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versity, Pázmány P. sétány 1/C, Budapest, H–1117 Hungary
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Abstract. The Ramsey multiplicity R(G) of a graph G is the minimum number

of monochromatic copies of G in any two-colouring of the edges of Kr(G), where

r(G) denotes the Ramsey number of G. Here we prove that odd cycles have

super-exponentially large Ramsey multiplicity: If Cn is an odd cycle of length n,

then log R(Cn) = Θ(n logn).

1. Introduction

Let G denote a simple graph without isolated vertices. The Ramsey number r(G)

of G is the smallest positive integer r with the property that any two-colouring

of the edges of the complete graph Kr of order r induces a monochromatic copy

of G. The Ramsey multiplicity R(G) of G is the minimum number of monochro-

matic copies of G in any two-colouring of the edges of Kr(G). The concept was

introduced by Harary and Prins in [6], who made the conjecture that R(G) is

usually large and attains the smallest possible value 1 if and only if G is a star on

m vertices, where m = 2 or m > 1 is an odd integer. It is already quite difficult

1Research partially supported by Bolyai Research Fellowship and by Hungarian Scientific

Research Grant OTKA NK67867.
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to determine the Ramsey multiplicity of the complete graph on 4 vertices, the

exact value R(K4) = 9 was obtained in [9] aided by computer search.

More generally, let R(G, n) denote the minimum number of monochromatic

copies of G in any two-coloring of Kn. For a survey on early results we refer to

[2]. In case when G is a cycle of length k, Sidorenko [13] proved, using functional

inequalities, the asymptotic result

R(G, n) =
1

k

(n

2

)k
(

1 + O

(

1

n

))

.

See [3, 5, 7] for more recent developments.

To obtain good lower estimates on R(G) = R(G, r(G)) is apparently more

difficult. For any integer n ≥ 3 let Cn denote the cycle of length n. The Ramsey

multiplicity of the triangle and the quadrangle is R(C3) = R(C4) = 2. For odd

values of n, an exponential lower bound for R(Cn) was proved by Rosta and

Surányi [12]. An unpublished superexponential bound is due to Rosta [11]. The

aim of this paper is to improve upon these results.

Theorem 1. For odd integers n > 3, the Ramsey multiplicity of Cn satisfies

e( 1
24

−o(1))n log n < R(Cn) < en log n.

With a more sophisticated argument based on a similar basic idea we obtain

the following stronger result.

Theorem 2. For odd integers n > 3, the Ramsey multiplicity of Cn satisfies

e( 1
20

−o(1))n log n < R(Cn).

We present both proofs, firstly because the proof of Theorem 1 helps the com-

plicated proof of Theorem 2 to become more transparent, and secondly because

we feel that along the first proof strategy, a strong general version of Lemma 10

may probably lead to further improvements.

2. The Structure of the Proofs

Let n > 3 be an odd integer; then r(Cn) = 2n − 1, see [1, 4, 8, 10]. The upper

bound is trivial: Consider the disjoint union of a red clique C of order n and

another red clique D of order n−1, and colour every edge connecting a vertex in
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C to a vertex in D blue. In the two-coloured complete graph on 2n − 1 vertices

thus obtained, every blue cycle has an even length. On the other hand, every red

cycle of length n is contained in C. Since Cn has 2n automorphisms, the graph

has
n!

2n
< en log n

monochromatic cycles of length n.

For the lower bound, let G be a complete graph on a set V of 2n − 1 vertices

whose edge set is partitioned into a set R of red edges and a set B of blue

edges. One of the colour classes, say R contains a cycle of length n. So let

C = {v1, v2, . . . , vn}, where v1v2 . . . vnv1 is a red cycle, and let D = V \ C. If

D contains a large red clique, then it is easy to construct many monochromatic

cycles of length n.

Lemma 3. Suppose that D contains a red clique K of order larger than n/2.

Then either R or B contains at least
(⌊n

4

⌋

− 2
)

! > e( 1
4
−o(1))n log n

cycles of length n.

For 1 ≤ i ≤ m = ⌊n/6⌋, consider

Vi = {v6i−5, v6i−4, v6i−3, v6i−2, v6i−1, v6i}.

Denote by Ri the set of vertices v ∈ D for which vw ∈ R for at least 3 different

vertices w ∈ Vi. Similarly, let Bi denote the set of vertices v ∈ D for which

vw ∈ B for at least 4 different vertices w ∈ Vi. This way we obtain a partition of

D for every possible value of i, thus

|Ri| + |Bi| = |D| = n − 1.

