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A partition-free approach to transient and steady-state charge currents

Horia D. Cornean1, Céline Gianesello 2, Valentin Zagrebnov 3

Abstract

We construct a non-equilibrium steady state and calculate the corresponding current for a

mesoscopic Fermi system in the partition-free setting. To this end we study a small sample

coupled to a finite number of semi-infinite leads. Initially, the whole system of quasi-free

fermions is in a grand canonical equilibrium state. At t = 0 we turn on a potential bias on the

leads and let the system evolve. We study how the charge current behaves in time and how

it stabilizes itself around a steady state value, which is given by a Landauer-type formula.

1 Introduction

At the present time one can essentially distinguish two different ways of constructing non equilib-
rium steady states (NESS) for composed systems.

The first method consists of preparing a partitioned initial state for the total system containing
several sub-systems, each of which being in a different state of thermal equilibrium, and then put
them into contact with each other at t = 0, and let the coupled total system evolve in time until
it reaches a steady state. In the mathematical physics community this method goes back to D.
Ruelle [30], [31]. It was seriously promoted during the recent years through numerous papers, see
e.g. [29, 1, 16, 31, 28, 5] and references therein. One can allow the carriers to interact in the
sample [15], and the theory still works. Note that even if one chooses to turn on the coupling
between the reservoirs in a time dependent way (for example adiabatically), the results remain the
same [13].

The second method deals with those situations in which the initial state is an equilibrium state
for the already coupled (i.e. partition-free) total system. The partition-free approach goes back
at least to M.Cini [9]. This means that the initial state is not ”partitioned” into a direct sum of
equilibrium sub-states associated to e.g. different leads. The system is taken out of equilibrium
by switching on an electrical bias between subsystems (leads) like for example turning on a d.c.
battery, which in a certain way can be seen as changing the electro-chemical potentials of the
leads coupled via a small sample. In contrast to the first method, there are almost no rigorous
mathematical results on the second method beyond the linear response theory, or at least we are
not aware of the existence of such results.

Although these two methods seem very similar, especially if one suddenly switches on the
parameter bias in the partition-free system at t = 0, their implementations are different. One of
the aims of this paper is to illustrate this observation.

The main result of the present paper is that now we are able to construct a NESS and to study
charge currents in the partition-free setting and for the full response. Let us describe in words
what we do.

For simplicity, in this paper we only consider two semi-infinite leads which are both coupled
with the same small sample when t < 0. The full system is in a Gibbs equilibrium state at a
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given temperature and chemical potential. At t = 0 we turn on a time-dependent potential bias
V (t) between the leads, modeling a transient regime of a d.c. battery. At time t1 > 0 the bias is
stabilized and remains constant in time afterwards. The statistical density matrix ρ(t) is found
as the solution of a quantum Liouville equation, with an initial condition given by our global
Gibbs state at t = 0. The time-dependent charge current from one lead to the other is defined
as the mean value of a current operator in the state ρ(t), see (2.8)-(2.12) for details. A priori the
current depends on time, on the way we switch on the bias, and the point where we make the
measurement.

In Theorem 2.4 we show the existence and compute the ergodic limit of this charge current.
The limit depends neither on the way we switch on the bias, nor on the point where we measure
the current. We also obtain an explicit Landauer-type formula for this limiting charge current
value, involving the transmission coefficients between the leads.

Establishing Landauer-Büttiker type formulas (see e.g. [6, 7, 2, 3]) starting from first principles
but in the partition free setting was the original motivation of a number of remarkable physical
papers, see for example [14], [22], [4] and references therein. Probably the state of the art of
this subject seen from a physical perspective is to be found in two papers by Stefanucci and
collaborators [33, 34] in which the partition free approach is combined with the Green-Keldysh
theory and a number of very current interesting formulas are proposed.

A first mathematically sound derivation of the Landauer-Büttiker formula in the partition free
approach under the linear response approximation was obtained in [11] and further investigated in
[12]. In [10] we significantly improved the method of proof of [11], which also allowed us to extend
the results to the continuous case. Another challenging open problem is to extend the formalism
in order to accommodate more efficient numerical current computations in transient regimes (see
[24, 25, 26, 27] and references therein), and locally interacting fermions.

The structure of the rest of the paper is the following:

• In Section 2 we introduce the model and define the transient charge current in (2.12). The
main result is formulated in Theorem 2.4.

• Section 3 starts with a list of well-known facts about the spectral and scattering theory of
mesoscopic systems coupled to semi-infinite leads. The second part of the section is dedicated
to the proof of our main theorem. At the end we give a list of open problems.

2 Set up and main results

We work with a discrete model in a one-particle Hilbert spaceH. Following the physical convention
we define the scalar product to be linear with respect to the second variable.

