
New constructions of WOM codes using the Wozencraft
ensemble

Amir Shpilka∗

Abstract

In this paper we give several new constructions of WOM codes. The novelty in our
constructions is the use of the so called Wozencraft ensemble of linear codes. Specifi-
cally, we obtain the following results.

We give an explicit construction of a two-write Write-Once-Memory (WOM for
short) code that approaches capacity, over the binary alphabet. More formally, for
every ε > 0, 0 < p < 1 and n = (1/ε)O(1/pε) we give a construction of a two-write
WOM code of length n and capacity H(p) + 1 − p − ε. Since the capacity of a two-
write WOM code is maxp(H(p) + 1 − p), we get a code that is ε-close to capacity.
Furthermore, encoding and decoding can be done in time O(n2 · poly(log n)) and time
O(n · poly(log n)), respectively, and in logarithmic space.

We obtain a new encoding scheme for 3-write WOM codes over the binary alphabet.
Our scheme achieves rate 1.809 − ε, when the block length is exp(1/ε). This gives a
better rate than what could be achieved using previous techniques.

We highlight a connection to linear seeded extractors for bit-fixing sources. In
particular we show that obtaining such an extractor with seed length O(log n) can
lead to improved parameters for 2-write WOM codes. We then give an application of
existing constructions of extractors to the problem of designing encoding schemes for
memory with defects.

1 Introduction

In [RS82] Rivest and Shamir introduced the notion of write-once-memory and showed its
relevance to the problem of saving data on optical disks. A write-once-memory, over the
binary alphabet, allows us to change the value of a memory cell (say from 0 to 1) only
once. Thus, if we wish to use the storage device for storing t messages in t rounds, then we
need to come up with an encoding scheme that allows for t-write such that each memory
cell is written at most one time. An encoding scheme satisfying these properties is called

∗Faculty of Computer Science, Technion — Israel Institute of Technology, Haifa, Israel,
shpilka@cs.technion.ac.il. This research was partially supported by the Israel Science Foundation (grant
number 339/10).

1

a Write-Once-Memory code, or a WOM code for short. This model has recently gained
renewed attention due to similar problems that arise when using flash memory devices. We
refer the readers to [YKS+10] for a more detailed introduction to WOM codes and their use
in encoding schemes for flash memory.

One interesting goal concerning WOM codes is to find codes that have good rate for
t-write. Namely, to find encoding schemes that allow to save the maximal information-
theoretic amount of data possible under the write-once restriction. Following [RS82] it was
shown that the capacity (i.e. maximal rate) of t-write binary WOM code is1 log(t+ 1) (see
[RS82, Hee85, FV99]). Stated differently, if we wish to use an n-cell memory t-times then
each time we can store, on average, n · log(t+ 1)/t many bits.

In this work we address the problem of designing WOM codes that achieve the theoretical
capacity for the case of two rounds of writing to the memory cells. Before describing our
results we give a formal definition of a two-write WOM code.

For two vectors of the same length y and y′ we say that y′ ≤ y if y′i ≤ yi for every
coordinate i.

Definition 1.1. A two-write binary WOM of length n over the sets of messages Ω1 and Ω2

consists of two encoding functions E1 : Ω1 → {0, 1}n and E2 : E1(Ω1) × Ω2 → {0, 1}n and
two decoding functions D1 : E1(Ω1) → Ω1 and D2 : E2(E1(Ω1) × Ω2) → Ω2 that satisfy the
following properties.

1. For every x ∈ Ω1, D1(E1(x)) = x.

2. For every x1 ∈ Ω1 and x2 ∈ Ω2, we have that E1(x1) ≤ E2(E1(x1), x2).

3. For every x1 ∈ Ω1 and x2 ∈ Ω2, it holds that D2(E2(E1(x1), x2)) = x2.

The rate of such a WOM code is defined to be (log |Ω1|+ log |Ω2|)/n.

Intuitively, the definition enables the encoder to use E1 as the encoding function in the
first round. If the message x1 was encoded (as the string E1(x1)) and then we wished to
encode in the second round the message x2, then we write the string E2(E1(x1), x2). Since
E1(x1) ≤ E2(E1(x1), x2), we only have to change a few zeros to ones in order to move from
E1(x1) to E2(E1(x1), x2). The requirement on the decoding functions D1 and D2 guarantees
that at each round we can correctly decode the memory.2 Notice that in the second round we
are only required to decode x2 and not the pair (x1, x2). It is not hard to see that insisting
on decoding both x1 and x2 is a too strong requirement that does not allow rate more than
1.

The definition of a t-write code is similar and is left to the reader. Similarly, one can also
define WOM codes over other alphabets, but in this paper we will only be interested in the
binary alphabet.

1All logarithms in this paper are taken base 2.
2We implicitly assume that the decoder knows, given a codeword, whether it was encoded in the first or

in the second round. At worst this can add another bit to the encoding and has no affect (in the asymptotic
sense) on the rate.

2

In [RS82] it was shown that the maximal rate (i.e. the capacity) that a WOM code can
have is at most maxpH(p) + (1 − P) where H(p) is the entropy function. It is not hard to
prove that this expression is maximized for p = 1/3 and is equal to log 3. Currently, the best
known explicit encoding scheme for two-write (over the binary alphabet) has rate roughly
1.49 (compared to the optimal log 3 ≈ 1.585) [YKS+10]. We note that these codes, of rate
1.49, were found using the help of a computer search. A more ‘explicit’ construction given
in [YKS+10] achieves rate 1.46.

Rivest and Shamir were also interested in the case where both rounds encode the same
amount of information. That is, |Ω1| = |Ω2|. They showed that the rate of such codes is at
most H(p) + 1− p, for p such that H(p) = 1− p (p ≈ 0.227). Namely, the maximal possible
rate is roughly 1.5458. Yaakobi et al. described a construction (with |Ω1| = |Ω2|) that has
rate 1.375 and mentioned that using a computer search they found such a construction with
rate 1.45 [YKS+10].

1.1 Our results

Our main theorem concerning 2-write WOM codes over the binary alphabet is the following.

Theorem 1.1. For any ε > 0, 0 < p < 1 and c > 0 there is N = N(ε, p, c) such that for
every n > N(ε, p, c) there is an explicit construction of a two-write WOM code of length
n(1 + o(1)) of rate at least H(p) + 1 − p − ε. Furthermore, the encoding function can be
computed in time nc+1 ·poly(c log n) and decoding can be done in time n ·poly(c log n). Both
encoding and decoding can be done in logarithmic space.

