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Abstract The transverse relaxation rates R2 = 1/T2 of protons can be determined

by spin-echo sequences with multiple refocusing pulses using moderate radio-fre-

quency field strengths and properly chosen inter-pulse delays so as to suppress echo

modulations due to homonuclear scalar couplings. Combination with 2D hetero-

nuclear correlation spectroscopy (HSQC) allows one to measure R2 of arbitrary

protons attached to nitrogen-15 or carbon-13 nuclei. Decays of six amide protons in

the protein Ubiquitin that is nitrogen-15 enriched (but not deuterated) were mea-

sured at different temperatures.

1 Introduction

It has been known since the 1950s that refocusing pulses fail to eliminate the

effects of homonuclear scalar couplings and that echo trains are therefore
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modulated, thus making it difficult to determine transverse relaxation rates in

coupled spin systems [1, 2]. In 2006, we discovered a new method to quench echo

modulations stemming from homonuclear scalar couplings [3]. When applying a

Carr–Purcell–Meiboom–Gill (CPMG) [1, 2] sequence (p/2)y–[s–px–s]2n to nitro-

gen-15 nuclei in RNA duplexes with scalar J(15N, 15N) couplings, the echo decays

were found to be free of oscillations so that transverse relaxation rates could be

readily determined. The crucial point of these experiments, i.e., the use of

imperfect 180� pulses with moderate radio-frequency (rf) amplitudes, was revealed

by simulations: while the on-resonance spin I undergoes a perfect rotation about

180�, the J-coupled off-resonance spin S is rotated about a tilted field by an angle

that exceeds 180�. In terms of product operators of a two-spin system, where spin

I is irradiated on resonance, the J coupling normally tends to convert in-phase Ix

into anti-phase 2IySz. Pulse imperfections bring an additional third product

operator into the game, the multiple-quantum term 2IySy. This leads to a

stabilization of Ix, since 2IySz and 2IySy mutually inhibit each other’s appearance.

This interplay was called ‘stabilization by interconversion within a triad of

coherences under multiple refocusing’, or SITCOM in short. A related effect had

been observed 2 years earlier [4] while measuring transverse relaxation rates of

multiple-quantum coherences 2NxHx. The SITCOM effect can be considered as a

form of decoupling. However, this effect fails when so-called ‘recoupling

conditions’ are fulfilled. The J modulation is reintroduced when the offset of

the J-coupled off-resonance spin S lies in the vicinity of a multiple of the pulse

repetition rate:

Xs= 2pð Þ � k 2srecð Þ�1 ð1Þ

where XS/(2p) is the offset of spin S, k an integer, and 2srec the interval between two

180� pulses when recoupling occurs. Eq. 1 has the same form as the sidebands in

‘delays alternating with nutation for tailored excitation’ (DANTE) [5–8]. Gopala-

krishnan et al. [9] described these phenomena in terms of an average-Hamiltonian

approach for a two-spin system. The average Hamiltonian has the isotropic form of

the scalar coupling I.S when decoupling occurs, but is truncated to its weak form

2IzSz, when recoupling appears. For a two-spin system, the recoupling conditions

depend on the rf amplitude x1 of the 180� pulses [10]:

2srec ¼ 2 kp=Xs � p=4x1ð Þ ð2Þ
The SITCOM effect can be used to measure apparent transverse relaxation rates

R2
app of homonuclear coupled carbon-13 nuclei in glycine [10] and in alanine

enriched with both carbon-13 and nitrogen-15, where a large number of recoupling

conditions make it difficult to obtain unmodulated echo decays [11]. Shifting the rf

carrier frequency offers a way to fully quench the modulations and to obtain

apparent transverse relaxation rates R2
app. In 2009 we extended the measurements of

apparent transverse relaxation rates to protons in the oligopeptide Cyclosporin A

(CsA) [12] where the protons form an extensive coupled spin system. Obviously,

this is relevant for any organic molecule. From Eq. 1 or 2 we can derive the interval

between two neighboring recoupling conditions:
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Dsrec ¼ p=Xs ð3Þ
Thus, the closer the chemical shifts XS of the coupled spins S, the greater the

separation between neighboring recoupling conditions. This makes the experiments

much easier for protons than for nitrogen-15 or carbon-13.

Overlapping peaks cause problems, since proper integration of individual

resonances becomes difficult. We have shown that the coherence can be transferred

from protons to well-resolved neighboring carbon-13 spins, using a sequence for

‘insensitive nuclei enhanced by polarization transfer’ (INEPT) [13] immediately

after a CPMG sequence with moderate rf amplitudes applied to the protons [14].