Our carriers are quasi-free fermions (electrons). A small sample S is modeled by Γ ⊂ Z2, chosen
to be a finite subset of Z2. We couple S to two ”one-dimensional” semi-infinite discrete leads
α = 1, 2. The sites of a lead (building its standard basis) are indexed by the set Nα := {0, 1, 2, ...}.
Thus, |jα〉 denotes the basis element at the site with the number j of the lead α, see Fig.1. The
total one-particle Hilbert space is a direct sum of the space modeling the sample Γ ⊂ Z2, and two
spaces corresponding to the leads {Nα}α=1,2 :

H := l2(Γ)⊕ l2(N1)⊕ l2(N2) . (2.1)

We denote by {|m,n〉}(m,n)∈Z2 and by {|jα〉}jα∈Nα
the corresponding orthonormal bases of the

spaces l2(Z2) and l2(Nα), where α = 1, 2.
Now we describe our one-particle Hamiltonian. For the sample S we may choose any self-

adjoint bounded operator HS. For example, we can choose HS to be the restriction to l2(Γ), of
a lattice Harper-type operator with Dirichlet boundary conditions on Γ, but the concrete model
for HS does not play any role in the proof of our results. Notice that Γ is chosen to be finite, but
can be arbitrarily large.

2



Figure 1: A sample Γ connected to two semi-infinite leads N1 and N2. Here |jα〉 denotes a basis
element at the site with the number j of the lead α

On each lead α = 1, 2 we define the identical one-dimensional discrete Laplacians acting on
the functions from l2(Nα) with Dirichlet boundary conditions on Nα:

(HL
αΨ)(n) := tL {Ψ(n+ 1) + Ψ(n− 1)} , n ≥ 1; (HL

αΨ)(0) := tLΨ(1),

HL :=

2∑

α=1

HL
α , (2.2)

where tL > 0 is a hopping constant. In the following, we denote the Hamiltonian corresponding
to these three disconnected subsystems by:

H0 := HL +HS.

The coupling between the sample and leads is described by the tunneling Hamiltonian (see Fig.1):

HT := τ

2∑

α=1

{|0α〉〈S
α|+ |Sα〉〈0α|} =: HLS +HSL. (2.3)

Here τ > 0 is the hopping parameter between leads and the sample. The interaction (2.3) simulates
a quantum point constriction, or a tunneling barrier. Here |0α〉 is the first site on the lead α, and
|Sα〉 is the corresponding contact site |mα, nα〉 on the sample coupled to the lead α.

Then the total one-particle Hamiltonian takes the form:

H := HS +
2∑

α=1

HL
α +HT = HS +HL +HLS +HSL=: H0 +HT . (2.4)
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Remark 2.1. As we mentioned before, our results can be extended through verbatim to more
general choices of Hamiltonians HL and HT . The key properties that we need are: the absolutely
continuous spectrum in the leads, and a finite rank operator coupling between a finite sample and
the leads.

2.1 The state and charge current

At t < 0 the total coupled system (2.4) is at equilibrium for a given temperature 1/β ≥ 0 and a
chemical potential µ. Since we work with non-interacting fermions, the corresponding one-particle
Fermi-Dirac equilibrium density matrix is the operator

f(H) =
1

eβ(H−µ) + 1
, µ ∈ R , (2.5)

defined on the Hilbert space (2.1).
At the moment t = 0 we turn on a bias on lead number one in the following way. We fix t1 > 0

and choose a real and continuous function φ which has the property that φ(t) = 0 if t < 0 and
φ(t) = 1 if t > t1. Let v > 0. Denote by P1 : H 7→ l2(N1) the projection on the lead number one.
Then define the time dependent potential bias as:

V1(t) := vφ(t)P1 . (2.6)

Denote by U(t) the unitary evolution associated toH+V1(t) through the time dependent Schrödinger
equation:

i∂tU(t) = (H + V1(t))U(t), U(0) = I . (2.7)

The density matrix at time t > 0 is a solution of the Liouville equation and be expressed by:

ρ(t) := U(t)f(H)U(t)∗ . (2.8)

Denote by P
(n)
2 : H 7→ l2({n, n+1, . . .}), the projection on the second lead from which we exclude

the first n sites. If n = 0, then it is just the projection P2 on the lead 2. We define the current
operator modeling the measurement of the charge flow at site n by:

jn := i[H + V1(t), P
(n)
2 ] = i[H,P

(n)
2 ] , j0 = i[HT , P2] . (2.9)

Remark 2.2. Clearly, the current operator has finite rank, thus it is trace class. This is one
important feature which is only true in the discrete setting. It significantly simplifies the technical
estimates compared to the continuous case.

Remark 2.3. To obtain (2.9) we used some evident support properties of the projections P
(n)
2 ,

which imply:

[P1, P
(n)
2 ] = 0, P

(n)
2 P

(n+1)
2 = P

(n+1)
2 , [HS , P

(n)
2 ] = 0, ∀n ≥ 0, (2.10)

and also:

[HL, P2] = 0 , [HL, P
(n)
2 ] 6= 0, [HT , P

(n)
2 ] = 0 ∀n ≥ 1. (2.11)

These properties make the commutators in (2.9) nontrivial, and are important for the study of
the current propagation (see the proof of the point (ii) of our main theorem).