In particular, for p = 1/3 we give a construction of a WOM code whose rate is ε close
to the capacity. If we wish to achieve a polynomial time encoding and decoding then our
proof gives the bound N(ε, p, c) = (cε)−O(1/(cε)). If we wish to have a short block length, i.e.
n = poly(1/ε), then our running time deteriorates and becomes nO(1/ε).

In addition to giving a new approach for constructing capacity approaching WOM codes
we also demonstrate a method to obtain capacity approaching codes from existing construc-
tions (specifically, using the methods of [YKS+10]) without storing huge lookup tables. We
explain this scheme in Section 7.

Using our techniques we obtain the following result for 3-write WOM codes over the
binary alphabet.

Theorem 1.2. For any ε > 0, there is N = N(ε) such that for every n > N(ε, p, c) there is
an explicit construction of a 3-write WOM code of length n that has rate larger than 1.809−ε.

Previously the best construction of 3-write WOM codes over the binary alphabet had
rate 1.61 [KYS+10]. Furthermore, the technique of [KYS+10] cannot provably yield codes
that have rate larger than 1.661. Hence, our construction yields a higher rate than the
best possible rate achievable by previous methods. However, we recall that the capacity of
3-write WOM codes over the binary alphabet is log(3 + 1) = 2. Thus, even using our new

3

techniques we fall short of achieving the capacity for this case. The proof of this result is
given in Section 8.

In addition to the results above, we highlight a connection between schemes for 2-write
WOM codes and extractors for bit-fixing sources, a combinatorial object that was studied
in complexity theory (see Section 5 for definitions). We then use this connection to obtain
new schemes for dealing with defective memory. This result is described in Section 6 (see
Theorem 6.1).

1.2 Is the problem interesting?

The first observation that one makes is that the problem of approaching capacity is, in some
sense, trivial. This basically follows from the fact that concatenating WOM codes (in the
sense of string concatenation) does not hurt any of their properties. Thus, if we can find,
even in a brute force manner, a code of length m that is ε-close to capacity, in time T (m),
then concatenating n = T (m) copies of this code, gives a code of length nm whose encoding
algorithm takes nT (m) = n2 time. Notice however, that for the brute force algorithm,

T (m) ≈ 22m and so, to get ε-close to capacity we need m ≈ 1/ε and thus n ≈ 221/ε
.

The same argument also shows that finding capacity approaching WOM codes for t-
write, for any constant t, is “easy” to achieve in the asymptotic sense, with a polynomial
time encoding/decoding functions, given that one is willing to let the encoding length n be
obscenely huge.

In fact, following Rivest and Shamir, Heegard actually showed that a randomized encod-
ing scheme can achieve capacity for all t [Hee85].

In view of that, our construction can be seen as giving a big improvement over the brute
force construction. Indeed, we only require n ≈ 21/ε and we give encoding and decoding
schemes that can be implemented in logarithmic space. Furthermore, our construction is
highly structured. This structure perhaps could be used to find “real-world” codes with
applicable parameters. Even if not, the ideas that are used in our construction can be
helpful in designing better WOM codes of reasonable lengths.

We later discuss a connection with linear seeded extractors for bit-fixing sources. A
small improvement to existing constructions could lead to capacity-achieving WOM codes
of reasonable block length.

1.3 Organization

We start by describing the method of [CGM86, Wu10, YKS+10] in Section 2 as it uses similar
ideas to our construction. We then give an overview of our construction in Section 3 and the
actual construction and its analysis in Section 4. In Section 5 we discuss the connection to
extractors and then show the applicability of extractors for dealing with defective memories
in Section 6. In Section 7 we show how one can use the basic approach of [YKS+10] to
achieve capacity approaching WOM codes that do not need large lookup tables. Finally, we
prove Theorem 1.2 in Section 8.

4

1.4 Notation

For a k ×m matrix A and a subset S ⊂ [m] we let A|S be the k × |S| submatrix of A that
contains only the columns that appear in S. For a length m vector y and a subset S ⊂ [m]
we denote with y|S the vector that is equal to y on all the coordinates in S and that has
zeros outside S.

2 The construction of [CGM86, Wu10, YKS+10]

As it turns out, our construction is related to the construction of WOM codes of Cohen et al.
[CGM86] as well as to that of Wu [Wu10] and of Yaakobi et al. [YKS+10].3 We describe the
idea behind the construction of Yaakobi et al. next (the constructions of [CGM86, Wu10]
are similar). Let 0 < p < 1 be some fixed number.

Similarly to [RS82], in the first round [YKS+10] think of a message as a subset S ⊂ [n]
of size pn and encode it by its characteristic vector. Clearly in this step we can transmit
H(p)n bits of information. (I.e. log |Ω1| ≈ H(p)n.)

For the second round assume that we already send a message S ⊂ [n]. I.e. we have
already written pn locations. Note that in order to match the capacity we should find a
way to optimally use the remaining (1 − p)n locations in order to transmit (1 − p − o(1))n
many bits. Imagine that we have a binary MDS code. Such codes of course do not exist
but for the sake of explanations it will be useful to assume their existence. Recall that a
linear MDS code of rate n− k can be described by a k×n parity check matrix A having the
property that any k columns have full rank. I.e. any k × k submatrix of A has full rank.
Such matrices exist over large fields (i.e. parity check matrices of Reed-Solomon codes) but
they do not exist over small fields. Nevertheless, assume that we have such a matrix A that
has (1−p)n rows. Further, assume that in the first round we transmitted a word w ∈ {0, 1}n
of weight |w| = pn representing a set S. Given a message x ∈ {0, 1}(1−p)n we find the unique
y ∈ {0, 1}n such that Ay = x and y|S = w. Notice that the fact that each (1−p)n× (1−p)n
submatrix of A has full rank guarantees the existence of such a y. Our encoding of x will
be the vector y. When the decoder receives a message y in order to recover x she simply
computes Ay. As we did not touch the nonzero coordinates of w this is a WOM encoding
scheme.

As such matrices A do not exist, Yaakobi et al. look for matrices that have many
submatrices of size (1 − p)n × (1 − p)n that are full rank and restrict their attention only
to sets S such that the set of columns corresponding to the complement of S has full rank.
(I.e. they modify the first round of transmission.) In principal, this makes the encoding of
the first round highly non-efficient as one needs a lookup table in order to store the encoding
scheme. However, [YKS+10] showed that such a construction has the ability to approach
capacity. For example, if the matrix A is randomly chosen among all (1 − p)n × n binary
matrices then the number of (1 − p)n × (1 − p)n submatrices of A that have full rank is

3Cohen et al. first did it for t > 2 and then Wu used it for t = 2. Wu’s ideas were then slightly refined
by Yaakobi et al.

