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Abstract
An analysis of kinetic ballooning modes is presented, ray trajectories for the inward shifted
Large Helical Device configuration at modest 〈β〉 and with an anisotropic pressure profile due
to the hot particles are evaluated and an estimate of the marginal stability is computed using
the Weyl formula. The Weyl formula indicates that the finite diamagnetic drifts of the hot
particles displaces the minimum phase space volume to lower frequencies; however, its
magnitude is higher than when these drift effects are ignored.

(Some figures may appear in colour only in the online journal)

1. Introduction

In the Large Helical Device (LHD) [1], high-〈β〉 can be
reached at low density operation. In this configuration, the
pressure anisotropy driven by the neutral beam ions can be very
significant with p‖ > p⊥ [2]. This is expected because LHD
has a powerful tangential neutral beam injection system. When
the density increases, the electron temperature becomes lower
and the slowing down time becomes shorter, which induces a
decrease in the pressure anisotropy [2].

A first interesting observation that is worth mentioning
is that, in the ideal MHD model, the ballooning instabilities
(which are one of the most important sort of instabilities
that appear in a stellarator, due to the interaction of pressure
gradients with the magnetic field line curvature) in heliotron
are expected to appear well below the 〈β〉 values achieved in
LHD [3].

Another observation reported by Watanabe [4] is that the
experimental data obtained with LHD are found to better agree
with the theoretical predictions of ideal MHD when the hot
particle 〈β〉 gradients are ignored. This tends to suggest that the
modeling of the stability properties of LHD may be improved
by extending the ideal MHD model.

Kinetic effects can be invoked to try to reconcile the
experimental observations with the theoretical expectations.
Diamagnetic-drift-frequency stabilizing effects on balloon-
ing modes have already been investigated for tokamak

geometry [5]. McMillan and Dewar [6] concentrated their
efforts on stellarator geometry. They showed that finite Larmor
radius effects are often sufficient to stabilize the plasma. They
used semiclassical techniques to analyse these effects. In this
study, their model is extended by considering the drift sta-
bilization term due to the presence of anisotropic hot ions
ω∗ = �∗

pikα + �∗
h/kα varying across the plasma volume and a

frequency ordering in which the drift motion of the rapid fast
particles causes them to be weakly interacting in the dynamics
of the mode. A typical MHD equilibrium heated by tangential
neutral beam injectors is considered. This enabled the compu-
tation of more realistic growth rates and frequencies to model
ballooning stability.

A kinetic ballooning mode analysis that includes finite
thermal ion diamagnetic drifts, compressibility and trapped
electron effects predicts that lower n instabilities in LHD are
weakened but higher n modes remain unstable [7]. Yamagishi
et al have also included ballooning ray tracing in their analysis
but do not treat an anisotropic fast ion species and do not
evaluate the Weyl number [6].

We begin the analysis by reviewing the coordinate system
(section 2) used and the theoretical background (section 3)
leading to the ray equations (section 4). To this end, we resort to
a drift-magnetohydrodynamic model developed by Cooper [8]
in which the fast particles’ drifts are much larger than the
typical mode growth rates in the ballooning limit. Then we
briefly explain our numerical approach (section 5) and study
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ray trajectories (section 6) in the kinetic ballooning model. We
finally end up with an estimate for marginal stability using the
Weyl formula (section 7).

2. Coordinate system

In this paper, we use the standard ballooning coordinate system
described in [9]. The flux surface is parametrized by the
poloidal angle θ and the field line label α, which varies between
0 and 2π . The safety factor q is taken as the radial coordinate.

3. Kinetic ballooning modes

Considering the linearized gyrokinetic equation [10] in
ballooning space and following Brocher et al [11], we choose
a configuration where the drift effects of energetic and thermal
species play a role and where trapped particle effects are
neglected. Using the approximation ω � ωdh where ωdh is the
drift frequency of hot particles, we can write, in the variational
form [8],∫ ∞

−∞
dθ

{
σk2

⊥√
gB2

∣∣√gB · ∇χ
∣∣2 − kα

√
gp′(s)