The charge current flowing through the second lead at time t > 0 and measured at site n is
the expectation of the operator jn from (2.9) in the quasi-free state defined by the time dependent
one-particle density matrix ρ(t):

I(t, n) := Tr{ρ(t)jn}. (2.12)
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2.2 The main theorem

Now we are ready to formulate our main results, collected in one theorem.

Theorem 2.4. (i) The following ergodic limit exists and is independent of n, t1 and φ:

I∞ := lim
T→∞

1

T

∫ T

0

I(t, n)dt. (2.13)

(ii) Fix t ≥ 0. Then the current vanishes if we measure it infinitely far inside the lead 2:

lim
n→∞

I(t, n) = 0. (2.14)

(iii) Assume that the operator H + vP1 has only finitely many eigenvalues. If we measure the
current very far inside the second lead (but not infinitely far), the transient/oscillatory effects will
be weaker and weaker and the current defined in (2.12) will slightly fluctuate around the value
(2.13). More precisely:

lim
n→∞

lim sup
t→∞

|I(t, n)− I∞| = 0. (2.15)

(iv) Denote by T
(v)
12 (λ) the transmittance coefficient between the two leads at bias v for the spectral

parameter λ (see (3.19) for a rigorous definition). Then we establish the following Landauer-type
formula:

I∞ = 2π

∫

[−2tL+v,2tL+v]∩[−2tL,2tL]

{f(λ)− f(λ− v)} T
(v)
12 (λ)dλ . (2.16)

Remark 2.5. From (ii) one concludes that if we fix the time of measurement t and push the
measuring point n to infinity, the current tends to zero. Although this does not imply that the
propagation speed of the current is finite, a property which we cannot expect to hold true because
of the non-relativistic dynamics on the leads. On the other hand, in (iii) we prove that if the
current measuring device is placed further and further away from the sample, after waiting a
very long time the current becomes non-zero and has weaker and weaker fluctuations around its
steady-state mean value. In other words, the limits t → ∞ and n → ∞ do not commute.

Conjecture 2.6. As a complement to Remark 2.5, we conjecture that the group-velocity of the
spatial correlations in our model is finite, i.e. if A is any observable supported in a neighborhood
of the sample, then there exist some positive constants C, M and ν such that the Lieb-Robinson
type bound [23]:

‖[A,U(t)∗P
(n)
2 U(t)]‖ ≤ Ce−M(n−νt) (2.17)

holds true for every t > 0 and n ≥ 0. The exponential bound sounds as a strong one, i.e. one can
not exclude a priori a power-like decay.

Remark 2.7. Our proofs are exclusively based on one-body scattering methods. We do not use
the many-body language, which is unavoidable only if the carriers interact.

Remark 2.8. By the same reasons, one can completely characterize the many-body states ω(·)
on the Fermi algebra CAR(H), (algebra of the Canonical Anticommutation Relations) by a one-
particle density-matrix operator ρ defined on H. If at t = 0 the state ω(·) is the grand-canonical
equilibrium state on CAR(H) of a non-interacting Fermi system (2.4) (equilibrium quasi-free
state), then the density-matrix operator is equal to ρ(t = 0) = f(H) (2.5). The evolution (2.7)
preserves this property, i.e. it transforms this state into a non-equilibrium quasi-free state (2.8).

3 Proof of the main theorem

We start this section with a list of well known facts about the spectral and scattering theory of
mesoscopic, systems coupled to semi-infinite leads. This will help us to fix notation and streamline
the proof of the theorem.
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3.1 Some spectral and scattering background

First we recall some elements of the stationary scattering problem associated with the pair of
Hamiltonians (H + vP1, H0 + vP1), where H := H0 +HT . In this case the free system consists of
the leads with a bias v localized on the first lead together with the decoupled inner sample, and it
is described by the Hamiltonian H0 + vP1. The perturbed system also contains the coupling HT .

The operatorH0 = HL+HS has as a subspace of absolute continuityHac(H0) =
⊕2

α=1 l
2(Nα).

Since the operatorH−H0 is of finite rank, the trace class scattering theory implies that the Møller
wave operators

Ω
(v)
± = s-lim

t→∓∞
eit(H+vP1)e−it(H0+vP1)Eac(H0 + vP1) , (3.1)

exist and are complete, see e.g. [32], [36]. Here Eac(H0+vP1) = Eac(H0) denotes the projection
on the absolutely continuous subspace Hac(H0 + vP1) ⊂ H, or Hac(H0) ⊂ H of the corresponding
operators. The location and nature of the spectrum of operators like H was extensively studied in
[11]; one can prove under generic conditions that there are only finitely many eigenvalues, while
the singular continuous spectrum is always absent.