5

roughly 2H(p)n.

Remark 2.1. Similar to the concerns raised in Section 1.2, this method (i.e. picking a
random matrix, verifying that it has the required properties and encoding the “good” sets of
columns) requires high running time in order to get codes that are ε-close to capacity. In
particular, one has to go over all matrices of dimension, roughly, 1/ε × O(1/ε) in order to
find a good matrix which takes time exp(1/ε2). Furthermore, the encoding scheme requires
a lookup table whose space complexity is exp(1/ε). Thus, even if we use the observation
raised in Section 1.2 and concatenate several copies of this construction in order to reach a
polynomial time encoding scheme, it will still require a large space. (And the block length
will even be slightly larger than in our construction.)

Nevertheless, in Section 7 we show how one can trade space for computation. In other
words, we show how one can approach capacity using this approach without the need to store
huge lookup tables.

3 Our method

We describe our technique for proving Theorem 1.1. The main idea is that we can use a
collection of binary codes that are, in some sense, MDS codes on average. Namely, we show
a collection of (less than) 2m matrices {Ai} of size (1− p− ε)m×m such that for any subset
S ⊂ [m], of size pm, all but a fraction 2−εm of the matrices Ai, satisfy that Ai|[m]\S has full
row rank (i.e. rank (1 − p − ε)m). Now, assume that in the first round we transmitted a
word w corresponding to a subset S ⊂ [m] of size pm. In the second round we find a matrix
Ai such that Ai|[m]\S has full row rank. We then use the same encoding scheme as before.
However, as the receiver does not know which matrix we used for the encoding, we also send
the “name” of the matrix alongside our message (using additional m bits).

This idea has several drawbacks. First, to find the good matrix we have to check exp(m)
many matrices which takes a long time. Secondly, sending the name of the matrix that we
use require additional m bits which makes the construction very far from achieving capacity.

To overcome both issues we note that we can in fact use the same matrix for many
different words w. However, instead of restricting our attention to only one matrix and the
sets of w’s that is good for it, as was done in [YKS+10], we change the encoding in the
following way. Let M = m · 2εm. In the first step we think of each message as a collection
of M/m subsets S1, . . . , SM/m ⊂ [m], each of size pm. Again we represent each Si using a
length m binary vector of weight pm, wi. We now let w = w1 ◦ w2 ◦ . . . ◦ wM/m, where a ◦ b
stands for string concatenation. For the second stage of the construction we find, for a given
transmitted word w ∈ {0, 1}M , a matrix A from our collection such that all the matrices ASi
have full rank. Since, for each set S only 2−εm of the matrices are “bad”, we are guaranteed,
by the union bound, that such a good matrix exists in our collection. Notice that finding
the matrix requires time poly(M, 2m) = MO(1/ε). Now, given a length (1 − p − ε)M string
x = x1 ◦ . . . ◦ xM/m represented as the concatenation of M/m strings of length (1− p− ε)m
each, we find for each wi a word yi ∈ {0, 1}m such that Ayi = xi and yi|Si = wi. Our

6

encoding of x is y1 ◦ . . . ◦ yM/m ◦ I(A) where by I(A) we mean the length m string that
serves as the index of A. Observe that this time sending the index of A has almost no
effect on the rate (the encoding length is M = exp(m) and the “name” of A consists of at
most m bits). Furthermore, the number of messages that we encode in the first round is

equal to
(
m
pm

)M/m
= 2(H(p)−o(1))m·M/m = 2(H(p)−o(1))M . In the second round we clearly send

an additional (1− p− ε)M bits and so we achieve rate H(p) + (1− p− ε)− o(1) as required.
However, there is still one drawback which is the fact that the encoding requires M1/ε

time. To handle this we note that we can simply concatenate M1/ε copies of this basic
construction to get a construction of length n = M1+1/ε having the same rate, such that now
encoding requires time MO(1/ε) = poly(n).

We later use a similar approach, in combination with the Rivest-Shamir encoding scheme,
to prove Theorem 1.2.

4 Capacity achieving 2-write WOM codes

4.1 Wozencraft ensemble

We first discuss the construction known as Wozencraft’s ensemble. This will constitute our
set of “average” binary MDS codes.

The Wozencraft ensemble consists of a set of 2n binary codes of block length 2n and
rate 1/2 (i.e. dimension n) such that most codes in the family meet the Gilbert-Varshamov
bound. To the best of our knowledge, the construction known as Wozencraft’s ensemble first
appeared in a paper by Massey [Mas63]. It later appeared in a paper of Justesen [Jus72]
that showed how to construct codes that achieve the Zyablov bound [Zya71].

Let k be a positive integer and F = F2k be the field with 2k elements. We fix some
canonical invertible linear map σk between F and Fk2 and from this point on we think of each
element x ∈ F both as a field element and as a binary vector of length k, which we denote
σk(x). Let b > 0 be an integer. Denote πb : {0, 1}∗ → {0, 1}b be the map that projects each
binary sequence on its first b coordinates.

For two integers 0 < b ≤ k, the (k, k + b)-Wozencraft ensemble is the following collec-
tion of 2k matrices. For α ∈ F denote by Aα the unique matrix satisfying σk(x) · Aα =
(σk(x), πb(σk(αx))) for every x ∈ F.

The following lemma is well known. For completeness we provide the proof below.

Lemma 4.1. For any 0 6= y ∈ {0, 1}k+b the number of matrices Aα that y is contained in
the span of their rows is exactly 2k−b.

Proof. Let us first consider the case where b = k, i.e., that we keep all of σk(αx). In
this case σk(x) · Aα = (σk(x), σk(αx)). Given α 6= β and x, y ∈ {0, 1}k notice that if
σk(x) · Aα = σk(y) · Aα then it must be the case that σk(x) = σk(y) and hence x = y. Now,
if x = y and 0 6= x then since α 6= β we have that αx 6= βx = βy. It follows that the only
common vector in the span of the rows of Aα and Aβ is the zero vector (corresponding to
the case x = 0).