Denote by r the number of i’s for which |Ri| ≥
n
4 − 1, and by b the number of

i’s for which |Bi| ≥
3n
4 . Clearly r + b = m. If r is sufficiently large, then it is

possible to construct a lot of red cycles of length n:

Lemma 4. If r ≥ ⌊n/24⌋ − 2, then R contains at least
(⌊ n

24

⌋

− 5
)

! > e( 1
24

−o(1))n log n

different cycles of length n.

On the other hand, if neither of the previous two lemmas can be applied, then

it is possible to construct many blue cycles of length n:
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Lemma 5. Suppose that D does not contain a red clique of order larger than

n/2. If b ≥ ⌊n/8⌋+ 2, then B contains at least
(⌊n

8

⌋

+ 1
)

! > e( 1
8
−o(1))n log n

different cycles of length n.

This completes the proof of Theorem 1. To prove Theorem 2 we once again

start with Lemma 3, but instead of the 6-element Vi’s we have to introduce several

families of pairwise disjoint 3-element subsets of C. For 1 ≤ i ≤ m = ⌊n/6⌋ and

0 ≤ σ ≤ 5, consider (indices meant modulo n)

Vi,σ = {v6i−5+σ, v6i−4+σ, v6i−3+σ , v6i−2+σ, v6i−1+σ , v6i+σ}.

Partition each Vi,σ in two different ways into 3-element subsets as follows. Let

Vi,σ = Ui,σ,1 ∪ Ui,σ,2 = Wi,σ,1 ∪ Wi,σ,2, where

Ui,σ,1 = {v6i−5+σ, v6i−4+σ , v6i−3+σ}, Ui,σ,2 = {v6i−2+σ, v6i−1+σ , v6i+σ},

Wi,σ,1 = {v6i−5+σ, v6i−3+σ , v6i−1+σ}, Wi,σ,2 = {v6i−4+σ, v6i−2+σ, v6i+σ}.

Finally define the families

Vσ = {Vi,σ | 1 ≤ i ≤ m}, Uσ = {Ui,σ,τ | 1 ≤ i ≤ m, 1 ≤ τ ≤ 2},

Wσ = {Wi,σ,τ | 1 ≤ i ≤ m, 1 ≤ τ ≤ 2}.

For each X ∈ (U1∪W1)∪ . . .∪ (U6∪W6), denote by RX the set of vertices v ∈ D

for which vw ∈ R for at least 2 different vertices w ∈ X . Similarly, let BX denote

the set of vertices v ∈ D for which vw ∈ B for at least 2 different vertices w ∈ X .

Denote by r(Uσ) the number of such sets U ∈ Uσ for which |RU | ≥
n
4 − 1, and by

b(Uσ) the number of such sets U ∈ Uσ for which |BU | ≥
3n
4 . Define also r(Wσ)

and b(Wσ) in a similar way. Clearly r(Uσ)+ b(Uσ) = r(Wσ)+ b(Wσ) = 2m holds

for every 0 ≤ σ ≤ 5.

Now the proof of Theorem 2 can be completed juxtaposing the following ana-

logues of Lemmas 5 and 4, respectively.

Lemma 6. Suppose that D does not contain a red clique of order larger than

n/2. If b(Uσ) ≥ ⌊n/4⌋+ 1 or b(Wσ) ≥ ⌊n/4⌋ + 1 holds for some σ ∈ {0, . . . , 5},

then B contains at least
(⌊n

4

⌋

+ 1
)

! > e( 1
4
−o(1))n log n

different cycles of length n.
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Lemma 7. If r(Uσ) ≥ ⌊n/12⌋ − 1 and r(Wσ) ≥ ⌊n/12⌋ − 1 holds for every

σ ∈ {0, . . . , 5}, then R contains at least
(⌊ n

20

⌋

− 10
)

! > e( 1
20

−o(1))n log n

different cycles of length n.

We organize the content of this paper as follows. In Section 3 we prove Lemma

3. For the construction of the blue cycles we need a simple observation on

the existence of certain alternating paths in bipartite graphs that we present

in Section 4. This is applied to the constructions of the blue cycles in Section 5;

here we first prove the simpler Lemma 6 and then indicate what modifications

are necessary to obtain Lemma 5. Section 6 contains the constructions of the

red cycles; we start with the relatively simple proof of Lemma 4 and then prove

Lemma 7. We conclude the paper with a remark concerning even cycles. Finally

we must mention that some of our constructions and estimates do not work

for very small values of n. Since our results are asymptotic in nature, we did

not make the effort to elaborate on the precise bounds and include them in the

statements. Accordingly, throughout the whole paper we tacitly assume that n

is large enough, say n > 1000.

