohensee. SISAL: Streams and iteration
in a single assignment language: Reference manual. Technical Report
LLL/M-146, Lawrence Livermore National Laboratory, 1983.

[20] M. Odersky, L. Spoon, and B. Venners. Programming in Scala: A
Comprehensive Step-by-Step Guide, 2nd Edition. Artima Inc, 2011.
ISBN 0981531644.

[21] T. Rompf and M. Odersky. Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled DSLs. GPCE ’10.

[22] T. Rompf, A. K. Sujeeth, H. Lee, K. J. Brown, H. Chafi, M. Odersky,
and K. Olukotun. Building-Blocks for Performance Oriented DSLs.
PACT, 2011.

[23] S.-B. Scholz. With-loop-folding in Sac-condensing consecutive array
operations. IFL. 1998.

[24] S.-B. Scholz. Single Assignment C: efficient support for high-level
array operations in a functional setting. J. Funct. Program., 13:
1005–1059, November 2003.

[25] S.-B. Scholz, S. Herhut, F. Penczek, and C. Grelck. SAC 1.0 Tu-
torial, 2010. URL http://www.sac-home.org/publications/
tutorial.pdf.

[26] A. K. Sujeeth, H. Lee, K. J. Brown, T. Rompf, H. Chafi, M. Wu, A. R.
Atreya, M. Odersky, and K. Olukotun. OptiML: An Implicitly Parallel
Domain-Specific Language for Machine Learning. In ICML’11, 2011.

[27] K. Trojahner and C. Grelck. Dependently Typed Array Programs
Don’t Go Wrong. Journal of Logic and Algebraic Programming
78(7), 2009.