7

Now, let use assume that b ≤ k. Fix some α ∈ F and let (σk(x), πb(σk(αx))) be some
nonzero vector spanned by the rows of Aα. For any vector u ∈ {0, 1}k−b let βu ∈ F be the
unique element satisfying σk(βux) = πb(σk(αx)) ◦ u. Notice that such a βu exists and equal
to βu = σ(−1)(πb(σk(αx)) ◦ u) · x−1 (x 6= 0 as we started from a nonzero vector in the row
space of Aα). We thus have that σk(x) · Aβu = (σk(x), πb(σk(βux))) = (σk(x), πb(σk(αx))).
Hence, (σk(x), πb(σk(αx))) is also contained in the row space of Aβu . Since this was true for

any u ∈ {0, 1}k, and clearly for u 6= u′, βu 6= βu′ we see that any such row is contained in
the row space of exactly 2k−b matrices Aβ.

It is now also clear that there is no additional matrix that contains (σk(x), πb(σk(αx)))
in its row space. Indeed, if Aγ is a matrix containing the vector in its row space, then let
u be the last k − b bits of σk(γx). It now follows that σk(γx) = σk(βux) and since σk is an
invertible linear map and x 6= 0 this implies that γ = βu.

Corollary 4.2. Let y ∈ {0, 1}k+b have weight s. Then, the number of matrices in the
(k, k + b)-Wozencraft ensemble that contain a vector 0 6= y′ ≤ y in the span of their rows is
at most (2s − 1) · 2k−b < 2k+s−b.

To see why this corollary is relevant we prove the following easy lemma.

Lemma 4.3. Let A be a k×(k+b) matrix of full row rank (i.e. rank(A) = k) and S ⊂ [k+b]
a set of columns. Then AS has full row rank if and only if there is no vector y 6= 0 supported
on [k + b] \ S that is in the span of the rows of A.

Proof. Assume that there is a nonzero vector y in the row space of A that is supported on
[k + b] \ S. Hence, it must be the case that xAS = 0. Since x 6= 0, this means that the rows
of AS are linearly dependent and hence AS does not have full row rank.

To prove the other direction notice that if rank(AS) < k then there must be a nonzero
x ∈ {0, 1}k such that xAS = 0. Since A has full row rank it is also the case that xA 6= 0.
We can thus conclude that xA is supported on [k + b] \ S as required.

Corollary 4.4. For any S ⊂ [k + b] of size |S| ≤ (1 − ε)b, the number of matrices A in
the (k, k + b)-Wozencraft ensemble that A[k+b]\S does not have full row rank is smaller than
2k−εb.

Proof. Let y be the characteristic vector of S. In particular, the wight of y is ≤ (1− ε)b. By
Corollary 4.2, the number of matrices that contain a vector 0 6= y′ ≤ y in the span of their
rows is at most (2(1−ε)b − 1) · 2k−b < 2k−εb. By Lemma 4.3 we see that any other matrix in
the ensemble has full row rank when we restrict to the columns in [k + b] \ S.

4.2 The construction

Let c, ε > 0 and 0 < p < 1 be real numbers. Let n be such that

log n < ncε/4 and 8/ε < n(p+ε/2)cε.

8

Notice that n = (1/cε)O(1/pcε) satisfies this condition. Let k = (1 − p − ε/2) · c log n, b =
(p+ ε/2) · c log n and

I = k · n

(c log n)2εb
= (1− p− ε/2)

n

2εb
.

To simplify notation assume that k, b and I are integers.
Our encoding scheme will yield a WOM code of length n+ I, which, by the choice of n,

is at most n+ I < (1 + ε/8)n, and rate larger than H(p) + (1− p)− ε.

Step I. A message in the first round consists of n/(c log n) subsets S1, . . . , Sn/(c logn) ⊂
[c log n] of size at most p · (c log n) each. We encode each Si using its characteristic vector wi
and denote w = w1 ◦w2 ◦ . . .◦wn/(c logn) ◦~0I , where ~0I is the zero vector of length I. Reading
the message S1, . . . , Sn/(c logn) from w is trivial.

Step II. Let x = x1 ◦x2 ◦ . . . ◦xn/(c logn) be a concatenation of n/(c log n) vectors of length
k = (1 − p − ε/2)c log n each. Assume that in the first step we transmitted a word w
corresponding to the message (S1, . . . , Sn/(c logn)) and that we wish to encode the message x
in the second step. For each 1 ≤ i ≤ n

(c logn)2εb
we do the following.

Step II.i. Find a matrix Aα in the (k, k + b)-Wozencraft ensemble such that for each
(i−1)2εb+1 ≤ j ≤ i2εb the submatrix (Aα)[c logn]\Sj has full row rank. Note that Corollary 4.4
guarantees that such a matrix exists. Denote this required matrix by Aαi .

Step II.ii. For (i− 1)2εb + 1 ≤ j ≤ i2εb find a vector yj ∈ {0, 1}k+b = {0, 1}c logn such
that Aαiyj = xj and yj|Sj = wj. Such a vector exists by the choice of Aαi . The encoding of x
is the vector y1◦y2◦ . . .◦yn/(c logn)◦σk(α1)◦ . . .◦σk(α n

(c logn)2εb
). Observe that the length of the

encoding is c log(n) · n/(c log(n)) + k · n
(c logn)2εb

= n+ I. Notice that given such an encoding

we can recover x in the following way. Given (i− 1)2εb + 1 ≤ j ≤ i2εb set xj = Aαiyj, where
αi is trivially read from the last I bits of the encoding.

4.3 Analysis

Rate. From Stirling’s formula it follows that the number of messages transmitted in Step
I. is at least (2H(p)c logn−log logn)n/(c logn) = 2H(p)n−n log logn/(c logn). In Step II. it is clear that
we encode all messages of length kn/(c log n) = (1− p− ε/2)n. Thus, the total rate is

((H(p)− log log n/(c log n)) + (1− p− ε/2))n/(n+ I)

>((H(p)− log log n/(c log n)) + (1− p− ε/2))(1− ε/8)

>(H(p) + 1− p)− ε log2(3)/8− ε/2− log log n/(c log n)

>H(p) + 1− p− ε,

where in the second inequality we used the fact that maxp(H(p) + 1− p) = log2 3. The last
inequality follows since log n < ncε/4.

9

Complexity. The encoding and decoding in the first step are clearly done in polynomial
time.4

In the second step, we have to find a “good” matrix Aαi for all sets Sj such that (i −
1)2εb + 1 ≤ j ≤ i2εb. As there are 2c logn = nc matrices and each has size k × c log n, we
can easily compute for each of them whether it has full row rank for the set of columns
[c log n] \ Sj. Thus, given i, we can find Aαi in time at most 2εb · nc · poly(c log n). Thus,
finding all Aαi takes at most

n

(c log n)2εb
· (2εb · nc · poly(c log n)) = nc+1 · poly(c log n).

