
1

Multi-terminal Secrecy in a

Linear Non-coherent Packetized Networks
Mahdi Jafari Siavoshani,Student Member, IEEEand Christina Fragouli,Member, IEEE

Abstract

We consider a group ofm + 1 trusted nodes that aim to create a shared secret keyK over a network in the

presence of a passive eavesdropper, Eve. We assume a linear non-coherent network coding broadcast channel (over a

finite field Fq) from one of the honest nodes (i.e., Alice) to the rest of themincluding Eve. All of the trusted nodes

can also discuss over a cost-free public channel which is also overheard by Eve.

For this setup, we propose upper and lower bounds for the secret key generation capacity assuming that the field

sizeq is very large. For the case of two trusted terminals (m = 1) our upper and lower bounds match and we have

complete characterization for the secrecy capacity in the large field size regime.

I. I NTRODUCTION

For communication over a network performing linear networkcoding, Cai and Yeung [1] introduced the problem

of securing a multicast transmission against an eavesdropper. In particular, consider a network implementing linear

network coding over a finite fieldFq. Let us assume that the min-cut value from the source to each receiver isc.

From the main theorem of network coding [2], [3] we know that asource can send information at rate equal to

the min-cutc to the destinations, in the absence of any malicious eavesdropper. Now, suppose there is a passive

eavesdropper, Eve, who overhearsρ arbitrary edges in the network. Thesecure network codingproblem is to design

a coding scheme such that Eve does not obtain any informationabout the messages transmitted from the source

to destinations. Cai and Yeung [1] showed that the secrecy capacity for this problem isc− ρ and can be achieved

if the field sizeq is sufficiently large. Later this problem formulation has been investigated in many other works.

Feldmanet al. [4] showed that by sacrificing a small amount of rate, one might find a secure scheme that requires

much smaller field size. Rouayhebet al. [5] observed that this problem can be considered as a generalization of the

Ozarow-Wyner wiretap channel of type II. Silvaet al. [6] proposed a universal coding scheme that only employs

encoding at the source.

In contrast to the previous work, in this paper we study the problem of secret key sharing among multiple

terminals when nodes can send feedback over a public channel. We consider a source multicasting information over

a network at rate equal to the min-cutc to the destinations. We also assume that the relay nodes in the network
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perform linear randomized network coding which is modeled by a non-coherent transmission scheme. Motivated

by [7], [8], we model a non-coherent network coding scenarioby a multiplicative matrix channel over a finite field

Fq with uniform and i.i.d. distribution over transfer matrices in every time-slot.

The problem of key agreement between a set of terminals with access to noisy broadcast channel and public

discussion channel (visible to the eavesdropper) was studied in [9], where some achievable secrecy rates were

established, assuming Eve does not have access to the noisy broadcast transmissions. This was generalized in [10],

[11] by developing (non-computable) outer bounds for secrecy rates. However, to the best of our knowledge, ours

is the first work to consider multi-terminal secret key agreement over networks employing randomized network

coding, when a passive eavesdropper has access to the broadcast transmissions.

Our contributions in this paper are as follows. For the secret key sharing problem introduced above, we propose

an asymptotic achievability scheme assuming that the field size q is large. This scheme is based onsubspace coding

and can be extended for arbitrary number of terminals. Usingthe result of [9], we derive an upper bound for this

problem. Form = 1, the proposed lower bound matches the upper bound and thesecret key generation capacityis

characterized. However, form ≥ 2, depending on the channel parameters, the upper and lower bound might match

or not.

The paper is organized as follows. In§II we introduce our notation and the problem formulation andpresent

some preliminaries. In§III, we state a general upper bound for the key generation capacity and evaluate it for the

non-coherent network coding broadcast channel. The main results of the paper are presented in§IV.

II. N OTATION AND SETUP

A. Notation

All vectors are column vectors unless otherwise stated. Fixed matrices are denoted by bold uppercase letters

and normal uppercase letters denote the random matrices. Weuse〈A〉 to denote the row span of a matrixA. For

convenience, we also use[i : j] to denote{i, i+ 1, . . . , j} wherei, j ∈ Z.