3. The Simple Cases

To prove Lemma 3, we consider n+3
2 consecutive vertices along C in every possible

way. That is, we define

Ji = {vi, vi+1, . . . , vi+ n+1

2

}

for every 1 ≤ i ≤ n. Once again, when necessary, indices are understood modulo

n. We distinguish three different cases.

Case 1. For every 1 ≤ i ≤ n there exist two vertex disjoint red edges con-

necting Ji to K. Let vj(i)sj(i) and vk(i)sk(i) denote two such edges such that

ℓ(i) = k(i) − j(i) is as large as possible; here the indices are not taken modulo

n. Choose and fix an index i for which ℓ = ℓi is maximum, then n+3
4 ≤ ℓ ≤ n+1

2 .

Every path of length ℓ − 2 which connects sj(i) to sk(i) in K can be completed

along the path sk(i)vk(i)vk(i)+1 . . . vj(i)−1vj(i)sj(i) to a red cycle of length n. Since

ℓ ≤ |D|, the number of such paths is

(|D| − 2)(|D| − 3)(|D| − ℓ + 1) ≥ (ℓ − 3)! ≥
(⌈n

4

⌉

− 3
)

!.
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This way we obtain the desired number of different red cycles of length n.

Case 2. There is an index 1 ≤ i ≤ n such that all red edges connecting Ji

to K are incident to the same vertex v and the two-coloured complete graph

G[Ji] induced by G on Ji contains two disjoint blue edges; note that one of them

necessarily avoids the vertex v. Assume that v ∈ Ji. All edges that connect

Ji \ {v} to K are blue, thus we obtain a complete bipartite graph H isomorphic

to K n+1

2
, n+1

2

. Moreover, there is a blue edge xy that connects two vertices in

Ji \ {v}. Any path of length n − 1 that connects x to y in H can be completed

along the edge xy to a blue cycle of length n. This way we obtain
(

n−3
2

)

!
(

n+1
2

)

!

different blue cycles of length n. In the case when v ∈ K, a similar argument

shows that there exist at least
(

n−1
2

)

!
(

n−1
2

)

! different blue cycles of length n.

Case 3. There is an index 1 ≤ i ≤ n such that G[Ji] does not contain two

disjoint blue edges. Then either all blue edges in G[Ji] are incident to the same

vertex v, or they form a triangle xyz. In the first case denote by v− and v+

the neighbours of v along C. One of them may not belong to Ji; in that special

case we only consider the other one. Omit the blue edges and merge the vertices

v−, v, v+ to the one vertex v to obtain a red complete graph on the vertex set

Ji \ {v
−, v+}. In this graph, consider any Hamiltonian path vi . . . svt . . . vi+ n+1

2

.

Replacing the subpath svt by sv−vv+t, it can be completed along C to a red

cycle of length n. This way we obtain at least
(

n+3
2 − 4

)

! different red cycles of

length n. Now suppose that the blue edges form a triangle xyz. Let x′, y′ ∈ Ji

be neighbours of x resp. y along C such that the five vertices x, y, z, x′, y′ are all

different, and neither x′, nor y′ coincide with vi or vi+ n+1

2

. Omit the blue edges

and merge these five vertices to the one vertex z to obtain a red complete graph

on the vertex set Ji \{x, y, x′, y′}. It is clear how to complete a Hamiltonian path

in this graph that connects vi to vi+ n+1

2

, with the help of the red path xx′yy′z, to

a red cycle of length n in order to obtain at least
(

n+3
2 − 6

)

! different red cycles

of length n. Note that it may happen that one of the vertices vi, vi+ n+1

2

, or even

both, have been merged to v; in such cases similar arguments work whose details

we leave to the reader.

4. Alternating Paths is Bipartite Graphs

For a triple of positive integers (x, y, z), denote by G(x, y, z) the family of all

bipartite graphs in which the two parts X and Y have cardinalities x and y,
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respectively, and in which every vertex belonging to X has degree at least z.

G(x, y, z) is not empty if and only if z ≤ y. Let us denote by Φ(x, y, z) the

following statement: If a graph G = G(X, Y ; E) belongs to G(x, y, z), then for

every vertex v ∈ X of G there exists a path of length 2(x − 1) starting at v;

such an alternating path visits every vertex of X and ends in X . The statement

Φ(x, y, z) cannot be valid if either x = 1, or y < x − 1 or y ≥ 2z. On the other

hand, it follows from the pigeonhole principle that Φ(2, y, z) is valid for every

1 ≤ z ≤ y ≤ 2z − 1.

Observation 8. Φ(x, y, z) implies Φ(x + 1, y + 1, z + 1).

