Electronic Supplementary Information

Hydrogen evolution catalyzed by MoS₃ and MoS₂ particles

Heron Vrubel, Daniel Merki and Xile Hu*

Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and

Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), SB-ISIC-LSCI, BCH 3305,

Lausanne, CH 1015, Switzerland

* To whom correspondence should be addressed. E-mail: <u>xile.hu@epfl.ch</u>

Ohmic drop correction:

The ohmic drop correction of polarization curves has been performed according to the method given in the literature [1-3]. The overpotential η (V) observed during an experiment is given by equation (1):

 $\eta = a + b \ln j + jR \qquad (1)$

where *a* (V) is the Tafel constant, *b* (V dec⁻¹) is the Tafel slope, *j* (A cm⁻²) is the current density and *R* (Ω cm²) is the total area-specific uncompensated resistance of the system, which is assumed to be constant. The derivative of Eq. (1) with respect to current density gives Eq. (2) from which *b* and *R* can be easily obtained by plotting $d\eta/dj$ as a function of 1/j.

$$\frac{d\eta}{dj} = \frac{b}{j} + R \quad (2)$$

The estimation of R allows correcting the experimental overpotential by subtracting the ohmic drop *jR* according to equation (3):

 $\eta_{corr} = \eta - jR$ (3)

During the calculations, the derivative $d\eta/dj$ was replaced by their finite elements $\Delta \eta/\Delta j$ estimated from each pair of consecutive experimental points.

Reference

[1] D.M. Schub, M.F. Reznik, Elektrokhimiya, 21 (1985) 937

[2] N. Krstajic, S. Trasatti, Journal of Applied Electrochemistry. 28 (1998) 1291

[3] L.A. De Faria, J.F.C. Boodts, S. Trasatti, Journal of Applied Electrochemistry, 26 (1996)1195

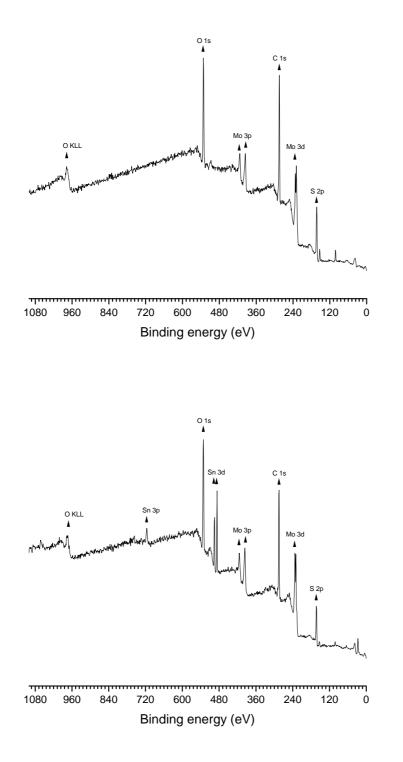


Fig. S1. XPS survey spectra of the MoS₃ particles before (top) and after (bottom) polarization.

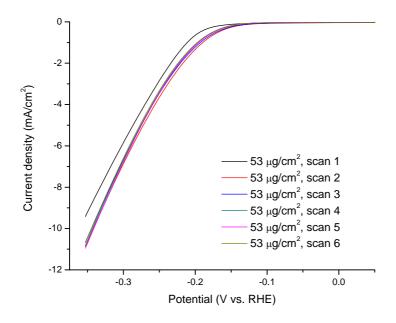


Fig. S2. Consecutive polarization curves of a freshly prepared MoS_3 -modified FTO electrode (drop casting) recorded at pH = 0 (1.0 M H₂SO₄); scan rate: 5 mV/s.

Loading (µg/cm ²)	$\log j_0 (\log[mA/cm^2])$	Tafel Slope (mV/decade)	$j_{\eta=150}$ (mA/cm ²)	$j_{\eta=200}$ (mA/cm ²)
13	-4.0	60 ^a	-0.019	-0.14
27	-4.0	52 ^b	-0.056	-0.49
40	-3.7	53 [°]	-0.13	-0.79
53	-3.4	56 ^d	-0.18	-1.1
75	-2.9	61 ^e	-0.22	-1.0

^a Determined at $\eta = 140 - 196 \text{ mV}$; ^b Determined at $\eta = 140 - 190 \text{ mV}$; ^c Determined at $\eta = 119 - 158 \text{ mV}$; ^d Determined at $\eta = 119 - 166 \text{ mV}$; ^e Determined at $\eta = 112 - 158 \text{ mV}$.