Given Aαi and wj, finding yj amounts to solving a system of k linear equations in (at most)
c log n variables which can be done in time poly(c log n). It is also clear that computing
σk(αi) requires poly(c log n) time. Thus, the overall complexity is nc+1 · poly(c log n).
Decoding is performed by multiplying each of the Aαi by 2εb vectors so the decoding
complexity is at most n

(c logn)2εb
· 2εb · poly(c log n) = n · poly(c log n).

Theorem 1.1 is an immediate corollary of the above construction and analysis.

5 Connection to extractors for bit-fixing sources

Currently, our construction is not very practical because of the large encoding length required
to approach capacity. It is an interesting question to come with “sensible” capacity achieving
codes. One approach would be to find, for each n, a set of poly(n) matrices {Ai} of dimensions
(1 − p − ε)n × n such that for each set S ⊂ [n] of size |S| = (1 − p)n there is at least one
Ai such that Ai|S has full row rank. Using our ideas one immediately gets a code that is
(roughly) ε-close to capacity.

One way to try and achieve this goal may be to improve known constructions of seeded
linear extractors for bit-fixing sources. An (n, k) bit-fixing source is a uniform distribution on
all strings of the form {v ∈ {0, 1}n | vS = ~a} for some S ⊂ [n] of size n−k and ~a ∈ {0, 1}n−k.
We call such a source (S,~a)-source.

Roughly, a seeded linear extractor for (n, k) sources that extracts k−o(k) of the entropy,
with a seed length d, can be viewed as a set of 2d matrices of dimension (k− o(k))× n such
that for each S ⊂ [n] of size |S| = n − k, a 1 − ε fraction of the matrices Ai satisfy Ai|[n]\S
has full row rank.5

Definition 5.1. A function E : {0, 1}n × {0, 1}d → {0, 1}m is said to be a strong linear
seeded (k, ε)-extractor for bit fixing sources if the following properties holds.6

• For every r ∈ {0, 1}d, E(·, r) : {0, 1}n → {0, 1}m is a linear function.

4We do not explain how to encode sets as binary vectors but this is quite easy and clear.
5Here we use the assumed linearity of the extractor.
6We do not give the most general definition, but rather a definition that is enough for our needs. For a

more general definition see [Rao07].

10

• For every (n, k)-source X, the distribution E(X, r) is equal to the uniform distribution
on {0, 1}m for (1− ε) of the seeds r.

Roughly, a seeded linear extractor for (n, k) sources that extracts k−o(k) of the entropy,
with a seed length d, can be viewed as a set of 2d matrices of dimension (k− o(k))× n such
that for each S ⊂ [n] of size |S| = n − k, 1 − ε of the matrices Ai satisfy Ai|[n]\S has full
row rank.7 Note that this is a stronger requirement than what we need, as we would be fine
also if there was one Ai with this property. Currently, the best construction of seeded linear
extractors for (n, k)-bit fixing sources is given in [RRV02], following [Tre01], and has a seed
length d = O(log3 n). We also refer the reader to [Rao09] where linear seeded extractors for
affine sources are discussed.

Theorem 5.1 ([RRV02]). For every n, k ∈ N and ε > 0, there is an explicit strong seeded
(k, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}k−O(log3(n/ε)), with d = O(log3(n/ε)).

In the next section we show how one can use the result of [RRV02] in order to design
encoding schemes for defective memory.

Going back to our problem, we note that if one could get an extractor for bit-fixing
sources with seed length d = O(log n) then this will give the required poly(n) matrices and
potentially yield a “reasonable” construction of a capacity achieving two-write WOM code.

Another relaxation of extractors for bit-fixing sources is to construct a set of matrices of
dimension (1 − p − ε)n × n, A, such that |A| can be as large as |A| = exp(o(n)), and that
satisfy that given an (S, α)-source we can efficiently find a matrix A ∈ A such that A|[n]\S
has full row rank. It is not hard to see that such a set also gives rise to a capacity achieving
WOM codes using a construction similar to ours. Possibly, such A could be constructed to
give more effective WOM codes. In fact, it may even be the case that one could “massage”
existing constructions of seeded extractors for bit-fixing sources so that given an (S, α)-source
a “good” seed can be efficiently found.

6 Memory with defects

In this section we demonstrate how the ideas raise in Section 5 can be used to handle defective
memory.

A memory containing n cells is said to have pn defects if pn of the memory cells have some
value stored on them that cannot be changed. We will assume that the person storing data
in the memory is aware of the defects, yet the person reading the memory cannot distinguish
a defective cell from a proper cell.

The main question concerning defective memory is to find a scheme for storing as much
information as possible that can be retrieved efficiently, no matter where the pn defects are.

We will demonstrate a method for dealing with defects that is based on linear extrac-
tors for bit fixing sources. To make the scheme work we will need to make an additional
assumption:

7Here we use the assumed linearity of the extractor.

11

Our assumption: We shall assume that the memory contains O(log3 n) cells that are
undamaged and whose identity is known to both the writer and the reader.

We think that our assumption, although not standard is very reasonable. For example, we
can think of having a very small and expensive chunk of memory that is highly reliable and
a larger memory that is not as reliable.

The encoding scheme Our scheme will be randomized in nature. The idea is that each
memory with k = pn defects naturally defines an (n, k)-source, X, that is determined by the
values in the defective cells. Consider the extractor Ext guaranteed by Theorem 5.1. We
have that for (1− ε) fraction of the seeds r, the linear map Ext : X → {0, 1}k−O(log3(n/ε)) has
full rank. (as it induces the uniform distribution on {0, 1}k−O(log3(n/ε)).) In particular, given
a string y ∈ {0, 1}(1−p)n−O(log3(n/ε)), if we pick a seed r ∈ O(log3(n/ε)) at random, then with
probability at least (1− ε) there will be an x ∈ X such that Ext(x, r) = y.

Thus, our randomized encoding scheme will work as follows. Given the defects, we
define the source X (which is simply the affine space of all n-bit strings that have the
same value in the relevant coordinates as the defective memory cells). Given a string
y ∈ {0, 1}(1−p)n−O(log3(n/ε)) that we wish to store to the memory, we will pick at random
r ∈ {0, 1}d, for d = O(log3(n/ε)), and check whether Ext : X → {0, 1}k−O(log3(n/ε)) has full
rank. This will be the case with probability at least 1 − ε. Once we have found such r, we
find x ∈ X with Ext(x, r) = y. As x ∈ X and X is “consistent” with the pattern of defects,
we can write x to the memory. Finally, we write r in the “clean” O(log3(n/ε)) memory cells
that we assumed to have.