Proof. Consider a bipartite graph G = G(X, Y ; E) ∈ G(x + 1, y + 1, z + 1). Let v

denote any vertex in X . If y < 2z − 1, then y + 1 < 2(z + 1)− 1. The pigeonhole

principle implies the existence of a vertex w ∈ X such that v and w have a

common neighbour u in Y . Let G′ denote the bipartite graph induced by G on

the vertex set X ∪ Y \ {u, v}, then G′ ∈ G(x, y, z). If Φ(x, y, z) is true, then G′

contains a part of length 2(x − 1) starting at w, which the path vuw extends to

a path in G starting at v and of length 2x. �

In order to prove Lemma 6 we need the following.

Observation 9. Φ(3, 3, 2) is true.

Proof. Consider a bipartite graph G = G(X, Y ; E) ∈ G(3, 3, 2). Let X = {v, s, t}.

If the vertices in X do not have a common neighbour, then G is a cycle of length

6, thus G contains a path of length 4 starting at v. Assume that u is a common

neighbour of v, s, t. G contains an edge vw 6= vu. If either s or t is incident to

w, then by symmetry we may assume sw ∈ E. In this case vwsut is a path of

length 4 starting at v. Finally, if p 6∈ {u, w} is a common neighbour of s and t,

then G contains the path vuspt, which will do . �

A somewhat more complicated case analysis reveals that the statements Φ(3, 5, 3)

and Φ(4, 5, 3) are also true. Putting all this together we arrive at the following

observation that we need for the proof of Lemma 5.

Lemma 10. Φ(x, 6, 4) is true for every 2 ≤ x ≤ 5.
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5. Finding Many Blue Cycles

To prove Lemma 6, let X ∈ {Uσ,Wσ} be a family of disjoint 3-element subsets

of C satisfying b(X ) ≥ s = ⌊n/4⌋ + 1. Choose and fix s different 3-element sets

X ∈ X satisfying |BX | ≥ 3n
4 , and consider any permutation X1, X2, . . . , Xs of

them. For any such permutation we are going to construct a different blue cycle

of length n.

For simplicity, let us assume first that n = 4(s − 1) + 3. Since BX1
and BXs

are both subsets of D,

|BX1
∩ BXs

| ≥ |BX1
| + |BXs

| − |D| ≥
n + 1

2
.

D does not contain a red clique of size n+1
2 , therefore there is a blue edge yy0

such that y, y0 ∈ BX1
∩ BXs

. We start to build the blue cycle at y0; it will be

completed in the end with the edge yy0. Put X0 = Xs. Assume that i ≤ s−2 and

that we have already constructed a sequence Y0 = {y, y0}, Y1, . . . , Yi of pairwise

disjoint subsets of D and a blue path Pi = y0a1b1c1y1 . . . yi−1aibiciyi of length

4i with the following properties:

(i) yj ∈ Yj for 0 ≤ j ≤ i;

(ii) aj , cj ∈ Xj , bj ∈ Yj for 1 ≤ j ≤ i;

(iii) |Yj | = 2 for 1 ≤ j ≤ i;

(iv) Yj ⊆ BXj
∩ BXj+1

for 0 ≤ j ≤ i.

This is certainly possible for i = 0. The construction can be extended form i to

i + 1 as follows. We have |BXi
∩ BXi+1

| ≥ n+1
2 , hence

|(BXi
∩ BXi+1

) \

i−1
⋃

j=0

Fj | ≥
n + 1

2
− 2i ≥

n + 1

2
− 2

(⌊n

4
− 1

⌋)

≥ 2.

Therefore there exists a set Yi+1 ⊂ D disjoint from Y0, Y1, . . . , Yi, which satisfies

(iii) and (iv) with j = i + 1. Put X = Yi+1 ∪ {yi} and Y = Xi+1, then |X | =

|Y | = 3. Since X ⊆ BY , every vertex of X is connected to Y with at least two

blue edges. According to Observation 9, there is a blue path yiai+1bi+1ci+1yi+1

such that ai+1, ci+1 ∈ Y , bi+1, yi+1 ∈ X . This path extends Pi to a blue path

Pi+1 of length 4(i + 1) so that (i) and (ii) also hold with j = i + 1.

By induction we can construct a sequence Y0, Y1, . . . , Ys−1 and a blue path

Ps−1 of length 4(s− 1) = n− 3 such that conditions (i)–(iv) hold with i = s− 1.

Note that y, ys−1 are in BXs
, so they have a common neighbour ys in BXs

. This

means that the blue path Ps−1 can be completed to a blue cycle of length n
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along the blue path ys−1ysyy0. Moreover, for any blue cycle obtained by this

construction one can easily identify the vertices y0 and y, and thus reconstruct

the whole permutation X1, . . . , Xs. This way we obtain

s! =
(⌊n

4
+ 1

⌋)

!

different blue cycles of length n.