This made overlapping methyl resonances in CsA accessible. The proton decay rates

R2
app derived from INEPT and direct experiments are not exactly the same, since

INEPT focuses on protons that are coupled to carbon-13, which have decays that are

accelerated by dipolar 1H–13C interactions.

We have also shown that the use of 360� or 720� pulses instead of 180�
refocusing pulses in CPMG schemes could fully eliminate recoupling conditions

[15].

Recently Barrère et al. [16] described an alternative method to measure echo

decays that are not masked by modulations in homonuclear-coupled systems. In

contrast to our SITCOM approach, their method is based on refocusing of the

homonuclear J couplings, in analogy to the ‘perfect echo’ of Takegoshi et al. [17].

Both sequences were independently designed to generate ‘planar mixing’ (with an

effective zero- or double-quantum Hamiltonian) to reduce multiplet complexity in

COSY experiments [18] and to observe spin waves by NMR [19]. Since they use

only hard pulses, various schemes for refocusing homonuclear J couplings are

inherently broadband, but in principle limited to two-spin AX- or AB-systems. By

contrast, SITCOM is selective, but has no limitations concerning the extent of the

coupling networks. Since refocusing of homonuclear J couplings [16, 17] does not

prevent anti-phase magnetization from building up, the apparent transverse

relaxation rates obtained are generally mixtures of relaxation rates of in-phase Ix

and anti-phase IySz terms. By contrast, the SITCOM approach can measure the

decay rate of a pure in-phase Ix coherence.

The study of internal dynamics in proteins [20, 21] usually relies on accurate

measurements [22] of Overhauser effects 15N{1H}, combined [23, 24] with

longitudinal relaxation rates R1(15N) = 1/T1(15N) and transverse relaxation rates

R2(15N) = 1/T2(15N). Recently, longitudinal relaxation rates of two-spin order terms

2NzHz [25] and transverse relaxation rates of multiple-quantum coherences 2NxHx

have also been investigated [4, 26–30]. So far, however, measurements of

longitudinal and transverse relaxation rates of protons in proteins have by and

large remained elusive. Early attempts [31] used selective pulses to avoid echo

modulations. Spin-locking experiments that focus on the R1q rates of amide HN

protons in deuterated proteins were designed [32] and applied inter alia to study

effects of molecular oxygen [33]. Studies of R1q can also be carried out in proteins

[34]. Such experiments allow one to study the ‘dispersion’ of the relaxation rates as

a function of the rf amplitude. If one uses CPMG sequences, perturbations

stemming from homonuclear J couplings can be neglected under certain
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circumstances [35] or can be avoided by studying back-exchanged amide HN

protons in deuterated proteins [36].

Unlike R1q spin-locking experiments that focus on amide HN protons, our

experiments do not suffer from any TOCSY effects [37], since there can be no

coherence transfer between the on-resonance HN protons and the coupling partners

that experience tilted effective fields. Likewise, our approach avoids the pitfalls of

unwanted ROESY effects [38, 39]. However, our experiments do not allow one to

study the ‘dispersion’ of relaxation rates as a function of pulse repetition frequency

or effective rf amplitude.

The idea of combining our CPMG sequences with INEPT is sufficient to analyze

all transverse proton relaxation rates of an oligopeptide like CsA. It can be adapted

for HN protons by transferring their magnetization to 15N spins. However, in small

proteins such as Ubiquitin, this strategy fails by lack of resolution and sensitivity of
15N spectra.

This work shows how this problem can be alleviated using heteronuclear single-

quantum correlation spectroscopy (HSQC) [40–43] to monitor the amplitudes of

proton echoes resulting from CPMG pulse trains with moderate rf amplitudes

applied to the protons prior to the HSQC sequence. There are many variants of

HSQC, any of which can be combined with our CPMG sequences without

modification of the phase cycles, etc. The proton carrier frequency was set on-

resonance for the protons of interest during the CPMG scheme, and switched to the

water resonance prior to the HSQC sequence. Refocusing pulses with moderate rf

amplitudes were used during the CPMG trains, leading to tilted effective fields for

the coupling partners, so as to quench echo modulations. The 2D signal amplitudes

were determined using NMRPipe [44]. The resulting [1H, 13C]-CPMG-HSQC

method allows one to confirm the apparent transverse relaxation rates R2
app(1H) of

protons attached to 13C in natural abundance in CsA that had previously been

measured by CPMG-INEPT [14]. Since there were no significant differences in

CsA, we switched our attention to 15N-enriched (but not deuterated) Ubiquitin. If

homonuclear scalar couplings act during the spin-echo train (i.e., if they are not

quenched), anti-phase single-quantum coherences (SQC’s) of the type 2Hx
NHz

a may

appear at the end of the CPMG sequence. Such terms may be converted into

4Hx
NHy

aNx at the beginning of the t1 interval of the HSQC sequence and interfere

with the desired pathways. However, if the s delays are chosen to quench the

homonuclear J modulations, only in-phase SQC terms such Hy
N appear at the end of

the CPMG echo train, so that a normal HSQC spectrum will be obtained by gradient

selection.