The reader in turn, will read the memory x and then r and will recover y by simply
computing Ext(x, r).

In conclusion, for any constant8 p < 1 the encoding scheme described above needs
O(log3 n) clean memory cells, and then it can store as much as (1 − p − δ)n bits for any
constant δ > 0.9

We summarize this result in the following theorem.

Theorem 6.1. For any constant p < 1 there is a randomized encoding scheme that given
access to a defective memory of length n containing pn defective cells, uses O(log3 n) clean
memory cells, and can store (1− p− δ)n bits for any constant δ > 0.

The encoding and decoding times for the scheme are polynomial in n and 1/δ.

7 Approaching capacity without lookup tables

In this section we describe how one can use the techniques of [CGM86, Wu10, YKS+10] in
order to achieve codes that approach capacity without paying the cost of storing huge lookup

8The scheme can in fact work also when p = 1− o(1), and this can be easily deduced from the above, but
we present here the case of p < 1.

9Again, we can take δ = o(1) but we leave this to the interested reader.

12

tables. The reader is referred to Section 2 for a summary of the basic approach. We will
give a self contained treatment here.

Let 0 < p < 1 and ε be real numbers. Let A be a (1 − p)m × m matrix that has the
following property

Main property of A:
For (1− ε) fraction of the subsets S ⊂ [m] of size pm it holds that A|[m]\S has full rank.

Recall that this is exactly the property that is required by [CGM86, Wu10, YKS+10].
However, while in those works a lookup table was needed we will show how to trade space
for computation and in particular, our encoding scheme will only need to store the matrix
A itself (whose size is logarithmic in the size of the lookup table).

The encoding scheme Let Σ =
(
[m]
pm

)
. In words, Σ is the collection of all subsets of [m] of

size pm. We denote σ = |Σ| =
(
m
pm

)
. Let N = σ ·m. We will construct an encoding scheme

for N memory cells.
We denote with Σg ⊂ Σ (g stands for “good”) the subset of Σ containing all those sets

S for which A|[m]\S has full rank. We also denote σg = |Σg| ≥ (1− ε)σ.

We let V = {0, 1}(1−p)m \ {A · ~1} be the set of vectors of length (1 − p)m that contains
all vectors except the vector A ·~1. Clearly |V | = 2(1−p)m − 1.

The first round: A message will be an equidistributed10 word in Σσ. Namely, it will
consist of all σ subsets of [m] of size pm each, such that each subset appears exactly once.
We denote this word as w = w1 ◦ w2 ◦ . . . ◦ wσ where wi ∈ Σ. (alternatively, a word is a
permutation of [σ].)

To write w to the memory we will view the N cells as a collection of σ groups of m cells
each. We will write the characteristic vector of wi to the m bits of ith group.

The second round: A message in the second round consists of σg vectors from V .
That is, x = x1 ◦ . . . ◦ xσg , where xi ∈ V .

To write x to memory we first go over all the memory cells and check which coordinates
belong to Σg. According to our scheme there are exactly σg such m-tuples. Consider the
ith m-tuple that belongs to Σg. Assume that it encodes the subset S ⊂ [m] (recall that
|S| = pm). Let wS be its characteristic vector. (note that this m-tuple stores wS.) We will
find the unique y ∈ {0, 1}m \~1 such that Ay = xi and y|S = wS. Such a y exists since A|[m]\S
has full rank.

After writing x to memory in this way, we change the value of the other σ− σg m-tuples
to 1111...1. Namely, whenever an m-tuple stored a set not from Σg we change its value in
the second write to ~1.

10From here on we use the term ‘equidistributed’ to denote words that contain each symbol of the alphabet
the same number of times.

13

Recovering x is quite easy. We ignore all m-tuples that contain the all 1 vector. We are
thus left with σg m-tuples. If yi is the m-bit vector stored at the ith “good” m-tuple then
xi = Ayi.

Analysis The rate of the first round is

log(σ!)

N
=

log(σ!)

mσ
=

log(σ)

m
−O(

1

m
) =

log
(
m
pm

)
m

−O(
1

m
) = H(p)−O(

1

m
).

In the second round we get rate

log((2(1−p)m − 1)σg)

N
=
σg · log(2(1−p)m − 1))

σm
=

(1− ε) log(2(1−p)m − 1))

m
= (1− ε)(1− p)−O(exp(−(1− p)m)).

Hence, the overall rate of our construction is

H(p) + (1− ε)(1− p) +O(1/m).

Notice that the construction of [YKS+10] gives rate log(1− ε) + H(p) + (1− p). Thus, the
loss of our construction is at most

εp+O(1/m)− log(1− ε) = O(ε+ 1/m).

Note, that if [YKS+10] get ε close to capacity then we must have m = poly(1/ε) and so our
codes get O(ε) close to capacity. To see that it must be the case that m = poly(1/ε) we
note that by probabilistic argument it is not hard to show that, say, σg ≤ σ/2. Thus, the
rate achieved by [YKS+10] is at most H(p) + (1− p)− 1/m, and so to be ε-close to capacity
(which is maxp(H(p) + (1− p)), we must have m ≥ 1/ε.

Concluding, our scheme enables a tradeoff: for the [YKS+10] scheme to be ε-close to
capacity we need m = poly(1/ε) and therefore the size of the lookup table that they need
to store is exp(1/ε). In our scheme, the block length is exp(1/ε) (compared to poly(1/ε) in
[YKS+10]), but we do not need to store a lookup table.

8 3-write binary WOM codes

In this section we give an asymptotic construction of a 3-write WOM code over the binary
alphabet that achieves rate larger than 1.809 − ε. Currently, the best known methods give
rate 1.61 [KYS+10] and provably cannot yield rate better than 1.661. The main drawback
of our construction is that the block length has to be very large in order to approach this
rate. Namely, to be ε close to the rate the block length has to be exponentially large in 1/ε.

An important ingredient in our construction is a 2-write binary WOM code due to Rivest
and Shamir [RS82] that we recall next. The block length of the Rivest-Shamir construction

14

Symbol weight 0/1 weight 2/3
0 000 111
1 001 110
2 010 101
3 100 011

Table 1: The Rivest-Shamir encoding

is 3 and the rate is 4/3. In each round we write one of four symbols {0, 1, 2, 3} which are
encoded as follows.

In the first round we write for each symbol the value in the ‘weight 0/1’ column. In the
second round we use for each symbol, the minimal possible weight representing it and that is
a ‘legal’ write. For example, if in the first round the symbol was 2 and at the second round
it was 1 then we first write 010 and then 110. On the other hand, if in the first round the
symbol was 0 and in the second round it was 1 then we first write 000 and then 001.