In the case when n = 4(s − 1) + 1, we apply the above construction with a

minor modification. Namely, in the last step we find a set Ys−1 of cardinality 1

instead of 2, and instead of Observation 9 we use the fact that Φ(2, 3, 2) is true

to extend Ps−2 to a blue path Ps−1 = Ps−2as−1ys−1 of length 4(s − 1) − 2 with

as−1 ∈ Xs−1, ys−1 ∈ Ys−1. This completes the proof of Lemma 6.

The proof of Lemma 5 is quite similar. Here we work with a family V =

{V1, . . . , Vm} of 6-element subsets of C which satisfy b(V) ≥ ⌊n/8⌋+2. We write

n = 8(s − 1) + 3 − 2q where q ∈ {0, 1, 2, 3} and s = ⌊n/8⌋ + 1 or s = ⌊n/8⌋+ 2.

Since
n + 1

2
− 4(s − 2) ≥ 4 − q,

we can construct Y0, Y1, . . . , Ys−1 with |Yi| = 4 for 1 ≤ i ≤ s−2 and |Ys−1| = 4−q,

so that with the help of Lemma 10 a blue path Ps−1 of length 8(s − 1)− 2q can

be built, which along the blue path ys−1ysyy0 completes to a blue cycle of length

n. The details can be left to the reader.

6. Finding Many Red Cycles

Proof of Lemma 4. Without any loss of generality we may suppose that |Ri| ≥
n
4 − 1 holds for 1 ≤ i ≤ s = ⌊n/24⌋ − 2. For such an i we call a vertex u ∈ Ri of

Type A with respect to Vi if there exist vj , vj+2 ∈ Vi such that uvj, uvj+2 ∈ R.

The vertex u ∈ Ri is of Type B with respect to Vi if it is not of Type A and

there exist vj , vj+3 ∈ Vi such that uvj, uvj+3 ∈ R. Finally it is of Type C, if

it is neither of Type A, nor of Type B, thus there exist vj , vj+4 ∈ Vi such that

uvj , uvj+4 ∈ R. Note that for Type B and Type C vertices u there also exist

vl, vl+1 ∈ Vi such that uvl, uvl+1 ∈ R.

We say that Vi is of Type X if the majority of the vertices in Ri are of Type

X; in case of ties we may decide either way. Thus, if Vi is of Type X, then there

are at least ⌊n/12⌋ vertices in Ri which are of Type X with respect to Vi. Let us

denote by nX the number of indices i ∈ {1, 2, . . . , s} for which Vi is of Type X.
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Put a = nA, b = ⌊nB/2⌋ and c = ⌊nC/3⌋, then s − 3 ≤ a + 2b + 3c ≤ s. Once

again without any loss of generality we may suppose that V1, . . . , Va are of Type

A, Va+1, . . . , Va+2b are of Type B and Va+2b+1, . . . , Va+2b+3c are of Type C.

Now we are going to construct

N =
⌊ n

12

⌋ (⌊ n

12

⌋

− 1
)

. . .
(⌊ n

12

⌋

− a − 2b − 3c + 1
)

≥ (s − 3)!

different red cycles of length n as follows. There are at least N different ways

to select pairwise disjoint vertices u1, u2, . . . , ua+2b+3c ∈ D so that ui ∈ Ri is of

Type A (with respect to Vi) for 1 ≤ i ≤ a, is of Type B for a + 1 ≤ i ≤ a + 2b,

and is of Type C for a + 2b + 1 ≤ i ≤ a + 2b + 3c. For each such selection it

will be enough to construct a red cycle of length n which contains the vertices

u1, u2, . . . , ua+2b+3c and all whose other vertices belong to C. We do it according

to the following rules.

We start with the red cycle C. Vi is of Type A for 1 ≤ i ≤ a. For such

an index i, take a red path Pi = vjuivj+2 such that vj , vj+2 ∈ Vi, and replace

the arc vjvj+1vj+2 of C by Pi. Such a replacement has no effect on the length

of the cycle. Next, for a + 1 ≤ i ≤ a + b, take a red path Pi = vjuivj+3

such that vj , vj+3 ∈ Vi, and replace the arc vjvj+1vj+2vj+3 of C by Pi. The

length of the cycle is then shortened by b. This effect can be compensated by

taking, for every a + b + 1 ≤ i ≤ a + 2b, a red path Pi = vjuivj+1 such that

vj , vj+1 ∈ Vi, and replacing the edge vjvj+1 of C by Pi. Finally, we do the same

for a+2b+1 ≤ i ≤ a+2b+2c, thus making the cycle 2c longer, and compensate

this effect by taking, for every a + 2b + 2c + 1 ≤ i ≤ a + 2b + 3c, a red path

Pi = vjuivj+4 such that vj , vj+4 ∈ Vi, and replacing the arc vjvj+1vj+2vj+3vj+4

of C by Pi.