Let Π be an arbitrary vector space of finite dimension defined over afinite field Fq. SupposeΠ1 andΠ2 are

two subspaces ofΠ, i.e., Π1 ⊑ Π andΠ2 ⊑ Π. We useΠ1 ∩ Π2 to denote the common subspaces of bothΠ1

andΠ2 andΠ1 +Π2 as the smallest subspace that contains bothΠ1 andΠ2. Two subspacesΠ1 andΠ2 are called

orthogonal if Π1 ∩ Π2 = {0}. Two subspacesΠ1 andΠ2 of Π are calledcomplementaryif they are orthogonal

andΠ1 +Π2 = Π.

Now, consider two subspacesΠ1 andΠ2. We define the subtraction ofΠ2 from Π1 by U = Π1 \s Π2 where

U is any subspace ofΠ1 which is complementary withΠ1 ∩ Π2. Note that, givenΠ1 andΠ2, U is not uniquely

defined.

For notational convenience, whenJ is a set, byΠJ we meanΠJ , ∩i∈JΠi.

March 12, 2012 DRAFT



3

B. Preliminaries

Definition 1 (Grassmannian and Gaussian coefficient [12], [13]). The GrassmannianGr(ℓ, d)q is the set of all

d-dimensional subspaces of theℓ-dimensional space over a finite fieldFq, namely,

Gr(ℓ, d)q , {π ⊑ Fℓ
q : dim(π) = d}. (1)

The cardinality ofGr(ℓ, d)q is the Gaussian coefficient, namely,
[

ℓ

d

]

q

, |Gr(ℓ, d)q| =
d−1
∏

i=0

qℓ−i − 1

qd−i − 1
. (2)

Definition 2. We defineS(ℓ,m)q to be the set (sphere) of all subspaces of dimension at mostm in theℓ-dimensional

spaceFℓ
q, namely

S(ℓ,m)q ,

min[m,ℓ]
⋃

d=0

Gr(ℓ, d)q = {π ⊑ Fℓ
q : dim(π) ≤ min[m, ℓ]}. (3)

Definition 3 (see [7]). We denote byξ(n, d) the number of differentn × ℓ matrices with elements from a finite

field Fq, such that their rows span a specific subspaceπd ⊑ Fℓ
q of dimensiond where0 ≤ d ≤ min[n, ℓ]. Note that

ξ(n, d) does not depend onℓ and depends onπd only through its dimensiond [7, Lemma 2].

For simplicity, in the rest of the paper, we will drop the subscript q in the previous definitions whenever it is

obvious from the context.

Lemma 1. Suppose thatk subspacesΠ1, . . . ,Πk, with dimensionsd1, . . . , dk, are chosen uniformly at random

from Fn
q . Then with high probability (probability of order1−O(q−1)) we have

dim (Π1 + · · ·+Πk) = min [d1 + · · ·+ dk, n] , (4)

and

dim (Π1 ∩ · · · ∩ Πk) = [d1 + · · ·+ dk − (k − 1)n]
+
. (5)

Note that if one of the subspaces, for exampleΠ1, be a fixed subspace then the above results still hold.

Proof: These results follow from [14, Corollary 1] by using induction on the number of subspaces.

C. Problem Statement

We consider a set ofm + 1 ≥ 2 honest nodes,T0, . . . ,Tm, (T stands for “terminal”) that aim to share a

secret keyK among themselves while keeping it concealed from a passive adversary, Eve. Eve does not perform

any transmissions, but is trying to eavesdrop on (overhear)the communications between the honest nodes. For

convenience, sometimes we will refer to nodeT0,T1,T2, . . . , as “Alice,” “Bob,” “Calvin,” and so on.

We assume that there exists a non-coherent network coding broadcast channel (which is going to be defined more

pricesely in the followig) from Alice to the other terminals(including Eve). Also we assume that the legitimate

terminals can publicly discuss over a noiseless rate unlimited public channel.
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Consider a non-coherent linear network coding communication scenario where at every time-slott Alice injects

a set ofnA vectors (packets) of lengthℓ (over some finite fieldFq) into the network, denoted by the row vectors of

the matrixXA[t] ∈ FnA×ℓ
q . Each terminalTi receivesni randomly chosen linear combinations of the transmitted

vectors, namely forr ∈ {T1, . . . ,Tm,E}, we have1

Xr[t] = Fr [t]XA[t], (6)

whereFr [t] ∈ Fnr×nA

q is chosen uniformly at random among all possible matrices and independently for each

receiver and every time-slot. So for the channel transitionprobability we can write

PX1···XmXE|XA
(x1, . . . , xm, xE|xA) = PXE|XA

(xE|xA)
m
∏

i=1

PXi|XA
(xi|xA), (7)

where for eachr ∈ {T1, . . . ,Tm,E} we have [7, Sec IV-A]

PXr |XA
(xr|xA) ,



















q−ndim(xA) if 〈xr〉 ⊑ 〈xA〉 ,

0 otherwise.

