Separated matchings on colored convex sets *

Viola Mészaros

Bolyai Institute, University of Szeged,
Aradi vértanik tere 1, 6720 Szeged, Hungary;
viola@math.u-szeged.hu

Abstract

FErdos posed the following problem. Consider an equicolored point
set of 2n points, n points red and n points blue, in the plane in convex
position. We estimate the minimal number of points on the longest
noncrossing path such that edges join points of different color and are
straight line segments. The upper bound 4n + O(y/n) is proved [7],
[5] and is conjectured to be tight. The best known lower bound is
n+Q(y/n) 5.

A separated matching is a matchings where no two edges cross
geometrically and all edges can be crossed by a line. Here we give
a class of configurations that allows at most %n + O(y/n) points in
the maximum separated matching. This underlines the importance of
the separated matching conjecture [7], [5]. We also present a type of
coloring such that the optimal coloring allows at most %n + O(y/n)
points in maximum separated matching. On the other hand, if the
discrepancy (that is, the maximum difference in cardinality of color
classes in any interval of consecutive points) is two or three, we show
that the number of vertices in the maximum separated matching is at
least %n.

1 Introduction

Erdés posed the following problem. There are 2n points in the plane in
convex position. Without loss of generality we may assume that the points
are on a circle C'. An equicoloring of the points is a coloring where half of
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the points is colored red and the other half blue. An edge is a straight line
segment between two points of different color. An alternating path is a path
on which any two consecutive points have different colors. Note, if edges
connect points of different color, any path will be alternating.

Erdos asked to determine or estimate the number of points on the longest
noncrossing, alternating path for an arbitrary equicolored 2n-element convex
point set.

He and also others conjectured [7] that the next configuration was asymp-
totically extremal. Let us assume n is divisible by four. Divide the circle
into four intervals that consist of § red, 7 blue, 5 red and %" blue points,
respectively. It is a short case analysis to check that in this construction the
length of the longest noncrossing, alternating path is 37" + 2.

On the other hand, the longest noncrossing, alternating path contains at
least n points. To see this, take a halving line [. At least half of the red
points are on one side of [ on C' and consequently at least half of the blue
points are on the other side of [ on C'. We match the red points on one side
to the blue point on the other side in a noncrossing way. This matching can
be extended to a path which gives the lower bound n.

Jan Kyncl, Janos Pach and Géza Téth disproved Erdds’ conjecture with
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a single construction in 2008 [7] and showed the n + Q ( 1 ) lower and

the %n + O(y/n) upper bound. At about the same time Abellanas et al. had
a very similar construction for the same upper bound [2]. Tt is conjectured
that this upper bound is asymptotically tight.

Hajnal and Mészéros improved the lower bound to n+ €Q(y/n) and gave a
class of configurations for the n + O(y/n) upper bound [5]. This result also
underlines the importance of the separated matching conjecture [7] which is
formulated as follows. Let 2k denote the number of alternations between
the two colors in a 2n-element point set on C. Then for any fixed k& and
large n, any configuration admits a separated matching that contains at
least 32:;271 + o(n) points. (We describe separated matchings in the next
section.)

In this paper we exhibit a new class of configurations that shows the
%n + O(y/n) upper bound for the number of points in the largest separated
matching. This class of configurations significantly differs from all known
previous constructions. We also present a type of coloring such that among
these colorings in the optimal one the maximum separated matching contains
at most 3n + O(y/n) points.

On the other hand, if we restrict the discrepancy (that is, the maximum
difference in cardinality of color classes in any interval of C'), we get an
interesting result. For discrepancies two and three we prove the lower bound




%n. So far no one was concerned with discrepancy since low discrepancy
means many alternations among the two colors, and that alone guarantees
a long noncrossing, alternating path. However, when we consider separated

matchings, this is not the case.

2 Notations

First we introduce some basic definitions that will be necessary to describe the
constructions and will be used in the proofs. Let our 2n-element equicolored
convex point set be denoted by P. An arc is an interval of points on C'N P.
The size of an arc is the number of its elements. In an arc the points are
ordered, we always read the order in clockwise direction. A run is a maximal
set of consecutive points on C of the same color. The length of the run is the
number of its elements.

A matching is a set of pairwise disjoint edges. Note, that the notion of
matching is meant in geometrical sense, that is, no two edges cross in it. The
size of a matching is defined as the total number of points participating in
it, which is twice the number of edges. A separated matching is a matching
where all edges can be crossed by a line.