It is clear that the (at least) N red cycles obtained this way are all different.

This completes the proof of Lemma 4.

The proof of Lemma 7 is based on a similar basic idea. Put N =
⌊

n
20

⌋

−10. For

a path Pi = vji
vji+1 . . . vji+ℓi

denote by U(Pi) the set of vertices u ∈ D for which

uvji
, uvji+ℓi

∈ R. If we find N ′ ≥ N pairwise edge-disjoint paths P1, . . . , PN ′ of

total length

ℓ1 + ℓ2 + . . . + ℓN ′ = 2N ′

such that |U(Pi)| ≥ N ′ holds for every i ∈ {1, 2, . . . , N ′}, then for any selection

of pairwise disjoint vertices u1 ∈ U(P1), . . . , uN ′ ∈ U(PN ′) we can construct a

red cycle of length n replacing in the cycle C the path Pi by the path vji
uivji+ℓi
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for every i ∈ {1, 2, . . . , N ′}, thus obtaining at least N ′! different red cycles of

length n. The crucial part of the proof will be the construction of the suitable

paths P1, . . . , PN ′ .

Proof of Lemma 7. A set Q = {vj , vj+ℓ} is called an ℓ-replacer if there exist at

least ⌊n/12⌋ different vertices u ∈ D such that uvj , uvj+ℓ ∈ R. The support of

such a replacer is the path p(Q) = vjvj+1 . . . vj+ℓ. Two replacers are compatible if

their supports do not share a common edge. It will be enough to find 2-replacers

Q1, . . . , Qx, 4-replacers Qx+1, . . . , Qx+y and 1-replacers Qx+y+1, . . . , Qx+3y such

that they are pairwise compatible and N ≤ x + 3y ≤ ⌊n/12⌋.

First we consider 2-replacers. If a pair of 2-replacers is not compatible, we call

them interlacing. A set Vi,σ is called compatible, if it contains two compatible

2-replacers. Thus, any Vi,σ which contains at least three different 2-replacers is

compatible. If Vi,σ contains only two 2-replacers and they are not compatible,

we say that Vi,σ is interlacing. Denote by M the maximum number of pairwise

compatible 2-replacers. Clearly there cannot be more than 2M − 1 pairs of

interlacing 2-replacers, but we need something stronger.

Lemma 11. There exists a σ ∈ {0, . . . , 5} such that

|{i | 1 ≤ i ≤ m, Vi,σ is interlacing}| ≤
M

2
.

Proof. Consider a maximal chain of 2-replacers

{vj, vj+2}, {vj+1, vj+3}, . . . , {vj+k−1, vj+k+1};

the length of such a chain is k, and it contains k − 1 interlacing pairs. If k ≥ 3,

then there are (at most) two interlacing sets Vi,σ, namely

{vj−2, . . . , vj+3} and {vj+k−2, . . . , vj+k+3},

which contain one (and thus only one) interlacing pair out of these. If k = 2,

then the number of such interlacing sets is (at most) three.

Now partition the 2-replacers into maximal chains. Let α denote the number

of such chains, and let k1, . . . , kα denote their lengths. Then the number I of

interlacing sets Vi,σ satisfies

I ≤
3k1

2
+

3k2

2
+ . . . +

3kα

2
.
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On the other hand, the maximum number of pairwise compatible 2-replacers is

M =

⌈

k1

2

⌉

+

⌈

k2

2

⌉

+ . . . +

⌈

kα

2

⌉

.

It follows that I ≤ 3M . The statement follows noting that the interlacing sets

are distributed among the 6 families Vσ. �

If there are N pairwise compatible 2-replacers, then the conclusion of Lemma

7 is true. Accordingly, for the rest of the proof we may assume that M < N . In

view of Lemma 11, there is a σ ∈ {0, . . . , 5} such that

|{i | 1 ≤ i ≤ m, Vi,σ is interlacing}| ≤
N − 1

2
.

Without any loss of generality we may suppose that σ = 0. Thus, Vi,σ = Vi. It

will be convenient to write U = Uσ, V = Vσ and W = Wσ. Denote by A and

B the family of compatible resp. interlacing Vi’s, and put a = |A|, b = |B|. If

2a + 2b ≥ ⌊n/12⌋ − 1, then we find

2a + b = 2(a + b) − b ≥
⌊ n

12

⌋

− 1 −
N − 1

2
> N

pairwise compatible 2-replacers, and we are done. Thus, we may assume that

2a + 2b <
⌊ n

12

⌋

− 1 ≤ min{r(U), r(W)}.