(8)

Note that in this setup we do not assume any CSI2 at the transmitter or receivers.

III. U PPERBOUND

A. Secrecy Upper Bound for Independent Broadcast Channels

The secret key generation capacity among multiple terminals (without eavesdropper having access to the broadcast

channel) is completely characterized in [9]. By using this result, it is possible to state an upper bound for the

secrecy capacity of the key generation problem among multiple terminals where the eavesdropper has also access

to the broadcast channel. This can be done by adding a dummy terminal to the first problem and giving all the

eavesdropper’s information to this dummy node and let it to participate in the key generation protocol. By doing

so, the secret key generation rate does not decrease. Hence by combining [9, Theorem 4.1] and [9, Lemma 5.1],

the following result can be stated.

Theorem 1. The secret key generation capacity is upper bounded as follows

Cs ≤ max
PX0

min
λ∈Λ([0:m])



H(X[0:m]|XE)−
∑

B([0:m]

λBH(XB|XBc , XE)



 , (9)

whereΛ([0 : m]) is the set of all collectionsλ = {λB : B ( [0 : m], B 6= ∅} of weights0 ≤ λB ≤ 1, satisfying

∑

B([0:m],i∈B

λB = 1, ∀i ∈ [0 : m]. (10)

1During the paper, we useTi and i interchangeably when they are used as subscript. So insteadof XTi
we sometimes writeXi . At some

points, we also useXA, XB, XC, etc., to denote forX0, X1, X2, etc.

2Channel state information.
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Note that in the above expression for the upper bound, it is possible to change the order of maximization and

minimization [9, Theorem 4.1].

Now, for our problem where the channel from Alice to the otherterminals are assumed to be independent, we

can further simplify the upper bound given in Theorem 1, as stated in Corollary 1.

Corollary 1. If the channels from Alice to the other terminals are independent, as described in(7), then the upper

bound stated in Theorem 1, for the secret key generation capacity is simplified to

Cs ≤ max
PX0

min
j∈[1:m]

I(X0;Xj |XE) (11)

≤ min
j∈[1:m]

max
PX0

I(X0;Xj |XE). (12)

Proof: For the proof please refer to Appendix B.

Remark: Note that (11) is the best upper bound one might hope for an independent broadcast channel using the

results of [9].

Remark: Using [15, Theorem 7] or [16, Theorem 2], we observe that the bound given in (12) is indeed tight for the

two terminals problem where we have the Markov chainsXB ↔ XA ↔ XE (when the channels are independent)

or XA ↔ XB ↔ XE (when the channels are degraded).

B. Upper Bound for Non-coherent Channel

In the previous section, we have shown that the secret key generation rate for our problem can be upper bounded

by (12). Now, we need to evaluate the above upper bound for thenon-coherent network coding channel defined in

§II-C.

Lemma 2. For the joint distribution of the form

PXAXiXE
(xA, xi, xE) = PXA

(xA)PXi|XA
(xi|xA)PXE|XA

(xE|xA) (13)

the mutual informationI(XA;Xi|XE) is a concave function ofPXA
(xA) for fixedPXi|XA

(xi|xA) andPXE|XA
(xE|xA).

Proof: TBA.

Similar to [7, Definition 5], here we define an equivalent subspace broadcast channel from Alice to the rest of

terminals as follows. We assume that Alice sends a subspaceΠA ∈ S(ℓ, nA) whereΠA = 〈XA〉 and each of the

legitimate terminals receivesΠi ∈ S(ℓ, ni) and Eve receivesΠE ∈ S(ℓ, nE) whereΠi = 〈Xi〉 andΠE = 〈XE〉,

respectively. The channel transition probabilities are independent and for each receiveri is defined as follows

PΠi|ΠA
(πi|πA) ,



















ξ(ni, dim(πi))q
−ni dim(πA) if πi ⊑ πA,

0 otherwise,

(14)

where the functionξ is defined in§II-B.
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Lemma 3. For every input distributionPXA
there exists an input distributionPΠA

such thatI(XA;Xi|XE) =

I(ΠA; Πi|ΠE) and vice-versa.