This crossing yields a natural ordering of the edges of the matching.
Separated matchings are closely related to noncrossing, alternating paths.
Observe, that for every separated matching S on a convex point set, there is
a noncrossing, alternating path R such that the vertex set of R coincides with
the vertex set of S and all edges of S are contained in R . We construct R in
the following way. The edges of S will follow each other on R in their natural
ordering. Hence, every other edge of R will belong to S. The remaining edges
of R will connect differently colored endpoints of consecutive edges of S. As
a consequence of the properties of the separated matching we can always
draw a noncrossing, alternating path R in this way. We remark that R is
not unique. For every S exist exactly two such paths depending on it which
color will be chosen to be the color of the starting point of R.

The previous configurations contained long runs colored red or blue and at
most two arcs consisting of alternating short runs of the two colors. Our class
contains arbitrary many arcs of alternating short runs. The idea originates
from the Kyncl-Pach-Téth construction. We cut that construction into two
pieces. We repeat the two pieces in arbitrary order an equal number of times
along the circle.

We introduce some special arcs called blocks. They will be the building
elements of our constructions. The first two types of blocks will be of the
same size but they will contain a different number of points of the two color



Figure 1: Two types of arcs

classes. However, altogether the number of red and blue points will be equal
on a union of two blocks of different types. In the first two types of blocks
the common size of blocks will be 3s. The bluish block will consist of a red
run of length s and a blue run of length 2s. We denote the bluish block by
(s,2s) block. The reddish block will consist of a red run of length s followed
by a mized arc M. The mixed arc M consists of 2s points alternating in
color, see Figure [Il Hence the reddish block will contain 2s red and s blue
points. We denote the reddish block by (s, s(1,1)) block.

If needed we introduce notations R and B for red runs of size s, and for
blue runs of size 2s, respectively. We call R, B and M subblocks as they are
the main building elements of blocks.

An (as, bs) block consists of a red run of as points and a blue run of bs
points. An s(b,a) block consists of a red run of length b followed by a blue
run of length a and this a 4+ b colored points are repeated s many times.
Consequently, an s(b, a) block consists of s consecutive arcs of size a + b of
the same coloring pattern. We call the unit of this pattern of a + b points a
period. Specifically, an s(2, 1) block consists of the triple of two red and one
blue point repeated s many times. The period is two red points followed by
a blue point.

We say that the discrepancy is d if on any interval on the circle C' the
difference between the cardinality of color classes is at most d. We will
investigate the case of low discrepancy.

We say that an arc A faces arcs Ay, As,..., A, if all vertices of A that
participate in the separated matching S have their pair in S on one of the
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arcs Ay, Ay,..., A,.

3 Constructions and Theorems

We will describe two main constructions and then we give another one by
generalizing one of them.

The first construction is C}(s,t): Take ¢ consecutive (s,2s) blocks on C
followed by ¢ many s(2,1) blocks. Each block has size 3s. Of course the last
t many blocks can be considered as one st(2,1) block.

The second construction is C;*(a,b, s,t): In Ci(s,t) instead of (s,2s)
blocks we take (as,bs) blocks and instead of the s triples we take s(b,a)
blocks. Note that C,7(1,2,s,t) = Cy(s,t). Each block has size (a + b)s.

The third construction is a class of coloring Cy(s,t): Take ¢ many (s, 2s)
blocks and ¢ many (s, s(1,1)) blocks in arbitrary order along C. In other
words, the same number of bluish and reddish blocks are placed along the
circle in an arbitrary order.

Theorem 1. In Ci(s,t) the size of every separated matching is at most
sn+O(s+1).

The upper bound is optimal if we disregard the remainder term. To see it,
let us construct the following separated matching. If we match the the blue
points of the first ¢ blocks (the bluish ones) with the red points of the last ¢
many blocks (s many reddish triples), then we obtain a separated matching

of size %n.

Theorem 2. In C,"(a,b,s,t) the ratio of the size of the largest separated
matching to the total number of points is

9 mi
i min{a, b}’ max{a, b} N O(S + t).
a+b a+b n

It follows that the order of magnitude of the size of the largest separated
matching is at least sn. Equality occurs when max{a,b} = 2min{a,b}. So
C,(s,t) is optimal among C1%(a, b, s, ).

Theorem 3. Let Cy be any coloring from Ca(s,t). Then the size of every
separated matching in Cy is at most 3n + O(s + t).