It is known that the set of (normalized) generalized eigenfunctions of HL on the semi-infinite
leads α = 1, 2 have the form:

Ψα(λ) =
∑

m≥0

Ψ(λ;m)|mα〉, Ψ(λ;m) =
sin(k(m+ 1))√

πtL sin(k)
. (3.2)

Here the spectral parameter λ = λk(:= 2tL cos(k)) for k ∈ (−π, π). The generalized Fourier
transformation associated to these eigenvectors is defined by

F :

2⊕

α=1

l2(Nα) →

2⊕

α=1

L2([−2tL, 2tL]), (3.3)

[F (Φ)]α(λ) = 〈Ψα(λ),Φα〉l2(Nα) =
∑

m≥0

Ψ(λ;m)Φα(m). (3.4)

Its adjoint is given by

F ∗ :

2⊕

α=1

L2([−2tL, 2tL]) →

2⊕

α=1

l2(Nα), (3.5)

[F ∗(Ξ)]α(m) =

∫ 2tL

−2tL

Ξα(λ)Ψ(λ;m)dλ. (3.6)

We see that F is a unitary operator, and that FHLF ∗ is just the multiplication by λI on the space
which is a direct integral

∫ ⊕

[−2tL,2tL]
C2dλ ∼=

⊕2
α=1 L

2([−2tL, 2tL]), i.e.

FHLF ∗ ∼=

∫ ⊕

[−2tL,2tL]

λI dλ. (3.7)

If the bias is present on the first lead, the situation is changed. Since Hac(H0) = Hac(HL), the
generalized eigenfunctions of H0 + vP1 are chosen to be

Ψ
(v)
1 (λ;m) := Ψ(λ− v;m), λ ∈ [−2tL + v, 2tL + v], m ≥ 0, (3.8)

Ψ
(v)
2 (λ;m) := Ψ(λ;m), λ ∈ [−2tL, 2tL], m ≥ 0. (3.9)

The corresponding generalized Fourier transformations are:

Fv :
2⊕

α=1

l2(Nα) → L2([−2tL + v, 2tL + v])⊕ L2([−2tL, 2tL]) (3.10)

[Fv(Φ)]1(λ) =
∑

m≥0

Ψ(λ− v;m)Φ1(m), [Fv(Φ)]2(λ) =
∑

m≥0

Ψ(λ;m)Φ2(m) . (3.11)
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Therefore, we can construct generalized eigenfunctions of H + vP1, as solutions of the Lippmann-
Schwinger equation:

Φ(v)
α (λ; ·) = Ψ(v)

α (λ; ·) − (H0 + vP1 − λ− i0+)
−1HTΦ(v)

α (λ; ·) . (3.12)

These generalized eigenfunctions have the following very useful intertwining properties between
the subspaces of absolute continuity of the operatorsH0+vP1 and H+vP1, which can be formally
written as:

Φ(v)
α (λ; ·) = Ω

(v)
+ Ψ(v)

α (λ; ·) , (3.13)

Ψ(v)
α (λ; ·) = {Ω

(v)
+ }∗Φ(v)

α (λ; ·) . (3.14)

The scattering operator S(v) : Hac(H0 + vP1) 7→ Hac(H0 + vP1) is a unitary map acting

on Hac(H0 + vP1) = Hac(H0) =
⊕2

α=1 l
2(Nα), and it is given by S(v) = {Ω

(v)
− }∗Ω

(v)
+ . Then the

corresponding transition T -operator is defined by 2πiT (v) := I−S(v). In the spectral representation
of HL + vP1 in the space

∫ ⊕

[−2tL,2tL] C
2dλ, the T -operator is a λ-dependent 2 × 2 matrix with

elements denoted by t
(v)
αβ (λ). Using (3.6) one gets the representation:

∑

β=1,2

t
(v)
αβ (λ)Ξβ(λ) =

1

2πi
[F (I− S(v))F ∗Ξ]α(λ) . (3.15)

Then with the help of the generalized eigenfunctions we can express the T -matrix elements as:

t
(v)
αβ (λ) := 〈Ψ(v)

α (λ; ·), HTΦ
(v)
β (λ; ·)〉. (3.16)

Since S is unitary, one gets the relation i(T − T ∗) = 2πT ∗T = 2πTT ∗ (Optical Theorem), which
implies:

Im{t
(v)
22 (λ)} = π

(
|t
(v)
22 (λ)|

2 + |t
(v)
12 (λ)|

2
)
, (3.17)

|t
(v)
21 (λ)|

2 = |t
(v)
12 (λ)|

2. (3.18)

The transmittance T
(v)
αβ (λ) between the leads α and β for a given energy λ is defined by:

T
(v)
αβ (λ) := |t

(v)
αβ (λ)|

2 . (3.19)

Note that by definitions (3.8), (3.9) and (3.16) the transmittance T
(v)
12 (λ) = 0 if λ 6∈ [−2tL +

v, 2tL + v] ∩ [−2tL, 2tL].