Table S2. HER activity of spray-casted MoS_3 -modified FTO electrodes according to polarization measurements.

Loading (µg/cm ²)	$\log j_0 (\log[mA/cm^2])$	Tafel Slope (mV/decade)	$j_{\eta=150}$ (mA/cm ²)	$j_{\eta=200}$ (mA/cm ²)
18	-4.8	45 ^a	0.040	0.47
100	-4.4	38 ^b	0.40	2.8
200	-3.8	40 ^c	0.73	3.6
300	-3.3	44 ^d	1.02	3.9
400	-3.2	45 ^e	1.03	3.9

^a Determined at $\eta = 146$ - 186 mV; ^b Determined at $\eta = 109$ - 145 mV; ^c Determined at $\eta = 110$ -

134 mV; ^d Determined at $\eta = 98$ - 125 mV; ^e Determined at $\eta = 97$ - 124 mV.

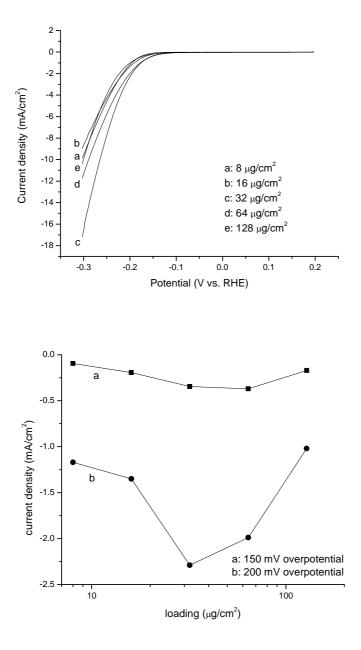


Fig. S3 (Top) Polarization curves of spray-casted MoS_3 -modified glassy carbon electrodes recorded at pH = 0 (1.0 M H₂SO₄); scan rate: 5 mV/s. (Bottom) Loading-dependence of current densities.

Loading	$\log i \left(\log[m\Lambda/am^2]\right)$	Tafel Slope	$j_{\eta=150}$	j _{η=200}
$(\mu g/cm^2)$	$\log j_0 (\log[mA/cm^2])$	(mV/decade)	(mA/cm^2)	(mA/cm^2)
26	-4.6	43 ^a	0.083	0.95
77	-4.4	40 ^b	0.26	2.5
129	-4.2	39 [°]	0.48	4.4
180	-4.1	39 ^d	0.49	4.1
231	-3.9	41 ^e	0.58	3.5

Table S3. HER activity of spray-casted MoS₃-modified glassy carbon electrodes according to polarization measurements.

^a Determined at $\eta = 139 - 175 \text{ mV}$; ^b Determined at $\eta = 125 - 159 \text{ mV}$; ^c Determined at $\eta = 112 - 153 \text{ mV}$; ^d Determined at $\eta = 113 - 151 \text{ mV}$; ^e Determined at $\eta = 107 - 144 \text{ mV}$.

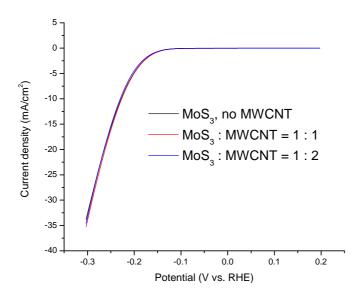


Fig. S4 Polarization curves of spray-casted MoS₃-modified glassy carbon electrodes, with MWCNT as additive, recorded at pH = 0 (1.0 M H₂SO₄); scan rate: 5 mV/s. The loading of MoS₃ is always 130 µg/cm².

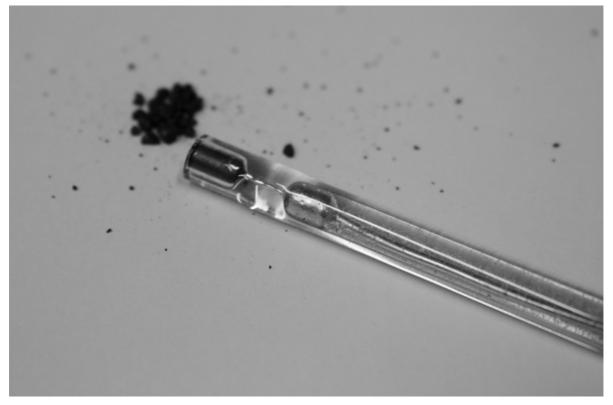


Fig. S5 The home-made working electrode filled with conductive graphite powder.