Let V4 denote the family of such sets V ∈ V \ (A∪B) which contain a 4-replacer,

and denote by V2 the family of such sets V ∈ V \ (A ∪ B ∪ C) which contain a

(unique) 2-replacer. Note that if |RW | ≥ n
4 − 1 holds for some W ∈ W , then W

necessarily contains either a 4-replacer, or a 2-replacer. Since r(W) ≥ ⌊n/12⌋−1,

this way we find at least ⌊n/12⌋ − 1 different 2- and 4-replacers such that each

of them is contained in some Vi, and each Vi contains at most two of them. It

follows that there exist nonnegative integers c, d and families C ⊆ V4, D ⊆ V2

such that |C| = c, |D| = d and
⌊ n

12

⌋

− 2 ≤ 2a + 2b + 2c + d ≤
⌊ n

12

⌋

− 1.

Now we turn our attention to the family U . If |RU | ≥
n
4 − 1 holds for some

U ∈ U , then U necessarily contains either a 1-replacer, or a 2-replacer. Since

r(W) ≥ ⌊n/12⌋ − 1, there exists a family Q of ⌊n/12⌋ − 1 − 2a − 2b ≥ 2c + d

pairwise compatible 1- and 2-replacers such that each of them is contained in

some element of U , but none of them is contained in an element of A ∪ B. Note

that no element of C can contain two different 2-replacers from Q. Accordingly,

we can partition C as C20 ∪ C11 ∪ C10 ∪ C01 ∪ C00, where Cµν denotes the family
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of sets V ∈ C which contain exactly µ 1-replacers and ν 2-replacers from Q. Put

cµν = |Cµν |, then c = c20 + c11 + c10 + c01 + c00. Denote by Q∗ the set of those

elements of Q which are not contained in any element of C. Thus,

|Q∗| = |Q| − 2c20 − 2c11 − c10 − c01 ≥ c10 + c01 + 2c00 + d.

Claim 12. There exists two disjoint families Q1 and Q2 of replacers with the

following properties:

(i) every element of Q1 is a 1- or 2-replacer;

(ii) every element of Q2 is a 2-replacer;

(iii) the elements of Q1 ∪ Q2 are pairwise compatible and none of them is

contained in an element of A ∪ B ∪ C;

(iv) |Q1| = c10 + c01 + 2c00;

(v) |Q2| = d.

Proof. Each element of D contains a unique 2-replacer. These are pairwise com-

patible and none of them is contained in an element of A ∪ B ∪ C. They form

a family Q2 which comply with (ii) and (v). The family Q1 we obtain from Q∗

after omitting elements which interfere with Q2; then (i) and (iii) will be also

guaranteed. First, omit form Q∗ all 2-replacers which are already contained in

Q2. Note that these elements of Q2 are compatible with all elements in Q∗. Be-

cause each element of D contains a unique 2-replacer, all other elements of Q2 are

compatible with the 2-replacers in Q∗. Such elements of Q2 may be incompatible

with 1-replacers in Q∗, but each of them is incompatible with at most one. After

omitting those incompatible 1-replacers from Q∗ as well, the remaining family

will have at least c10+c01+2c00 elements, for we have omitted at most d elements

of Q∗. Therefore it contains a subfamily Q1, which together with Q2 satisfies all

the requirements. �

Now we are in the position to construct the replacers Qi which comply with the

requirements set up at the beginning of the proof. First, choose two compatible

2-replacers from each element of A and one 2-replacer from each element of B.

Next, select ⌊c20/2⌋ elements of C20 and choose a 4-replacer from each of them.

Compensate this by choosing two 1-replacers from each of ⌊c20/2⌋ remaining

elements of C20. Similarly, select ⌊c11/3⌋ elements of C11 and choose a 4-replacer

from each of them. This we compensate by choosing one 1-replacer and one

2-replacer from each of 2⌊c11/3⌋ remaining elements of C11.
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Turning to the sophisticated part, denote by α the largest integer ω ≤ ⌊c10/2⌋

such that there exist ω different 1-replacers in Q1. Choose a 4-replacer from each

of α different elements of C10 and compensate by choosing a 1-replacer from α

other elements of C10 plus choosing α 1-replacers from Q1. In case α < ⌊c10/2⌋

put β = ⌊(c10 − 2α)/3⌋, choose a 4-replacer from each of β still unused elements

of C10 and a 1-replacer from each of 2β other elements of C10. In addition, choose

3β 2-replacers from Q1; it is possible because |Q1| ≥ c10 ≥ α + 3β.