ψ ′(s)B2

·
[(

1 +
σ

τ

)
B × k⊥ · κ − kα

ψ ′(s)
∂p⊥h

∂s

∣∣∣
B

]
|χ |2

}

=
∫ ∞

−∞
dθMiNi

√
gk2

⊥
B2

ω

[
ω −

(
ω∗

pi +
MhNhω

∗
h

MiNibh

)]
|χ |2,

(1)

where B is the magnetic field, κ the magnetic field line
curvature, p the thermal pressure, p⊥h the hot particle
perpendicular pressure, ′ denotes the derivative with respect
to s, Mi and Mh the thermal ion, respectively, hot ion mass,
Ni and Nh the thermal ion and the hot ion density and bh the
Larmor radius parameter [10, 11] defined as

bh = k2
⊥

B2

p⊥hMh

Z2
he

2Nh
, (2)

where Zh is the hot ion atomic number and e the elementary
charge. ω∗

pi is the thermal ion hot diamagnetic frequency and
ω∗

h the hot ion diamagnetic drift frequency. 0 � s � 1 denotes
the radial coordinate proportional to the normalized toroidal
magnetic flux. In the ballooning ordering, the wave vector k

(commonly written k = kα∇α+kq∇q) is taken to be large. The
frequency ω is taken to be finite and the product k ·B ≈ 0. We
then solve the previous equation in the single-fluid ballooning
limit (ω∗

pi = 0 and ω∗
h = 0), and obtain a dispersion relation

for this model:
ω2 = λ(α, q, θk), (3)

where θk = kq/kα corresponds to the radial wavenumber. This
λ(α, q, θk) has the following periodic properties [9]:

λ(α + 2π, q, θk) = λ(α, q, θk) (4)

and
λ(α − 2πq, q, θk + 2π) = λ(α, q, θk). (5)

For simplicity reasons, we perform a change of variable:
φk = α + qθk . The periodicity relations then become

λ(φk + 2π, q, θk) = λ(φk, q, θk) (6)

and
λ(φk, q, θk + 2π) = λ(φk, q, θk). (7)

It is shown [6] that the ballooning ordering can also account for
effects beyond ideal MHD. For example, it can be applied to
general plasma models such as the Maxwell–Vlasov equations.
In this particular case, two specific effects are present, one
corresponding to the trapped particle effects and the other one
related to the finite gyro-radius term. The kinetic ballooning
model is obtained by replacing

ω2 → ω(ω + ω∗
pi + ω∗

heff
) (8)

in the ideal MHD ballooning equations. ω∗
pi is the thermal ion

diamagnetic drift frequency defined by [11]

ω∗
pi = −kα

p′(s)
2Zieψ ′(s)Ni

≈ kα�∗
pi (9)

and ω∗
heff

is the hot ion diamagnetic drift frequency [11]

ω∗
heff

=
〈

Mhω
∗
h

MiNibh

〉

=

∫ ∞

−∞
dθ

√
gk2

⊥MhNhω
∗
h

ψ ′(s)B2MiNibh
|χ |2

∫ ∞

−∞
dθ

√
gk2

⊥
ψ ′(s)b2

|χ |2
≈ 1

kα

�∗
h, (10)

where ω∗
h is given by

ω∗
h = −kα

p⊥h

Zheψ ′(s)N2
h

∂Nh

∂s

∣∣∣
B

(11)

with p(s) the thermal pressure, Nh the hot particle density and
Ni the thermal ion density. To obtain the second relation, kα

is taken sufficiently large consistent with ballooning theory.
We can thus neglect the 1/k2

α term in the ω∗
heff

expansion. The
kinetic effect is equivalent to a simple frequency shift on each
field line and the eigensolution of the ballooning equation is
conserved. Thus, we can calculate the local kinetic growth
rates using the substitution presented in equation (8) in the
local ideal MHD dispersion relation. Following McMillan [6],
we write the dispersion relation for the drift stabilized MHD
ballooning model

�(kα, kq, α, q, ω) = ω2
MHD − ω

(
ω − kα�∗

pi − 1

kα

�∗
h

)
= 0.

(12)
The frequency ω can take two different values:

ω =
kα�∗

pi +
1

kα

�∗
h

2


1 +


1 +

4ω2
MHD(

kα�∗
pi +

1

kα

�∗
h

)2




1/2
 ,

(13)
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which corresponds to the drift branch and

ω =
kα�∗

pi +
1

kα

�∗
h

2


1 −


1 +

4ω2
MHD(

kα�∗
pi +

1

kα

�∗
h

)2




1/2
 ,

(14)

which corresponds to the MHD branch.