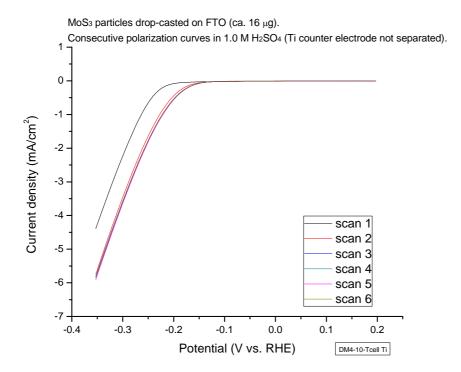
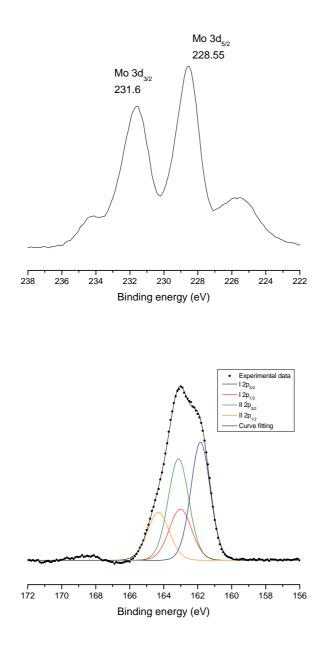
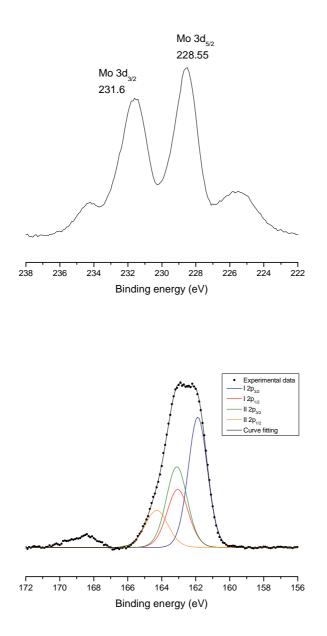
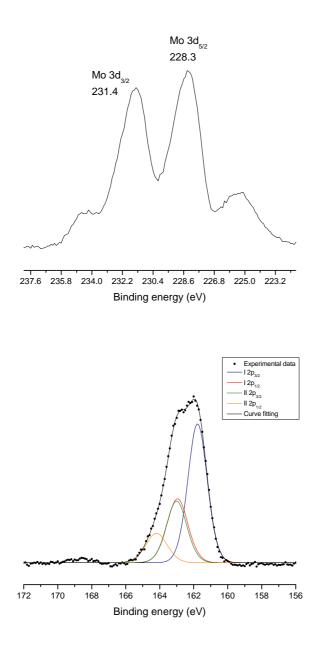
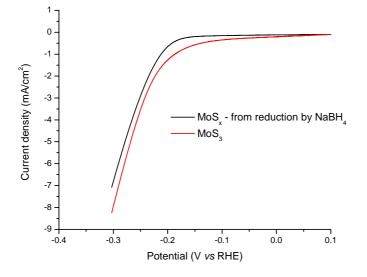
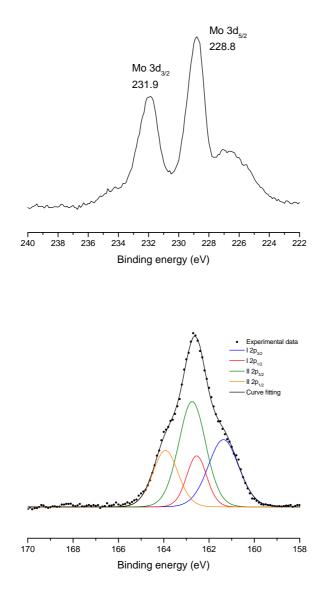


Fig. S6 Consecutive polarization curves of a freshly prepared MoS_3 -modified FTO electrode (drop casting) recorded at pH = 0 (1.0 M H₂SO₄); scan rate: 5 mV/s. Ti electrode was used as a counter electrode.


Fig. S7 XPS spectra of the MoS_3 -modified electrode after five minutes of electrolysis. (Top) Mo spectrum; (bottom) S 2p spectrum.