Theorem 4. Let C; be that coloring from Cy(1000,t) where the reddish and
bluish blocks alternate. Then size of the largest separated matching in Cs is
at least 1.34n.



Note that we refer to the O(s+t) as remainder term. Since s -t = O(n),
we can choose s and ¢ so that s,t = O(y/n) and the order of magnitude of
O(s + t) becomes negligible. This is how the reader should think about the
first three theorems.

The fourth theorem is an exception, there we choose a setting where s is a
large constant and t is €-n. So O(s+t) is very small but not negligible. The
reason for choosing such a setting is that in C5 the discrepancy of the coloring
is constant (2000). At the same time the size of the optimal matching is very
close to the conjectured value. In the fifth section we finish the paper with
a few claims on coloring with low discrepancy.

4 Proofs

Take any separated matching S in a coloring of C' from one of our theorems.
Let the line [ be the axe, that is, a line that crosses all members of S. We
think of [ as a horizontal line deviding C' into an upper and lower part. We
can assume that the upper and lower part of C' consist of whole blocks by
disregarding at most O(s) edges of S.

We can order the edges of the matching according to their intersection
with [. We can make a partition of S so that in each class of the partition
the matching goes between two subblocks. The previous partition determines
O(t) pairs of arcs facing each other on C. Furthermore, if an arc A determined
by the partition belongs to a mixed subblock, then we achieve that A contains
complete periods. This can be done by removing at most O(¢) many edges.

Let Sy be the remainder of S. We call it the normalized matching. To
prove the upper bounds of our theorems without loss of generality we may
assume that we work with an arbitrary normalized matching.

Proof of Theorem [I: We will show that the ratio of points in Sy to
all 2n points on C' is at most % Thanks to the simple structure of C; we
partition the elements of the normalized matching Sy into three classes. The
first class contains edges with both endpoints in (s,2s) blocks. Edges with
one endpoint in an (s,2s) block and the other endpoint in an s(2,1) block
belong to the second class. The remaining edges with both endpoints in
s(2,1) blocks we put in the third class. Note, some classes may be empty
here. We can assume that borderlines between classes preserve complete
blocks.

In the first and in the third class at most % of the vertices are in Sy
because in both types of blocks % of the points is of one color and % is of the
other color.

In the second class assume there are L many (s, 2s) blocks facing a mixed



coloring with period (2,1). Let = denote the ratio of matched points in the
red subblocks to the total number of points in the red subblocks. Let y
be the same considering the blue subblocks. Hence, z - (L - s) points are
matched out of the L - s red points and y - (L - 2s) points are matched out
of the L - 2s blue points. The pairs of the x - (L - s) red points in Sy are
blue points in the (2, 1)-periodic part. Hence, these pairs are contained in at
least = - (L - s) many periods. Similarly, the pairs of y - (L - 2s) blue points
come from y - (L-2s)/2 many periods (each period contains 2 red points). To
prove the upper bound we can assume that the whole point set is the L(s, 2s)
blocks facing z - (L - s) + vy - (L - 2s)/2 many periods. Hence, its size equals
3Ls+3xLs+3yLs. The number of matched points is 2[z- (L-s)+y-(L-2s)].
Their ratio is

2zLs 4+ 4yLs 2 o+ <2 r+2y 2
3Ls+3xLs+3yLs 3 l+xz+y 3 x+2y 3
This completes the proof of Theorem [II O

Proof of Theorem [2: Estimating the upper bound is the same as above
with a small technical difficulty. We analogously partion .Sj into three classes.
We can bound the ratio of the number of matched points to the total number
of points in each of the classes. In the case of edges from the first and third
class the upper bound is

2min{a, b}
a+b

In the case of edges from the second class the ratio is bounded above by

2 ax + by
a+b l1+ax+y

flz,y) =

It is not hard to see that f(z,y) is a quasiconvex function over the [0, 1] x [0, 1]
domain, that is, its sublevel sets

So = {(,9) € [0,1] x [0,1] : f(z,y) < a}

are convex for all a. So its maximum is attained in one of the vertices of its
square domain:

f(x,y)smax{f<0,o>,f<o,1),f<1,o>,f<1,1)}:max{o b _a 2}:

"a+ba+b3
B max{a, b} 2
_max{ a+b ’3}'



The overall ratio can be bounded by

. {Qmin{a, b} max{a, b} g} . {Qmin{a, b} max{a, b}}.

a+b ' a+b 3 a+b 7 a+bd

The final equality is straightforward to check.