4. Ray equations

We extended the ray equation obtained in [6] to the weakly
interacting hot particle model we are considering. Thus, the
drift frequency �∗ is not constant anymore, but varies in
the (q, α, θk) space. We derive the four ray equations from the
dispersion relation (12):

α̇ = ∂�

∂kα

= ω�∗
pi − θk

kα

∂(ω2
MHD)

∂θk

− ω

k2
α

�∗
h − ω

k2
α

∂�∗
h

∂θk

− ω
∂�∗

pi

∂θk

,

(15)

q̇ = ∂�

∂kq

= 1

kα

∂(ω2
MHD)

∂θk

+ ω
∂�∗

pi

∂θk

+
ω

k2
α

∂�∗
h

∂θk

, (16)

k̇α = −∂�

∂α
= −∂(ω2

MHD)

∂α
− ω

kα

∂�∗
h

∂α
− ωkα

∂�∗
pi

∂α
, (17)

k̇q = −∂�

∂q
= −∂(ω2

MHD)

∂q
− ωkα

∂�∗
pi

∂q
− ω

kα

∂�∗
h

∂q
. (18)

This shows that taking into account the variation of the drift
frequency strongly modifies the ray equations.

5. Numerical implementation

To study the ballooning instabilities, we used data extracted
from the BECOOL [12] program. The original BECOOL
program was slightly modified to get ω2

MHD, �∗
pi and �∗

h as
a function of the three coordinates φk , q and θk . We used the
data extracted from BECOOL to obtain a Fourier series in θk

and φk , and used a spline interpolation for the q coordinate.
We computed the derivatives in each point of the phase space
and followed ray trajectories using a Runge–Kutta integration
scheme, applying a small correction to ensure that ω stays
constant.

6. Ray trajectory

6.1. Initial data

As input values for BECOOL, we used data corresponding to
the inward shifted Large Helical Device (LHD) configuration
at modest 〈β〉 [11]. The fast particle species are described using
an anisotropic pressure bi-Maxwellian distribution function

model. The 〈βdia〉 value is given by 〈βdia〉 ≈ 1.6%. The
following parameters were used:

• Thermal pressure: p(s) = p(0)(1 − s)(1 − s4)

• Hot particle pressure amplitude: ph(s) = pH(1 − s)

• Anisotropy factor:
[

T⊥
T||

]
(s) =

[
T⊥
T||

]
(0)(1 − s2)

• Toroidal current J (s) = 0.

Input values corresponding to these parameters were used in
BECOOL to compute ω2

MHD, �∗
pi and �∗

h. ω2
MHD reaches a

minimum when q ≈ 1.36 and for θk ≈ π . ω2
MHD mainly

depends on q and θk . However, it also has a small dependence
in φk (thus corresponding implicitly to the field line variable
α). �∗

pi does not depend directly on θk and φk , but its value
increases as q increases. Finally, the �∗

h value has a maximum
around q ≈ 1.4 and θk = π and is minimal for θk = 0. The
behavior of �∗

h is more or less opposite to the behavior of ω2
MHD.

The hot ion diamagnetic drift frequcency does not have a very
strong dependence in φk .

6.2. Orbits in the (α,q,θk) space

Solving the ray equations and using the method explained in
the previous paragraphs, we can now follow a ray trajectory.
Note that the ray trajectories presented below correspond to
the MHD branch only (see equation (14)). We only focus on
this branch because the kinetic modifications that we included
to the linearized gyrokinetic equation in ballooning space [10]
are limited to diamagnetic drift extensions to the fluid MHD
model. Figure 1 shows a projection in the (q, θk) plane of the
ray trajectories for all α values, using different starting points
for the simulation. We see that there are two types of orbits:

• closed orbits in the (q, θk) plane which correspond to
cylindrical orbits in the (α,q,θk) space. The cylinder is
infinitely extended in the α direction.

• open orbits in the (q, θk) plane, which correspond to a
plane in the (α,q,θk) space.

Figure 1. Projection of different ray trajectories superimposed in
the (q, θk) plane for all α values. We notice two different types of
orbits, closed orbits in the central region of the (q, θk) plane, and
open orbits on the sides.

3
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Figure 2. Typical ray trajectory for an orbit located in a plane in the
(θk ,q,α) space.