Fig. S8 XPS spectra of the MoS₃-modified electrode after ten minutes of electrolysis. (Top) Mo spectrum; (bottom) S 2p spectrum.

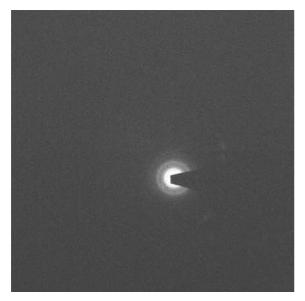
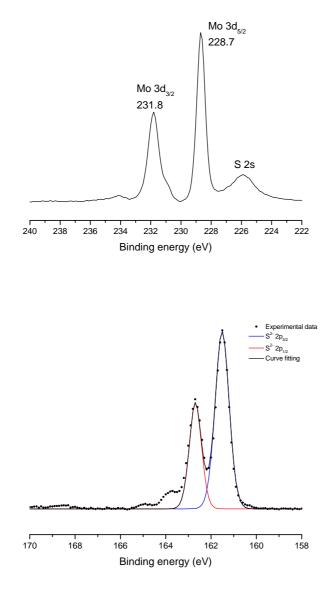
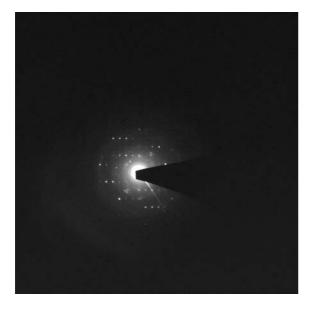
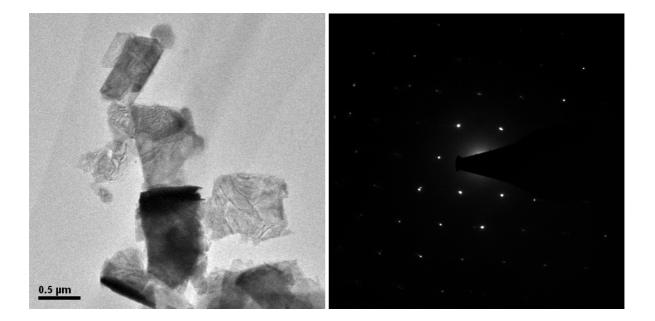


Fig. S9 XPS spectra of the MoS_x species prepared by reduction of MoS_3 with NaBH₄. (Top) Mo spectrum; (bottom) S 2p spectrum.




Fig. S10 Polarization curves of FTO electrodes modified by MoS_x species prepared by reduction with NaBH₄, and by MoS_3 particles recorded at pH = 0 (1.0 M H₂SO₄); scan rate: 5 mV/s. The electrodes were made using the same loading of catalysts and drop casting.



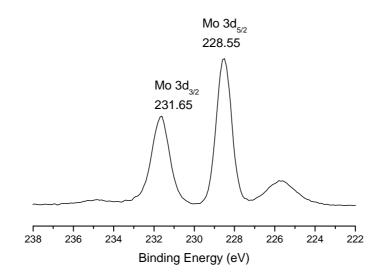

Fig. S11 XPS spectra and electron diffraction pattern of the MoS_3 -350 particles. The Mo/S ratio is 1:3.1. For S 2p region; binding energies (eV): doublet I: $2p_{3/2}$, 162.0; $2p_{1/2}$, 163.2; doublet II: $2p_{3/2}$, 163.3; $2p_{1/2}$, 164.5.

Fig. S12 XPS spectra and electron diffraction pattern of the MoS_2 -650 particles. The Mo/S ratio is 1:2.

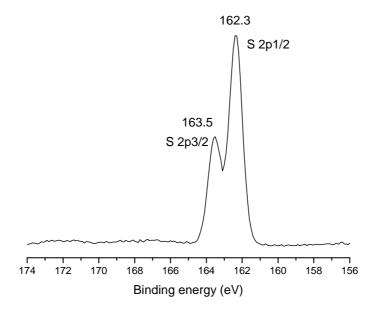


Fig. S13 (Top) TEM image (left) and electron diffraction pattern of commercial MoS_2 particles. (Middle) XPS Mo spectrum of commercial MoS_2 particles. The spectrum shows a peak at lower binding energies, which is the S 2s peak. (Bottom) XPS S spectrum of commercial MoS_2 particles. The S/Mo ratio is 2.1 for MoS_2 particle.