Finally, we claim that the upper bound is optimal. To see that we con-
struct two matchings. We can assume that a < b. In the first matching the
blue points from ¢(as, bs) will be matched with the red points from ts(b, a).
There will be bs points matched in each block. The corresponding ratio is
a;frb. In the second matching the same types of blocks will be faced to each
other. We pair up the half of the (as, bs) blocks with the other half of (as, bs)
blocks. The matching will go between the pairs of blocks. The red subblock
in a block will be matched to the blue subblock in its pair, and vice versa.
Thus, in each block we can match 2as points. We can do the same inside the
s(b,a) blocks considering the periods in the same way as subblocks above.
The corresponding ratio is az—fb

This completes the proof of Theorem [2 O

Proof of Theorem [3: Take a maximal normalized separated matching
So on Cy (an arbitray member of Cy(s,t)). We will show that the size of S
is at most %n.

In each block the ratio between the color classes is 2 : 1. Hence, in each
block we may call points of the major and the minor color class major and
manor points, respectively. The number of minor points on Cj is %" Our
proof will be an assignment: to each edge of Sy we injectively assign a minor
point. When we assign the point p to edge e, we say mark p for e.

If one endpoint of an edge e is minor point and the other endpoint is
major point, then mark the minor point for e. If both endpoints of e are
minor points, then mark the blue endpoint for e. Note, in this case the
blue endpoint is in a mixed M subblock. Non-marked minor points give the
set of free vertices. Observe, the set of free vertices is changing during the
procedure of marking new points.

If both endpoints of e are major points, we distinguish two cases. If the
major red point is in a mixed subblock, then we mark for e the free blue
point that is in the same period with the red endpoint of e. Otherwise, we
call e a bad edge. Note, in this case one endpoint of e is in a blue B subblock
and the other endpoint of e is in a red R subblock which is in an (s, s(1,1))
block. Bad edges are grouped according to blue subblocks. We can assume
that B is on the upper side of [. Take a blue subblock B and consider the
bad edges incident to it. Let R be the red subblock pair of B, that is, R and

B form a block together. We distinguish different cases.
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Figure 2: Case 2

Case 1: Subblock R contains only free vertices. Let k denote the number
of bad edges incident to B. If the red endpoints of the k bad edges are in
the same red subblock, then k£ < s and we can mark different elements of R
for each of the bad edges.

If the red endpoints come from different subblocks (of reddish blocks),
then consider the mixed subblock M in the block of the rightmost bad edge’s
lower endpoint. Let j be the number of vertices matched in M. Consequently,
we have s — j free vertices in M and s free vertices in R, altogether 2s — j
free vertices. As k+ j < 2s, we get k < 2s — j as desired. Hence, we can
mark a different free vertex for each bad edge in B.

Case 2: There is a non-free vertex in R. Let this non-free vertex be
incident to edge e. Let B’ be the blue subblock of the low endpoint of e and
R’ the red subblock pair of B’, see Figure 2l Let k, M and j be defined as
previously. Let m be the number of vertices matched in R’. Therefore, the
number of free vertices is s — 7 on M and s —m on R’ which gives 2s—j —m
free vertices altogether.

If m > 0 or no vertex in M is matched to a vertex in R, then j+k+m < 2s,
it follows that & < 2s — 7 — m as desired. Hence, we can mark a different
free vertex for each bad edge incident to B.

If m = 0 and there is a vertex in M matched to a vertex in R, then k£ < s.
In this case mark different vertices of R’ for each bad edge incident to B.

For each blue subblock B we marked free vertices in the subblock pair of
B or in a subblock which was facing B (that is, these points were in R, or in
M in case M was facing B, or in R’ which necessarily faced B). Therefore,
for each blue subblock the set of the possible free vertices was well defined
and disjoint of the set of free vertices for any other blue subblock.



This completes the proof of Theorem [3l O

Proof of Theorem [4: This is a special case of Theorem 3l The constants

in front of s and ¢ are small as a consequence of the number of disregarded

edges in the normalization procedure. The claim of the theorem is immediate.

O

Although our goal is to investigate seperated matchings, we mention that

one can fix a and b in C} (a,b, s,t) in such a way that the run parameter of

the coloring is o(n) and at the same time the remainder term is o(n), too. So

we also gain new constructions for colored point set with short alternating
paths.