Figure 3. Typical ray trajectory for a spiral orbit in the (θk ,q,α)
space. This kind of orbit, located on a cylinder in the (θk ,q,α) space,
corresponds to initial values close to the minimum of ω2

MHD.

Closed orbits correspond to initial values close to the minimum
of ω2

MHD (i.e. close to q ≈ 1.36 and θk ≈ π ). The two different
kinds of ray trajectories are shown in figures 2 and 3.

6.3. Dominating terms in the ray equations

A simple study of the derivatives as a function of time shows
which terms are the dominant ones in the ray equations. For
the MHD branch, the two most important terms in the α̇

equation are −(θk/kα)∂ω2
MHD/∂θk and ω�∗

pi (see figure 4).
The other ones can more or less be neglected. The two most
important terms in the q̇ equation are (1/kα)∂(ω2

MHD)/∂θk and
ω · ∂�∗

pi/∂θk . These two terms are always opposed to one
another in the sense that they have almost the same magnitude
but opposite signs. This can be seen in figure 5. In the k̇α

equation, the two dominating terms are −∂(ω2
MHD)/∂α and

−ωkα ·∂�∗
pi/∂α (figure 6). We see that these two terms more or

less always cancel each other out. Finally for the k̇q equation,
the dominating term is −∂(ω2

MHD)/∂q (figure 7). The two
other terms are much smaller.

7. Weyl formula

The Weyl formula

NWeyl(w) = 1

(2π)n

∫
dxn dkn (19)

is used to estimate the number of quantized modes below some
frequency ω. It is based on the volume of phase space enclosed

Figure 4. Importance of the terms that drive α̇ in the case of a close
orbit in the (q, θk) plane.

Figure 5. Importance of the terms that drive q̇ in the case of a close
orbit in the (q, θk) plane.

by the ω contour. As the standard derivation of the Weyl
formula requires the dispersion relation to be real, we followed
McMillan [6] and took

E = �∗
pi(ω, θk, kα, α, q, �∗

h). (20)

The Weyl estimate for the number of modes in the spectrum of
�∗

pi above �∗
pimin

is then given by the integral of the Heaviside
step function

NWeyl = 1

4π2

∫
H(kmax

α − kα) dV , (21)

where

kmax
α = max


ω2 − ω2

MHD

2ω�∗
pi


1 ±

(
1 − 4ω2�∗

pi�
∗
h(

ω2 − ω2
MHD

)2

)1/2



 .

(22)
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Figure 6. Importance of the terms that drive k̇α in the case of a close
orbit in the (q, θk) plane.

Figure 7. Importance of the terms that drive k̇q in the case of a close
orbit in the (q, θk) plane.

We suppose the term ω2�∗
pi�

∗
h/

(
ω2 − ω2

MHD

)2
to be

small. This happens in two cases:

• ω2 
 �∗
pi�

∗
h 
 ∣∣ω2

MHD

∣∣
• ω2 � ∣∣ω2

MHDmin

∣∣ � �∗
pi�

∗
h.

We recall the expression previously obtained (section 3)
for ω:

ω = 1

2

(
kα�∗

pi +
�∗

h

kα

)
1 ±


1 +

4ω2
MHD(

kα�∗
pi +

�∗
h

kα

)2




1/2

(23)

which can be expanded because 4ω2
MHD/(kα�∗

pi + �∗
h/kα)2 is

small:

ω = 1

2

(
kα�∗

pi +
�∗

h

kα

)

1 ±


1 +

2ω2
MHD(

kα�∗
pi +

�∗
h

kα

)2




 .

(24)

This leads to two different values for ω, depending on the sign:

ω = kα�∗
pi +

�∗
h

kα

+
ω2

MHD

kα�∗
pi +

�∗
h

kα

, (25)

ω = − ω2
MHD

kα�∗
pi +

�∗
h

kα

. (26)

The first value of ω corresponds to the drift branch, the second
one corresponds to the MHD branch. If we come back to our kα

expansion, we see that ω2 
 �∗
pi�

∗
h 
 ∣∣ω2

MHD

∣∣ corresponds

to equation (25) for ω, while ω2 � ∣∣ω2
MHDmin

∣∣ � �∗
pi�

∗
h

only happens if ω corresponds to equation (26). We can now
expand kα

kmax
α = max

{
ω2 − ω2

MHD

2ω�∗
pi

[
1 ±

(
1 − 2ω2�∗

pi�
∗
h(

ω2 − ω2
MHD

)2

)]}
,

(27)

kmax
α = ω2 − ω2

MHD

ω�∗
pi

− ω�∗
h

ω2 − ω2
MHD

. (28)