3.2 Proof of (i)

By (2.6) and (2.7) the evolution operator U(t) obeys for t > t1 the equation:

U(t) = e−i(t−t1)(H+vP1)U(t1) . (3.20)

Then by H = Hpp(H+vP1)⊕Hac(H+vP1) and by (2.8) we obtain for the current (2.12) measured
at site n the representation:

I(t, n) = Tr{e−i(t−t1)(H+vP1)U(t1)f(H)U∗(t1)e
i(t−t1)(H+vP1)jn}

= Tr{e−i(t−t1)(H+vP1)U(t1)f(H)U∗(t1)e
i(t−t1)(H+vP1)Epp(H + vP1)jn}

+Tr{e−i(t−t1)(H+vP1)U(t1)f(H)U∗(t1)e
i(t−t1)(H+vP1)Eac(H + vP1)jn}

=: Ipp(t, n) + Iac(t, n) , (3.21)
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where Epp(H + vP1) denotes the projection on the pure point subspace Hpp(H + vP1). By virtue
of (2.9) one gets the identity:

ei(t−t1)(H+vP1)Epp(H + vP1)jne
−i(t−t1)(H+vP1)

=
d

dt

{
Epp(H + vP1)e

i(t−t1)(H+vP1)P
(n)
2 e−i(t−t1)(H+vP1)

}
. (3.22)

Let us for now assume that H+vP1 has a finite number of eigenvalues. This means that Epp(H+
vP1) is trace class. Now if T > t1, the pure point part of (3.21) yields:

∫ T

0

Ipp(t, n)dt =

∫ t1

0

Ipp(t, n)dt+

∫ T

t1

Ipp(t, n)dt =

∫ t1

0

Ipp(t, n)dt

+Tr {U(t1)f(H)U∗(t1)D(T )Epp(H + vP1)} , (3.23)

where the operator D(T ) := ei(T−t1)(H+vP1)P
(n)
2 e−i(T−t1)(H+vP1) − P

(n)
2 is uniformly bounded in

T . Since the first integral in the right-hand side of (3.23) is finite, the pure point spectrum does
not contribute to the ergodic limit (2.13). In the case when Epp(H + vP1) does not have finite
rank, we have to employ an ǫ/2 argument based on the fact that Epp(H+vP1)jn can be arbitrarily
well approximated in the trace norm with an operator containing the projection on a sufficiently
large (but finite) number of eigenvalues of H + vP1. This approximation will be independent of
T , so the previous argument can be repeated.

So, it remains to investigate Iac(t, n) and to show that it actually converges when t → ∞. To
this end we start with three technical lemmas:

Lemma 3.1. The operators U(t1)− e−iH0t1−ivP1

∫ t1

0
φ(τ)dτ and U∗(t1)− eiH0t1+ivP1

∫ t1

0
φ(τ)dτ are

compact.

Proof. Since the following Dyson-type equation:

d

dt

{
eiH0t+ivP1

∫
t

0
φ(t)dtU(t)

}
= −ieiH0t+ivP1

∫
t

0
φ(τ)dτHTU(t),

is equivalent to

U(t1) = e−iH0t1−ivP1

∫
t1

0
φ(τ)dτ − i

∫ t1

0

e−iH0(t1−t)−ivP1

∫
t1

t
φ(τ)dτHTU(t)dt ,

we use that HT is a compact (finite-rank) operator in order to finish the proof.

Lemma 3.2. The operator U(t1)f(H)U∗(t1)− f(H0) is compact.

Proof. It is an easy consequence of Lemma 3.1, of the fact that H0 commutes with P1, and of the
observation that the difference f(H)− f(H0) is a compact (even trace-class) operator.

Lemma 3.3. Let K be a compact operator. Then the following trace-norm tends to zero:

lim
t→∞

||Kei(t−t1)(H+vP1)Eac(H + vP1)jn||1 = 0. (3.24)

Proof. Since jn is from the trace-class (finite rank in our case), by standard ǫ/2 arguments we
can assume that operator K has a finite rank. Then the proof is a consequence of the Riemann-
Lebesgue lemma.