Next, denote by γ the largest integer ω ≤ c01 such that there still exist ω

different 2-replacers in Q1. Choose a 2-replacer from each of γ different elements

of C01 and in addition choose γ 2-replacers from Q1. In case γ < c01 put δ =

⌊(c10 − γ)/2⌋, choose a 4-replacer from each of δ still unused elements of C10 and

a 2-replacer from each of δ other elements of C10, then compensate by choosing

2δ 1-replacers from Q1. It is again possible, for |Q1| ≥ c10+c01 ≥ α+3β+γ+2δ.

To handle C00, denote by ε the largest integer ω ≤ c00 such that there still exist

2ω different 1-replacers in Q1. Choose a 4-replacer from each of ε elements of C00

and compensate by choosing 2ε 1-replacers from Q1. Since |Q1| = c10+c01+2c00,

there are still at least 2(c00 − ε) remaining elements from Q1, of which at most

one can be a 1-replacer. It follows that we can still add to the list 2c00 − 2ε − 1

different 2-replacers from Q1. Finally, complete the list of 2-replacers with the d

elements of Q2.

It is clear that the replacers selected by the above procedure are pairwise

compatible. The number of selected 2-replacers is

x = 2a + b + 2
⌊c11

3

⌋

+ 3β + 2γ + δ + (2c00 − 2ε − 1) + d.

The number of selected 4-replacers is

y =
⌊c20

2

⌋

+
⌊c11

3

⌋

+ α + β + δ + ε,

whereas the number of 1-replacers we selected is 2y. Doing the arithmetic we

obtain that the number of selected replacers is

x + 3y = 2a + b + 3
⌊c20

2

⌋

+ 5
⌊c11

3

⌋

+ 3α + 6β + 2γ + 4δ + 2c00 + ε − 1 + d.

In view of the inequalities 2α + 3β ≥ c10 − 2 and γ + 2δ ≥ c01 − 1 we get
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x + 3y ≥ 2a + b +
3

2
c + d − 10

≥
3

4
(2a + 2b + 2c + d) −

b

2
− 10

≥
3

4

(⌊ n

12

⌋

− 2
)

−
N − 1

4
− 10

≥ N.

Should the value of x+3y exceed ⌊n/12⌋, we can reduce the value by omitting

some 2-replacers and, if necessary, some additional triples, each consisting of a

4-replacer and two 1-replacers, to achieve N ≤ x + 3y ≤ ⌊n/12⌋. This completes

the proof of Lemma 7.

7. A Concluding Remark Concerning Even Cycles

Finding a good lower bound on the Ramsey multiplicity of the even cycles is

apparently more difficult, because the Ramsey number is much smaller: r(Cn) =

3n/2−1 for n even, see [4, 8, 10]. With the technique presented here nevertheless

it is possible to prove for example the following.

Theorem 13. For even integers n > 2,

R(Cn, 2n− 1) > e( 1
20

−o(1))n log n.

The proof is almost literally the same as that of Theorem 2. The only difference

is the following. The counterpart of Lemma 6 is valid without the assumption

that D does not contain a red clique of order larger than n/2. This is because

in this case we do not need the blue edge yy0 for the construction of the blue

cycles, it is enough to guarantee that y0 is a common vertex in BX1
and BXs

,

and to complete the blue cycle with the path ys−1ysy0. Therefore we do not even

have to discuss simple cases as in Section 3 separately; there is no need for a

counterpart of Lemma 3 is the even case.
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[1] J.A. Bondy and P. Erdős, Ramsey numbers for cycles in graphs, J. Com-

bin. Th. Ser. B 14 (1973) 46–54
[2] S.A. Burr and V. Rosta, On the Ramsey multiplicities of graphs — Prob-

lems and recent results, J. Graph Th. 4 (1980) 347–361
[3] L. Clark, The minimum number of subgraphs in a graph and its comple-

ment, J. Graph Th. 16 (1992) 451–458
[4] R.J. Faudree and R.H. Schelp, All Ramsey numbers for cycles in graphs,

Discrete Math. 8 (1974) 313–329
[5] J. Fox, There exist graphs with super-exponential Ramsey multiplicity con-

stant, J. Graph Th. 57 (2008) 89–98
[6] F. Harary and G. Prins, Generalized Ramsey theory for graphs. IV. The

Ramsey multiplicity of a graph, Networks 4 (1974) 163–173
[7] H. Hatami, Graph norms and Sidorenko’s conjecture, Israel J. Math., to

appear
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