Coming back to equation (21), we have

NWeyl = 1

4π2

∫
S

(kmax
α )2

2
dθk dα dq (29)

and replacing kα

NWeyl = 1

4π2

∫
S

1

2

(
ω2 − ω2

MHD

ω�∗
pi

− ω�∗
h

ω2 − ω2
MHD

)2

dθk dα dq,

(30)

NWeyl = 1

4π2
V (ω), (31)

where the volume S is the domain in the (q, α, θk) space for
which (

ω2 − ω2
MHD

ω�∗
pi

− ω�∗
h

ω2 − ω2
MHD

)
> 0. (32)

The integral was approximated by summing over 92×64×64
intervals in the (q, α, θk) space. The value of the volume V as
a function of ω is plotted in figures 8 and 9 (corresponding to
the two different interesting ω ranges). We see that it reaches
a minimum for ω = 1.632 × 10−8. This corresponds to the
marginal stability condition. A convergence study (figure 10)
shows that the minimum phase space volume as a function of ω

strongly depends on the number of intervals and on the discrete
points chosen to estimate the integral. More precise results
would be obtained by increasing the number of intervals.

5
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Figure 8. Value of the volume V (ω) for ω2 � ∣∣ω2
MHDmin

∣∣ obtained
by approximating the integral by a sum over 92 × 64 × 64 intervals
in the (q, α, θk) space. The volume V (ω) is also computed in the
case where the hot ion diamagnetic drift is neglected. Here

ω0 =
√

−ω2
MHDmin

.

Figure 9. Value of the volume V (ω) for ω2 
 �∗
pi�

∗
h obtained by

approximating the integral by a sum over 92 × 64 × 64 intervals in
the (q, α, θk) space. The volume V (ω) is also computed in the case
where the hot ion diamagnetic drift is neglected. Here

ω0 =
√

−ω2
MHDmin

.

In figure 9, we see that the volume increases strongly
for ω2 
 �∗

pi�
∗
h. If we compare the results obtained with

and without taking into account the hot particles drift, we
see that the marginal stability corresponds to a ω value much
bigger when the hot particles drift is neglected (figure 11):

ω ≈ 0.6
√

−ω2
MHDmin

. The term ω�∗
h/

(
ω2 − ω2

MHD

)
in the

integral is not very important for ω2 
 �∗
pi�

∗
h and for

ω � ω2
MHD, but it becomes very big as ω2 → ω2

MHD.

8. Conclusion

Strongly localized ballooning modes are often the first
instabilities to become noticeable in a fusion device such as

Figure 10. Value of the volume V (ω) for ω2 � ∣∣ω2
MHDmin

∣∣ summing
over 92 × 64 × 64 intervals, 92 × 32 × 32 intervals and 92 × 16 × 16

intervals in the (q, α, θk) space. Here ω0 =
√

−ω2
MHDmin

.

Figure 11. Value of the volume V (ω) for ω2 → −ω2
MHD and taking

�∗
h = 0. The integral was approximated by a sum over 92 × 64 × 64

intervals in the (q, α, θk) space. Here ω0 =
√

−ω2
MHDmin

.

a stellarator, mainly because stellarators tend to have much
smaller toroidal currents than tokamaks. They can also be
important in space and astrophysical plasma. We know from
the MHD studies that a region of the plasma becomes unstable
as soon as the local stability limit yields a negative ω2

MHD. But
the MHD theory has some limits, and we know from previous
research that the linear dynamics are not well represented in
terms of the exponential growth of a single mode. That is why,
in our work, we have considered a drift stabilized model. This
gives a better insight into the physical reality. This work is a
continuation of McMillan and Dewar’s research [6]. We have
used the same concepts they have employed, but extended the
model by taking a drift stabilization term ω∗ = �∗

pikα +�∗
h/kα

varying across the plasma volume and due to the presence
of anisotropic hot ions. Furthermore, we considered the
weakly interacting hot particle kinetic ballooning model. We