Proof: We can expandI(XA;Xi|XE) = I(XA;XiXE) − I(XA;XE). Using [7, Theorem 1], by defining

ΠA = 〈XA〉 andΠr = 〈Xr〉 for r ∈ {T1, . . . ,Tm,TE}, we can write

I(XA;Xi|XE) = I(XA;XiXE)− I(XA;XE)

= I(ΠA; Πi +ΠE)− I(ΠA; ΠE)

(a)
≤ I(ΠA; Πi,ΠE)− I(ΠA; ΠE)

= I(ΠA; Πi|ΠE) (15)

where (a) is true because of the data processing inequality applied on the Marcov chainΠi+ΠE ↔ (Πi,ΠE) ↔ ΠA.

On the other hand, again by applying data processing inequality, we can write

I(XA;Xi|XE) = I(XA;XiXE)− I(XA;XE)

(a)≥ I(ΠA; Πi,ΠE)− I(XA;XE)

(b)
= I(ΠA; Πi,ΠE)− I(ΠA; ΠE)

= I(ΠA; Πi|ΠE) (16)

where (a) is true because of the Marcov chain(Πi,ΠE) ↔ (Xi, XE) ↔ XA ↔ ΠA and (b) is true because of [7,

Theorem 1]. Hence we are done.

So by Lemma 3, in order to maximizeI(XA;Xi|XE) with respect toPXA
it is sufficient to solve an equivalent

problem, i.e., maximizeI(ΠA; Πi|ΠE) with respect toPΠA
; which is seemingly a simpler optimization problem

than the original one.

Lemma 4. The input distribution that maximizesI(ΠA; Πi|ΠE) is the one which is uniform over all subspaces

having the same dimension.

Proof: By the concavity ofI(ΠA; Πi|ΠE) with respect toPΠA
, that is stated in Lemma 2, the proof follows

by an argument very similar to [7, Lemma 8].

Lemma 5. Asymptotically in the field size we have

max
PX

A

I(XA;Xi|XE) = max
PΠ

A

I(ΠA; Πi|ΠE)

= (min[nA, ni + nE]− nE) (ℓ−min[nA, ni + nE]) log q. (17)

Proof: For the proof refer to Appendix B.

Thus, by using the upper bound given in (12) and Lemma 5 we havethe following result for the upper bound

on the secret key generation rate, as stated in Theorem 2.
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Theorem 2. The secret key generation rate in a non-coherent network coding scenario, which is defined in§II-C,

is upper bounded by

Cs ≤ min
i∈[1:m]

[(min[nA, ni + nE]− nE) (ℓ−min[nA, ni + nE])] log q. (18)

Remark: Note that if nE = nA then the secret key generation rate is zero because Eve is so powerful that she

overhears all of the transmitted information.

IV. A SYMPTOTIC ACHIEVABILITY SCHEME FORARBITRARY NUMBER OF TERMINALS

Here in this section, we describe our achievability scheme for the secret key sharing problem among multiple

terminals in a non-coherent network coding setup.

Without loss of generality, let us assume that3 nA < ℓ. Moreover, in this work we focus an the asymptotic regime

where the field size is large. Suppose that Alice broadcasts amessageXA[t] at time-slott of the following form

XA[t] =
[

InA×nA
M [t]

]

, (19)

whereM [t] ∈ F
nA×(ℓ−nA)
q is a uniformly at random distributed matrix. The rest of legitimate terminals and Eve

receive a linear transformed version ofXA[t] according to the channel introduced in (6).

For each terminalr ∈ {T0, . . . ,Tm,TE}, we define the subspaceΠr , 〈Xr〉. Then, for everyr 6= T0 we have

Πr ⊑ ΠA. Because of (19), after broadcastingXA[t], the legitimate terminals learn the channel state and reveal

the channel transfer matricesFr[t], r ∈ [1 : m], publicly over the public channel. Thus Alice can also recover the

subspacesΠr for all of the legitimate terminals.

