Fixed points and amenability in non-positive curvature

Consider a proper cocompact CAT(0) space X. We give a complete algebraic characterisation of amenable groups of isometries of X. For amenable discrete subgroups, an even narrower description is derived, implying Q-linearity in the torsion-free case. We establish Levi decompositions for stabilisers of points at infinity of X, generalising the case of linear algebraic groups to Isom(X). A geometric counterpart of this sheds light on the refined bordification of X (à la Karpelevich) and leads to a converse to the Adams–Ballmann theorem. It is further deduced that unimodular cocompact groups cannot fix any point at infinity except in the Euclidean factor; this fact is needed for the study of CAT(0) lattices. Various fixed point results are derived as illustrations.


Published in:
Mathematische Annales, 356, 4, 1303-1337
Year:
2013
Publisher:
New York, Springer
Laboratories:




 Record created 2012-03-12, last modified 2018-01-28


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)