5 Low discrepancy

When the discrepancy d is rather small we found the following lower bounds
for the separated matching. For d = 1 the coloring is alternating, hence all
2n points participate in the maximum separated matching.

The case of discrepancy at most 2 is little bit more technical.

Theorem 5. For any coloring with dicrepancy d = 2 there is a separated
matching of size at least %".

Proof. We describe a new way of visualizing of the colored point set: we
introduce for each red point a unit up line segment and for each blue point
we introduce a unit down line segment. This corresponds to the drawing
scheme in [5]. (When the discrepancy is 1, then these up and down segments
alternate.)

Actually, we will not choose a good axe. We can be given any axe that
halves the number of runs and we will construct the separated matching of
the desired size.

Since d = 2, there will be two types of runs: runs of length 1 and runs of
length 2. Consequently, there will be at most two up and at most two down
segments in each run, see Figure Bl Let us take a drawing for any case of
d = 2 and halve the number of runs by taking an axe t. Then we pair up all
the runs. The run r will have pair run 7’ if » and r’ are on different sides of
t but for the same distance to t regarding the number of runs. We make the
separated matching S so that each run will face only its pair in S. All runs
of length 1 will be fully covered in S. Consider the runs of length 2. If a run
r of length 2 faces a run r’ of length 1, then % of the vertices of r and r’ will
be in S. Otherwise, the run r is also fully covered in S. Therefore, exists a
separated matching of size at least 4?".

O
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Figure 3: Discrepancy 2: at most % of all the points can be lost.

For d = 3 we have the same result.

Theorem 6. For any coloring with d = 3 there is a separated matching of
size at least 4?".

The proof of this theorem is similar to the previous proof. Unfortunately,
we need a more sophisticated pairing for runs. The detailed case analysis is
sketched in the Appendix.

6 Open problems

It is not clear what role convexity plays in the problem. There are several
lines of research on point sets other than the convex ones. Various open
problems remain in the area.

Problem 1. Determine or estimate the number of vertices on the longest
noncrossing, alternating path among n red and n blue points in general posi-
tion.

Abellanas at al.  [I] proved that if the points are in general position
and the color classes are separated by a line, then there is a noncrossing,
alternating Hamiltonian path on the point set. If we do not assume that the
color classes are separated by a line, the previous statement does not hold
for n > 8. Even if the point set is in convex position, that is, its elements
form a convex 2n-gon.

By the existence of halving lines the result of Abellanas at al. gives
the lower bound n for the number of vertices on the longest noncrossing,
alternating path in a point set in general position.
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Based on the following result convexity might be an extremal case regard-
ing the length of the longest noncrossing, altenating path. Pavel Valtr posed
the following problem in 2007. Istead of convex position let the points be on
a double-chain. A convexr or a concave chain is a finite set of points in the
plane lying on the graph of a strictly convex or a strictly concave function,
respectively. A double-chain consists of a convex chain and a concave chain
such that any line determined by any of the chains does not intersect the
other chain.

Cibulka, Kyncl, Mészaros, Stolat, Valtr [4] proved if both chains contain
at least one fifth of all the points, then there exists a Hamiltonian, non-
crossing, alternating path. On the other hand, they showed that the above
property does not hold for double-chains in which one of the chains contains
at most & 1/29 of all the points.

Instead of the double-chain we may consider the 2n points to be on two
convex chains.

Problem 2. How long is the longest noncrossing, alternating path among n
red and n blue points on two convex chains?
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Figure 4: The arc of three red points on the left faces the three arcs on the
right, respectively. The number at a vertex on the right side shows the ratio
of matched points in case the corresponding point is an endpoint of its run.

i

Figure 5: The right arc faces the left arc.

[

7 Appendix: coloring with discrepancy at most
three

We do not give the full case analysis. We only give the pictures of the
cases: the left and right hand side of the picture correspond to intervals of
the colored point set that will be faced to each other. We always face one
specific side to the other side where we mark the ratio of points that can
be matched on the considered intervals, see Figure M, Figure B and further
pictures below. Some of the endpoints can vary on the sides and in that case
we put the corresponding ratios to the alternate endpoints. On Figure 4 we
merge more cases. There the left side contains a sigle interval while the right
side contains three intervals. We face the left side to the intervals on the
right, respectively.

Note that the number of points on the two intervals that face each other
in the case analysis is at most 14.

The case analysis:
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