A 15N-labeled sample of Ubiquitin at pH 7.2 in 9:1 H2O:D2O was studied at

600 MHz. Using [1H, 15N]-CPMG-HSQC, the rates R2
app(1HN) were measured for

six residues (D32, G35, L50, L56, E64 and G76) (Fig. 1 solid curves). A typical

[1H, 15N]-CPMG-HSQC spectrum is shown in Fig. 2. The modulated decays of

ordinary spin echoes were recorded for comparison with a single refocusing p-pulse

of duration sp applied at T/2 = n(2s ? sp)–sp/2, followed by HSQC (Fig. 1 dashed

curves). The proton p-pulses in both CPMG trains and experiments with a single

refocusing pulse had an rf amplitude m1 = 6.6 kHz. In contrast to CsA, where

R2
app \ J(HNHa), one cannot resolve any modulations in Ubiquitin, since
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R2
app [ J(HNHa), so that scalar modulations merely lead to faster decays (Table 1).

The decay rate R2
app(1HN) of G76 is by far the slowest; this amino acid belongs to the

flexible C-terminus of Ubiquitin so that only a few neighboring spins contribute to

its dipolar relaxation.

For all residues except G76, the rates R2
app decrease with increasing temperature,

as expected for exchange-free rates R2� since higher temperatures lead to shorter

correlation times sc [45]. The opposite trend of G76 can be attributed to the rate of

exchange of the HN proton with water that increases with temperature.

The quenching of echo modulations in proteins is surprisingly straightforward.

The largest offset 3.49 kHz in E64 corresponds to an effective field tilted by

arctan(c) = 28� for Ha(E64) when HN(E64) is on-resonance, since c = X(Ha)/

x1 = 0.53 (see Table 1).

To verify that none of the CPMG-HSQC experiments suffered from accidental

‘recoupling’ effects at unfavorable s intervals, a few ‘hybrid’ experiments [9] were

carried out in 2D fashion (Fig. 3). For each residue, 101 spectra were recorded with

the proton carrier frequency on-resonance, varying the delay 300 \ s\ 700 ls in

steps of 4 ls, while keeping the number of p-pulses constant with 2n = 40. An

Fig. 1 Intensities of six different HN signals in Ubiquitin obtained by [1H, 15N]-CPMG-HSQC as solid a
function of the duration T = n(4s ? 2sp) of echo trains with s = 400 ls at 300 K and 600 MHz. The
increments were n = 1, 8, 16,…, 80 for G35 and G76, and n = 1, 6, 12,…, 54 for L50, L56, D32 and
E64. The experimental points (circles) were fitted with monoexponential decays (solid curves). Squares
show intensities of echoes that decay faster due to unresolved modulations that can be observed when
using a single refocusing pulse with the same overall T intervals, also followed by [1H, 15N]-HSQC.
These values were also fitted with monoexponential decays (dashed curves) for comparison (Table 1).
The proton p-pulses in the CPMG trains and in the experiments with single-refocusing pulses had the
same rf amplitude m1 = 6.6 kHz
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experiment with a given offset covers several protons that have a similar chemical

shift in the 1H dimension of the HSQC spectrum. In this way, one hybrid HSQC can

give hybrid plots for at least 10 amide proton resonances.

The vertical lines in Fig. 3 highlight the delay s = 400 ls where all CPMG-

HSQC spectra of Fig. 1 were recorded. Only for E64 does this coincide with a ‘dip’

due to echo modulations arising from ‘recoupling’, which explains the weak

modulations of the circles in Fig. 1. This leads to a significant overestimation of

R2
app. This problem could be circumvented by repeating the CPMG sequence with

another s delay to avoid all ‘recoupling dips’, e.g., s = 480 ls. G76 stands apart not

only by its slower decay rate, but also by a broader and deeper ‘recoupling dip’. The

position of these dips depends primarily on the chemical shifts of the coupling

partners, and not on the scalar coupling constants, as can be seen from Eq. 2. Each

2D CPMG-HSQC spectrum took about 5 min. The 2D experiments can be

accelerated [46] by optimized aliasing [47], by SOFAST methods [48] or by single-

scan 2D [49, 50]. Other protons in Ubiquitin could be studied by [1H, 13C]-CPMG-

HSQC experiments correlating 1H with 13C nuclei through heteronuclear couplings

J(1H, 13C), as we have done for 1D CPMG [14].