6
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considered a typical MHD equilibrium heated by tangential
neutral beam injectors. This allowed us to compute more
realistic growth rates and frequencies to model ballooning
stability. Since the results we were looking for were discrete,
we had to use adequate interpolation schemes to follow the
ray trajectories in ballooning space. We obtained typical
ray trajectories, investigated the dominating terms in the ray
equations and computed the marginal stability using the Weyl
formula. This study allows us to get a better insight into the
drift stabilization effect, which is expected to have significant
consequences for fusion experiments. Our initial data set
was taken from experiments on the LHD stellarator which
often operates in regimes predicted to be unstable in the ideal
MHD limit. MHD activity is not generally observed in such a
configuration and diamagnetic drift effects are expected to be
sufficient to completely stabilize the device.

In the Weyl analysis, two branches were computed.
The drift branch which has vanishing Weyl number at zero
frequency and the more interesting MHD branch where the
Weyl number remains finite. The minimum phase space
volume for the MHD branch, hence the Weyl number,
decreases to lower frequency when finite �∗

h effects are taken
into account, but is larger than that when �∗

h = 0. Other kinetic
effects should be examined in the future.

References

[1] Iiyoshi A et al 1999 Nucl. Fusion 39 1245
[2] Yamaguchi T et al 2005 Nucl. Fusion 45 L33
[3] Nakajima N 1996 Phys. Plasmas 3 4556
[4] Watanabe K Y et al 2005 Nucl. Fusion 45 1247
[5] Cooper W A 1982 Plasma Phys. 24 265
[6] McMillan B F and Dewar R L 2006 Nucl. Fusion 46 477–86
[7] Yamagishi O, Nakamura Y and Kondo K 2003 Phys. Plasmas

10 2871
[8] Cooper W A 1983 Phys. Fluids 26 1830
[9] Dewar R L and Glasser A H 1983 Phys. Fluids 26 3038–52

[10] Catto P J, Tang W M and Baldwin D E 1981 Plasma Phys.
23 639

[11] Brocher L, Cooper W A, Graves J P, Cooper G A, Narushima Y
and Watanabe K Y 2010 Nucl. Fusion 50 025009

[12] Cooper G A, Graves J P, Cooper W A, Gruber R and
Peterson R S 2009 J. Comput. Phys. 228 4911–6

[13] Furth H P, Killeen J, Rosenbluth M N and Coppi B 1966
Plasma Physics and Controlled Nuclear Fusion Research
(Vienna: IAEA) vol 1 p 103

[14] Greene J M and Johnson J L 1968 Plasma Phys. 10 729
[15] Bernstein I B, Frieman E A, Kruskal M D and Kulsrud R M

1958 Proc. R. Soc. Lond. A 244 17
[16] Cooper W A, Singleton D B and Dewar R L 1996 Phys.

Plasma 3 275–80
[17] Gruber R, Cooper W A, Beniston M, Gengler M and

Merazzi S 1991 Phys. Rep. 207 167–214

7

http://dx.doi.org/10.1088/0029-5515/39/9Y/313
http://dx.doi.org/10.1088/0029-5515/45/11/L01
http://dx.doi.org/10.1063/1.872071
http://dx.doi.org/10.1088/0029-5515/45/11/004
http://dx.doi.org/10.1088/0032-1028/24/3/005
http://dx.doi.org/10.1088/0029-5515/46/4/008
http://dx.doi.org/10.1063/1.1584682
http://dx.doi.org/10.1063/1.864359
http://dx.doi.org/10.1063/1.864028
http://dx.doi.org/10.1088/0032-1028/23/7/005
http://dx.doi.org/10.1088/0029-5515/50/2/025009
http://dx.doi.org/10.1016/j.jcp.2009.04.004
http://dx.doi.org/10.1088/0032-1028/10/8/301
http://dx.doi.org/10.1098/rspa.1958.0023
http://dx.doi.org/10.1063/1.871853
http://dx.doi.org/10.1016/0370-1573(91)90145-C

	1. Introduction
	2. Coordinate system
	3. Kinetic ballooning modes
	4. Ray equations
	5. Numerical implementation
	6. Ray trajectory
	6.1. Initial data
	6.2. Orbits in the (,q,k) space
	6.3. Dominating terms in the ray equations

	7. Weyl formula
	8. Conclusion
	 References