Corollary 3.4. Use the identity U(t1)f(H)U∗(t1) = (U(t1)f(H)U∗(t1)− f(H0)) + f(H0) in the
representation of Iac(t, n). Then Lemma 3.2 and Lemma 3.3 imply the limit:

lim
t→∞

|Iac(t, n)− Tr{e−i(t−t1)(H+vP1)f(H0)e
i(t−t1)(H+vP1)Eac(H + vP1)jn}| = 0. (3.25)
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Now, to prove the ergodic limit (2.13) it is enough to check that the trace appearing in (3.25)
converges when t → ∞. To this end we use a standard trick of inserting the free evolution and
then to use the identity:

f(H0) = ei(t−t1)(H0+vP1)f(H0)e
−i(t−t1)(H0+vP1)

in (3.25). Using (3.1) together with the fact that the wave operators are complete thus unitary,
we obtain the existence of the following strong limit:

{Ω
(v)
+ }∗Eac(H + vP1) = s− lim

t→∞
e−i(t−t1)(H0+vP1)ei(t−t1)(H+vP1)Eac(H + vP1),

where the limit operator projects onto Hac(H0). Finally, because jn is trace class we can conclude
that the limit:

lim
t→∞

Iac(t, n) = Tr
{
Ω

(v)
+ f(HL){Ω

(v)
+ }∗Eac(H + vP1)jn

}
, (3.26)

exists and is finite.

Remark 3.5. We were able to replace f(H0) = f(HS) ⊕ f(HL) by f(HL) because the inner

sample is projected out by the wave operator {Ω
(v)
+ }∗ on the right.

Until now we proved that the ergodic limit (2.13) is independent of φ and t1. The independence
of n follows from the next lemma:

Lemma 3.6. For any n ≥ 1 one can establish the following continuity equation:

Tr
{
Ω

(v)
+ f(HL){Ω

(v)
+ }∗Eac(H + vP1)jn

}
= Tr

{
Ω

(v)
+ f(HL){Ω

(v)
+ }∗Eac(H + vP1)j0

}

=: I∞. (3.27)

Proof. Denote by χn := P2 − P
(n)
2 the projection on the first n sites of the second lead. Then

(2.9) and Remark 2.3 yield j0 − jn = i[H + vP1, χn]. Hence, the identity (3.27) is equivalent to

Tr
{
Ω

(v)
+ f(HL){Ω

(v)
+ }∗Eac(H + vP1)[H + vP1, χn]

}
= 0.

But the operator χn is trace-class, so we can undo the commutator. The wave operators intertwine
betweenH+vP1 andH0+vP1, andH0+vP1 commutes withHL. It follows thatH+vP1 commutes

with Ω
(v)
+ f(HL){Ω

(v)
+ }∗Eac(H+vP1). Then the trace cyclicity finishes the proof of the lemma.

3.3 Proof of (ii)

We start by proving that the current at t = 0 (i.e. at equilibrium) is zero for all n. Indeed,

according to (2.9) and (2.12) one has I(0, n) = Tr(f(H)jn) = iTr(f(H)[H,P
(n)
2 ]) for all n ≥ 0.

Now fix n and denote by HN the Dirichlet restriction of the operator H to the finite leads of

length N < ∞, where n < N . Denote by P
(n),N
2 the finite-rank projection corresponding to the

restriction of P
(n)
2 to the bounded second lead. Then one can prove a certain ”thermodynamic

limit” result [11]:

I(0, n) = lim
N→∞

Tr
{
f(HN )i[HN , P

(n),N
2 ]

}
. (3.28)

To understand why (3.28) holds true, note that jn = i[HN , P
(n),N
2 ] = i[H,P

(n)
2 ] is a finite-rank

operator which is independent of N . Moreover, f(H) and f(HN ) differ significantly from each
other only very far from the support of jn. Details can be found in [11].

But Tr
{
f(HN )i[HN , P

(n),N
2 ]

}
= 0 for allN by trace cyclicity. Thus (3.28) shows that I(0, n) =

0 for any n ≥ 0.
The next step of the proof is to show that for all t ≥ 0 one has:

lim
n→∞

|I(t, n)− I(0, n)| = 0 . (3.29)
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Then by I(0, n) = 0 for all n, the limit in (3.29) would imply (2.14). First we present the difference
in (3.29) as:

I(t, n)− I(0, n) = Tr{U(t)f(H)[U∗(t)− eitH ]jn}+Tr{[U(t)− e−itH ]f(H)eitHjn}. (3.30)

Then we express the propagator U(t) (2.7) with the help of its time-ordered Dyson series:

U(t) = e−itH (3.31)

+ e−itH
∑

k≥1

(−i)kvk

k!

∫ t

0

dτ1

∫ t

0

dτ2...

∫ t

0

dτkT{φ(τ1)e
iτ1HP1e

−iτ1H ...φ(τk)e
iτkHP1e

−iτkH}

whereas its adjoint is given by:

U∗(t) = eitH (3.32)

+
∑

k≥1

ikvk

k!

∫ t

0

dτ1

∫ t

0

dτ2...