The basic idea. We now describe our approach for constructing a 3-write WOM code.
Let n and m be integers such that n = 12m. We shall construct a code with block length
n. We first partition the n cells to 4m groups of 3 cells each. A message in the first round
corresponds to a word w1 ∈ {0, 1, 2, 3}4m such that each symbol appears in w1 exactly m
times. (we will later “play” with this distribution.) We encode w1 using the Rivest-Shamir
scheme, where we use the ith triplet to encode (w1)i. The second round is the same as the
first round. I.e. we get w2 ∈ {0, 1, 2, 3}4m that is equidistributed and write it using the
Rivest-Shamir scheme.

Before we describe the third round let us calculate an upper bound on the number of
memory cells that have value 1, i.e., those cells that we cannot use in the third write.

Notice that according to the Rivest-Shamir encoding scheme, a triplet of cells (among
the 4m triplets) stores 111 if and only if, in the first round it stored a symbol from {1, 2, 3}
and in the second round it stored a zero. Similarly, a triplet has weight 2 only if in both
rounds it stored a symbol from {1, 2, 3}. We also note, that a triplet that stored zero in
the first round, will store a word of weight at most one after the second write. Since in the
second round we had only m zeros and in the first round we wrote only 3m values different
than zero, the weight of the stored word is at most

m× 3 + (3m−m)× 2 +m× 1 = 8m = 2n/3.

Thus, we still have n/3 zeros that we can potentially use in the third write. We can now use
the same idea as in the construction of capacity achieving 2-write WOM codes and with the
help of the Wozencraft ensemble achieve rate (1/3 − o(1)) for the third write.11 Thus, the
overall rate of this construction is 2/3 + 2/3 + 1/3− o(1) = 5/3− o(1). As before, in order

11This step actually involves concatenating many copies of the construction with itself to achieve reasonable
running time, and as a result the block length blows to exp(1/ε).

15

to be ε-close to 5/3 we need to take n = exp(1/ε). Note that this idea already yields codes
that beat the best possible rate one can hope to achieve using the methods of Kayser et al.
[KYS+10].

Improvement I. One improvement can be achieved by modifying the distribution of
symbols in the messages of the first round. Specifically, let us only consider messages
w1 ∈ {0, 1, 2, 3}4m that have at least 4pm zeros (for some parameter p). The rate of the
first round is thus (1/3)(H(p) + (1 − p) log(3)). In the second round we again write an
equidistributed word w2. Calculating, we get that the number of nonzero memory cells after
the second write is at most

m× 3 + (4(1− p)m−m)× 2 + 4pm× 1 = 9m− 4pm .

Thus, in the third round we can achieve rate 3m+4pm
12m

− o(1) = p/3 + 1/4− o(1). Hence, the
overall rate is

(1/3) · (H(p) + (1− p) log(3)) + (2/3) + (p/3 + 1/4)− o(1) .

Maximizing over p we get rate larger than 1.69 when p = 2/5.

Improvement II. Note that so far we always assumed that the worst had happened, i.e.,
that all the zero symbols of w2 were assigned to cells that stored a value among {1, 2, 3}.
We now show how one can assume that the “average” case has happened using the aid of
two additional memory cells.

Let n = 12m and N = n + 2. As before, let p be a parameter to be determined later.
A message in the first round is some w1 ∈ {0, 1, 2, 3}4m that has at least 4pm zeros. Again,
we use the Rivest-Shamir encoding to store w1 on the first n memory cells. We define the
set I = {i | (w1)i 6= 0}. Notice that |I| ≤ 4(1 − p)m. In the second round we get a word
w2 ∈ {0, 1, 2, 3}4m which is equidistributed. We identify an element α ∈ {0, 1, 2, 3} that
appears the least number of times in (w2)|I . I.e., it is the symbol that is repeated the least
number of times in w2 when we only consider those coordinates in I. We would like this α
to be 0 but this is not necessarily the case. So, to overcome this we change the meaning of
the symbols of w2 in the following way: We write α in the last two memory cells (say, using
its binary representation) and define a new word w′2 ∈ {0, 1, 2, 3}4m from w2 by replacing
each appearance of zero with α and vice versa. We now use the Rivest-Shamir encoding
scheme to store w′2. It is clear that we can recover w′2 and α from the stored information
and therefore we can also recover w2 (by replacing 0 and α). The advantage of this trick is
that the weight of the stored word is at most

1

4
·4(1−p)m×3 +

3

4
·4(1−p)m×2 +

1

4
·4pm×0 +

3

4
·4pm×1 = (9−6p)m = (3/4−p/2)n .

Indeed, in w′2 the value zero appears in at most |I|/4 of the cells in I. Thus, at most
1
4
· 4(1 − p)m triplets will have the value 111. Moreover, the rest of the zeros (remember

16

that w′2 had exactly m zeros) will have to be stored in triplets that already contain the zero
triplet so they will leave those cells unchanged (and of weight zero). As a result, in the third
round we will be able to store (1/4 + p/2)n − o(n) bits (this is the number of untouched
memory cells after the second round). To summarize, the rate that we get is12

(1/3) · (H(p) + (1− p) log(3)) + (2/3) + (1/4 + p/2)− o(1) .

Maximizing over p we get that for p ≈ 0.485 the rate is larger than 1.76.

Improvement III. The last improvement comes from noticing that so far we assumed
that all the triplets that had weight 1 after the first write, have weight at least 2 after the
second write. This can be taken care of by further permuting some of the values of w2.
Towards this goal we shall make use of the following notation. For a word w ∈ {0, 1, 2, 3}4m
let

I0(w) = {i | (w1)i 6= 0 and wi = 0}
and

I=(w) = {i | (w1)i 6= 0 and wi = (w1)i} .
For a permutation π : {0, 1, 2, 3} → {0, 1, 2, 3} define the word wπ to be (wπ)i = π((w)i).