For the sake of demonstration, all CPMG experiments shown here were

performed with the proton carrier on-resonance for the HN signals of interest. As

Fig. 2 Detail of a [1H, 15N]-CPMG-HSQC with cross sections (taken at the frequencies indicated by
dashed lines) corresponding to E64 with d(1HN) = 9.31 ppm and d(15N) = 114.8 ppm, with n = 1 (i.e.,
second echo) at T = 315 K. The number of transients was 4, the recycle delay 3.5 s, the number of points
in the t1 domain 72, and the spectral width in the indirect x1 dimension 26 ppm
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Table 1 Apparent transverse proton relaxation rates R2
app(1HN) (s-1) in Ubiquitin, measured at three

different temperatures at 600 MHz

Temperature D32 G35 L50 L56 E64 G76

285 K 28.8 33.1 35.3 40.4 40.4 6.5

43.3 58.4 90.4 63.0 94.1 30.2

300 K 21.8 26.1 28.4 29.1 33.0 9.9

25.1 37.9 40.0 32.6 37.0 28.9

315 K 17.1 19.8 21.4 21.3 26.3 33.3

19.4 34.7 35.1 23.9 32.1 40.5

d(HN) (ppm) 7.95 8.41 8.48 8.06 9.24 7.87

d(NH) (ppm) 119.8 108.9 125.7 118.0 114.6 119.1

c = X(Ha)/x1 0.33 0.40 0.40 0.37 0.53 0.37

0.42 0.38

The rates in boldface were obtained from monoexponential fits of unmodulated CPMG experiments (solid

curves in Fig. 1), the rates in lightface stem from monoexponential fits of partly modulated echo enve-

lopes obtained with a single refocusing pulse (dashed curves in Fig. 1). The shifts of the NH nitrogen-15

nuclei and the neighboring scalar-coupled HN protons are indicated for T = 300 K, along with the ratio c
that determines the tilt of the effective field experienced by the coupling partner Ha if HN is on-resonance.

All rates are associated with errors of ±10%

Fig. 3 Signals of HN protons in the backbone of Ubiquitin, obtained with the ‘hybrid’ version of [1H,
15N]-CPMG-HSQC, where the number of refocusing pulses 2n = 40 was kept constant, while the delay s
was incremented from 300 to 700 ls in steps of 4 ls. The vertical lines correspond to the delay
s = 400 ls used in Fig. 1
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recently demonstrated for systems with three carbon-13 nuclei [11], it is also

possible to obtain unmodulated decays when the rf carrier is positioned off-

resonance. This allows one to measure the rates R2
app of different protons in a single

experiment.

An alternative to CPMG with moderate rf field strengths would be the use of

shaped pulses such as band-selective refocusing (REBURP) pulses [51] to achieve

band-selective refocusing of all amide protons. However, such pulses would need to

have a duration of about 3 ms to refocus all amide HN protons (ca 3 ppm or 2 kHz

at 600 MHz) without affecting Ha and other protons, in contrast to our scheme,

where the magnetization of the coupling partners experiences tilted effective fields.

It would be necessary to take into account various longitudinal and transverse

relaxation processes during such protracted pulses, unless one chooses to use only a

small number of band-selective refocusing pulses. In this case, these pulses would

be separated by lengthy de- and refocusing intervals, and one would have to

consider the ‘contamination’ of the transverse relaxation rates of in-phase terms Hy
N

by the decay rates of anti-phase coherences 2Hx
NHz

a.

We have shown that a combination of multiple refocusing using moderate rf

field-strengths and HSQC allows one to measure the apparent transverse relaxation

rates R2
app of any proton that can be resolved in a 2D spectrum. Echo modulations

due to omnipresent homonuclear couplings between protons can be quenched by

cumulative pulse errors experienced by off-resonance coupling partners, due to the

moderate strength of the refocusing pulses. This technique opens the way to

measuring transverse relaxation rates of non-exchangeable protons such as Ha, Hb,

etc., in carbon-13-enriched proteins.
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