∫ t

0

dτkT̃{φ(τ1)e
iτ1HP1e

−iτ1H ...φ(τk)e
iτkHP1e

−iτkH}eitH ,

where T means time-ordering in decreasing order and T̃ means time-ordering in increasing order.
Note that in the formula (3.30) the first term on the right-hand side contains the operator

[U∗(t) − eitH ]jn; we want to show that its trace-norm goes to zero with n. By a simple support

property (2.10) one has P
(n−1)
2 jn = jn and since jn is a finite-rank, it is enough to prove that

[U∗(t)−eitH ]P
(n−1)
2 converges to zero with n in the operator norm. To this end we need a technical

estimate given by the following lemma:

Lemma 3.7. For any fixed t ≥ 0 one has:

lim
n→∞

sup
|τ |≤t

∥∥∥P1e
iτHP

(n−1)
2

∥∥∥ = 0. (3.33)

Proof. Since the operator H is bounded, for any ǫ > 0 there exists Nǫ such that

sup
|τ |≤t

∥∥∥∥∥e
iτH −

Nǫ∑

k=0

ikτkHk

k!

∥∥∥∥∥ ≤ ǫ. (3.34)

The support properties (Remark 2.3) and the one-step hopping in the Hamiltonian HL imply that

P1H
kP

(n−1)
2 = 0 if n > Nǫ ≥ k. Hence, by (3.34) we obtain that for n > Nǫ

sup
|τ |≤t

∥∥∥P1e
iτHP

(n−1)
2

∥∥∥ ≤ ǫ , (3.35)

which proves the lemma.

Applying this result to the expansion (3.32), one finds that [U∗(t)− eitH ]P
(n−1)
2 converges to

zero in norm. This convergence allows to bound from above the limit of the difference (3.30):

lim sup
n→∞

|I(t, n)− I(0, n)| ≤ lim sup
n→∞

|Tr{[U(t)− e−itH ]f(H)eitHjn}|. (3.36)

To estimate the limit (3.36) we use the representation [U(t) − e−itH ]f(H)eitHjn = [U(t) −

e−itH ]{(I−P
([n/2])
2 )+P

([n/2])
2 }f(H)eitHjn. Since again the function f(H)eitH can be approximated

in operator norm by polynomials in H , we can apply to (I− P
([n/2])
2 )f(H)eitHjn the same line of

reasoning as in Lemma 3.7 to establish:

lim
n→∞

‖(I− P
([n/2])
2 )f(H)eitHP

(n−1)
2 ‖ = 0, (3.37)

since the distance between the supports of I−P
([n/2])
2 and of P

(n−1)
2 tends to infinity. For the term

[U(t) − e−itH ]P
([n/2])
2 f(H)eitHjn we use the representation (3.31) and Lemma 3.7, which imply

that the norm of [U(t)− e−itH ]P
([n/2])
2 goes to zero with n. Together with (3.37) this proves that

the limit of the right hand side of (3.36) equals zero, thus (3.29) follows.
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3.4 Proof of (iii)

By virtue of (3.26) and (3.27) one has limt→∞ Iac(t, n) = I∞. Therefore, it only remains to
estimate the current Ipp(t, n). This gives by (3.21):

sup
t≥0

|Ipp(t, n)| ≤ ||Epp(H + vP1)jn||1 .

Note the right-hand side of this estimate can be made arbitrarily small by increasing n, since we
assumed that we have finitely many eigenfunctions which are necessarily localized near the sample
S, thus

lim
n→∞

||Epp(H + vP1)P
(n−1)
2 || = 0.

This finishes the proof of (iii). Note that in the exceptional case in which H + vP1 could have
infinitely many eigenvalues, this argument fails.

3.5 Proof of (iv)

To calculate the steady charge current (2.16) we use our main formula (3.27) in the form:

I∞ = Tr
{
Ω

(v)
+ f(HL){Ω

(v)
+ }∗Eac(H + vP1)j0

}
= Tr

{
f(HL){Ω

(v)
+ }∗Eac(H + vP1)j0Ω

(v)
+

}
.

Now using the spectral representation for HL + vP1 one can evaluate the trace on l2(N1) ⊕
l2(N2) with the help of its generalized eigenfunctions (see (3.8) and (3.9)). Then we obtain the
representation:

I∞ =

∫ 2tL+v

−2tL+v

dλ f(λ− v)
〈
Ψ

(v)
1 (λ; ·), {Ω

(v)
+ }∗Eac(H + vP1)j0Ω

(v)
+ Ψ

(v)
1 (λ; ·)

〉

+

∫ 2tL

−2tL

dλ f(λ)
〈
Ψ

(v)
2 (λ; ·), {Ω

(v)
+ }∗Eac(H + vP1)j0Ω

(v)
+ Ψ

(v)
2 (λ; ·)

〉
. (3.38)

By (3.13) for the scalar product in the first integral we get:

i
〈
Ψ

(v)
1 (λ; ·), {Ω

(v)
+ }∗[HT , P2]Ω

(v)
+ Ψ

(v)
1 (λ; ·)

〉
= 2 Im

〈
Φ

(v)
1 (λ; ·), P2H

TΦ
(v)
1 (λ; ·)

〉

= 2 Im
〈
P2{Ψ

(v)
1 (λ; ·)− (H0 + vP1 − λ− i0+)

−1HTΦ
(v)
1 (λ; ·)}, HTΦ

(v)
1 (λ; ·)

〉
, (3.39)

where in the second line we used the Lippmann-Schwinger equation (3.12). Notice that the vector

P2(H0 + vP1 − λ − i0+)
−1HTΦ

(v)
1 (λ; ·) ∈ l2(N2) for almost every λ. By Remark 2.3 one has:

[H0, P2] = 0 and P2P1 = 0, which implies P2(H0+ vP1−λ− i0+)
−1HT = P2(H0−λ− i0+)

−1HT .