Let n = 12m and N = n+ 5. As before, let p be a parameter to be determined later. A
message in the first round is some w1 ∈ {0, 1, 2, 3}4m that has at least 4pm zeros. We use
the Rivest-Shamir encoding scheme to store w1 on the first n memory cells. A message for
the second write is w2 ∈ {0, 1, 2, 3}4m. We now look for a permutations π : {0, 1, 2, 3} →
{0, 1, 2, 3} such that |I0(wπ)| ≤ 1

4
· 4(1 − p)m = (1 − p)m and |I=(wπ)| ≥ 1

4
· 4(1 − p)m =

(1− p)m. Observe that such a π always exists. Indeed, as before we can first find π−1(0) by
looking for the value that appears the least number of times in w2 on the coordinates where
w1 is not zero. Let us denote this value with α. We now consider only permutations that
send α to 0. After we apply this transformation to w2 (namely, switch between α and 0) we
denote the resulting word by w′2. Let J = {i | (w1)i 6= 0 and (w′2)i 6= 0}. I.e., J is the set of
coordinates that we need to consider in order to satisfy |I=(wπ)| ≥ (1− p)m. By the choice
of α we get that |J | ≥ 4(1− p)m− 1

4
· 4(1− p)m = 3(1− p)m. Now, among all permutations

that send α to zero, let us pick one at random and compute the expected size |I=((w′2)π)|.
Notice, that when picking a permutation at random the probability that a coordinate i ∈ J ,
will satisfy (w1)i = ((w′2)π)i is exactly 1/3. Thus, the expected number of coordinates in J
that fall into I=((w′2)π) is |J |/3. In particular there exists a permutation π that achieves
|I=((w′2)π)| ≥ |J |/3 ≥ 3(1− p)m/3 = (1− p)m. Let π0 be this permutation. We use the last
5 memory cells to encode π0. As there are 4! = 24 permutations, this can be easily done.

Now, we consider the word (w′2)π0 and write it to the first n memory cells using the
Rivest-Shamir scheme. Notice that after this second write, the weight of the word stored in
the first n memory cells is at most

1

4
· 4(1− p)m× 3 +

2

3
· 3(1− p)m× 2 +

1

3
· 3(1− p)m× 1 +

1

4
· 4pm× 0 +

3

4
· 4pm× 1

= (8− 5p)m = (8− 5p)n/12 ,

12 The additional two coordinates have no affect on the asymptotic rate.

17

where the term 1
3
·3(1−p)m×1 comes from the contribution of the coordinates in I=((w′2)π0).

Thus, in the third write we can store (4 + 5p)n/12− o(n) bits. The total rate is thus

(1/3) · (H(p) + (1− p) log(3)) + (2/3) + (4 + 5p)/12− o(1) .

Maximizing, we get that for p ≈ 0.442 the rate is larger than 1.809.

The proof of Theorem 1.2 easily follows from the construction above.

8.1 Discussion

The construction above yields 3-write WOM codes that have rate that is ε close to 1.809
for block length roughly exp(1/ε). In Theorem 1.1 we showed how one can achieve capacity
for the case of 2-write WOM codes with such a block length. In contrast, for 3-write WOM
codes over the binary alphabet the capacity is log(4) = 2. Thus, even with a block length
of exp(1/ε) we fail to reach capacity. As described in Section 1.2 we can achieve capacity
by letting the block length grow like exp(exp(1/ε)). It is an interesting question to achieve
capacity for 3-write WOM codes with a shorter block length.

An important ingredient in our construction is the Rivest-Shamir encoding scheme. Al-
though this scheme does not give the best 2-write WOM code we used it as it is easy to
analyze and understand the weight of the stored word after the second write. It may be possi-
ble to obtain improved asymptotic results (and perhaps even more explicit constructions) by
studying existing schemes of 2-write WOM codes that beat the Rivest-Shamir construction.

Acknowledgements

We are grateful to Eitan Yaakobi for many helpful discussions and for carefully reading and
commenting on an earlier version of this paper. We also thank Eitan for several pointers
to the literature. We thank Alexander Barg, Madhu Sudan and Gilles Zémor for helpful
discussions on WOM codes. This work was partially done while the author was visiting the
Bernoulli center at EPFL. We thank the Bernoulli center for its hospitality.

References

[CGM86] G.D. Cohen, P. Godlewski, and F. Merkx. Linear binary code for writeonce
memories. IEEE Transactions on Information Theory, 32(5):697–700, 1986.

[FV99] F. Fu and A. J. Han Vinck. On the capacity of generalized write-once memory
with state transitions described by an arbitrary directed acyclic graph. IEEE
Transactions on Information Theory, 45(1):308–313, 1999.

18

[Hee85] C. Heegard. On the capacity of permanent memory. IEEE Transactions on
Information Theory, 31(1):34–41, 1985.

[Jus72] J. Justesen. A class of constructive asymptotically good algebraic codes. IEEE
Transactions on Information Theory, 18:652–656, 1972.

[KYS+10] S. Kayser, E. Yaakobi, P. H. Siegel, A. Vardy, and J. K. Wolf. Multiple-write wom-
codes. In Proceedings of the 48th Annual Allerton Conference on Communication,
Control and Computing, 2010.

[Mas63] J. L. Massey. Threshold decoding. Technical Report 410, Massachusetts Institute
of Technology, Research Laboratory of Electronics, Cambridge, MA, 1963.

[Rao07] A. Rao. Randomness Extractors for Independent Sources and Applications. PhD
thesis, U. T. Austin, 2007.

[Rao09] A. Rao. Extractors for low-weight affine sources. In Proceedings of the 24th annual
CCC, pages 95–101, 2009.

[RRV02] R. Raz, O. Reingold, and S. P. Vadhan. Extracting all the randomness and
reducing the error in trevisan’s extractors. J. Comput. Syst. Sci., 65(1):97–128,
2002.

[RS82] R. L. Rivest and A. Shamir. How to reuse a “write-once” memory. Information
and Control, 55(1-3):1–19, 1982.

[Tre01] L. Trevisan. Extractors and pseudorandom generators. J. ACM, 48(4):860–879,
2001.

[Wu10] Y. Wu. Low complexity codes for writing a write-once memory twice. In Proceed-
ings of IEEE International Symposium on Information Theory, pages 1928–1932,
2010.

[YKS+10] E. Yaakobi, S. Kayser, P. H. Siegel, A. Vardy, and J. K. Wolf. Efficient two-
write wom-codes. In Proceedings of IEEE Information Theory Workshop, Dublin,
Ireland, 2010.

[Zya71] V. V. Zyablov. An estimate of the complexity of constructing binary linear cascade
codes. Probl. Peredachi Inf., 7(1):5–13, 1971.

19

	Introduction
	Our results
	Is the problem interesting?
	Organization
	Notation

	The construction of CohenGodlewskiMekx,Wu10,YKSVW10
	Our method
	Capacity achieving 2-write WOM codes
	Wozencraft ensemble
	The construction
	Analysis

	Connection to extractors for bit-fixing sources
	Memory with defects
	Approaching capacity without lookup tables
	3-write binary WOM codes
	Discussion