Taking this and the identity: P2Ψ
(v)
1 (λ; ·) = 0 into account, we can use the spectral representa-

tion of H0 and decomposition the vector P2(H0 − λ − i0+)
−1HTΦ

(v)
1 (λ; ·) over the generalised

eigenvectors {Ψ
(v)
2 (λ′; ·)}λ′∈[−2tL,2tL] to obtain

2 Im
〈
P2{Ψ

(v)
1 (λ; ·) − (H0 + vP1 − λ− i0+)

−1HTΦ
(v)
1 (λ; ·)}, HTΦ

(v)
1 (λ; ·)

〉
=

= −2 Im

∫ 2tL

−2tL

dλ′ 1

λ′ − λ− i0+

∣∣∣
〈
Ψ

(v)
2 (λ′; ·)HTΦ

(v)
1 (λ; ·)

〉∣∣∣
2

= −2πT
(v)
21 (λ) χ[−2tL,2tL](λ) . (3.40)

For the last equality we used the Sokhotskii-Plemelj formula, and definitions (3.16), (3.19).

11



By the same line of reasoning one gets for the second integrand in (3.38):

〈
Ψ

(v)
2 (λ; ·), {Ω

(v)
+ }∗Eac(H + vP1)j0Ω

(v)
+ Ψ

(v)
2 (λ; ·)

〉
= 2 Im

〈
Φ

(v)
2 (λ; ·), P2H

TΦ
(v)
2 (λ; ·)

〉

= 2 Im
〈
P2{Ψ

(v)
2 (λ; ·)− (H0 + vP1 − λ− i0+)

−1HTΦ
(v)
2 (λ; ·)}, HTΦ

(v)
2 (λ; ·)

〉

= 2 Im{t
(v)
22 (λ)} − 2 Im

〈
P2(H0 − λ− i0+)

−1HTΦ
(v)
2 (λ; ·), HTΦ

(v)
2 (λ; ·)

〉

= 2 Im{t
(v)
22 (λ)} − 2π|t

(v)
22 (λ)|

2 = 2πT
(v)
12 (λ) , (3.41)

where for the last identity we used (3.16) and (3.17). Note that here λ ∈ [−2tL, 2tL]. Taking into
account the symmetry (3.18) and plugging (3.40), (3.41) into (3.38), we obtain (2.16).

Recall that T
(v)
12 (λ) = 0, if λ 6∈ [−2tL, 2tL] ∩ [−2tL + v, 2tL + v].

4 Concluding remarks

In the present paper, we established a Landauer-type formula for the stationary current running
through a discrete system with a (small) sample coupled to one-dimensional infinite leads. We
give a rigorous proof of the existence of the ergodic limit of the charge current and then its explicit
expression. Our strategy is based on the partition-free approach, it is quite general and demands
a minimal information about the sample.

There are several open problems which deserve to be mentioned.

1. One of them is our Conjecture 2.6 about the Lieb-Robinson type correlation group velocity
bound, which up to our knowledge it has not been studied before in this context.

2. If V (t) is a time dependent bias between which after t = t1 becomes a perfect monochromatic
signal like V0+V1 cos(ωt), then the ergodic limit exists and is independent of t1 and of the site
where one measures the current. Furthermore, the ergodic limit is given by a Landauer-like
formula [18].

3. A computation of the current I(t, 0) (see (2.12)), by expressing the evolution unitaries
through the functional calculus associated to the resolvents, and the resolvents with the
help of the Feshbach formula as in [11, 12]. Can one obtain an ”easy” formula for I(t, n) at
a given n? Can one study numerically the transient effects and check point (ii) in Theorem
2.4?

4. Study the resonant transport in the case of small coupling (0 < τ << 1 and v a variable
parameter).

5. What happens with point (ii) of our theorem if there are infinitely many eigenvalues?

6. Study the ”wide band limit”, or tL → ∞.

7. Compute the first few corrections in v of the conductivity tensor.

8. Introduce a Kohn-Sham interaction in the sample, as in Stefanucci’s papers [19]. How can
one properly formulate the mathematical problem in this non-linear case? Can one still
prove the existence of a steady state? Is it unique?
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