Now, for each non-empty subsetJ ⊆ [1 : m] of legitimate receivers, let us define the subspaceUJ as follows

UJ , ΠJ \s

(

∑

i∈J c

ΠiJ +ΠEJ

)

, (20)

whereΠJ = ∩i∈JΠi, ΠiJ = Πi ∩ΠJ , andΠEJ = ΠE ∩ΠJ . By definition,UJ is the common subspace among

the receivers inJ which is orthogonal to all of the subspaces of other terminals, i.e., it is orthogonal toΠi, i ∈ J c,

andΠE (see also Fig. 1). Note that the subspacesUJ ’s are not uniquely defined. However, from the definition of

the operator “\s”, it can be easily shown that the dimension of eachUJ is uniquely determined and equal to

dim(UJ ) = dim(ΠJ )− dim

(

∑

i∈J c

ΠiJ +ΠEJ

)

. (21)

If Alice had the subspaceΠE observed by Eve, she would be able to construct subspacesUJ ’s; but she does not

haveΠE. However, because the subspacesΠi’s andΠE are chosen independently and uniformly at random from

ΠA, and because the field sizeq is large, Alice, by applying Lemma 1, can find the dimension ofeachUJ w.h.p.

Then it can be easily observed that (e.g., see [14, Lemma 3]) if Alice chooses a uniformly at random subspace of

ΠJ with dimensiondim(UJ ) then it satisfies (20) w.h.p., so it can be a possible candidate for UJ .

3If ℓ ≤ nA then Alice can reduce the number of injected packets into thenetwork fromnA to some smaller numbern′

A
wheren′

A
< ℓ.
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Now, consider2m − 1 different non-empty subsets of[1 : m]. To each subset∅ 6= J ⊆ [1 : m], we assign a

parameterθJ ≥ 0 such that the following set of inequalities hold,

θJ1
+ · · ·+ θJk

≤ dim (UJ1
+ · · ·+ UJk

+ΠE)− dim(ΠE), (22)

for any k ∈ [1 : 2(2
m−1) − 1] and any different selection of subsetsJ1, . . . ,Jk. Note that the right hand side of

the inequalities defined in (22) depend on the actual choice of subspacesUJ ’s. But, as described above, in the

following we assume thatUJ ’s are chosen uniformly at random fromΠJ .

If Alice knows the subspaceΠE, then we can state the following result.

Lemma 6. There exists subspacesU ′
J ⊑ UJ such thatdim(U ′

J ) = θJ for all ∅ 6= J ⊆ [1 : m], andU ′
J ’s and

ΠE are orthogonal subspaces (i.e.,dim(ΠE +
∑

i U
′
Ji
) = dim(ΠE) +

∑

i θJi
) if and only if θJ ’s are non-negative

integers and satisfy(22).

Proof: The proof of this lemma is based on [17, Lemma 4] and can be found in Appendix B.

Fig.1 depicts pictorially the relation between subspaces introduced in the above discussions.

Fig. 1. The relations between subspacesΠ’s, U ’s, andU ′’s for the case ofm = 2.

Although in practice Alice only knows the dimension ofΠE (w.h.p.), but still she can find subspscesU ′
J ⊑ UJ

such that the result of Lemma 6 holds w.h.p., as stated in Lemma 7.

Lemma 7. Alice can find subspacesU ′
J ⊑ UJ such thatdim(U ′

J ) = θJ for all ∅ 6= J ⊆ [1 : m], and U ′
J ’s

are orthogonal subspaces andU ′
J ’s andΠE are orthogonal subspaces w.h.p., if and only ifθJ ’s are non-negative

integers and satisfy(22).

Proof: For the proof refer to Appendix B.

Then, we have the following result.

Theorem 3. The secret key sharing rate given by the solution of the following convex optimization problem can
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be achieved
maximize

[

minr∈[1:m]

∑

J∋r θJ
]

(ℓ− nA) log q

subject to θJ ≥ 0, ∀J ⊆ [1 : m], J 6= ∅, and

θJ1
+ · · ·+ θJk

≤

dim (UJ1
+ · · ·+ UJk

+ΠE)− dim(ΠE)

∀k, ∀J1, . . . ,Jk : ∅ 6= Ji ⊆ [1 : m],

Ji 6= Jj if i 6= j,

(23)

where for everyJ , UJ is chosen uniformly at random fromΠJ with the dimension calculated by(21) under the

assumption thatΠ1, . . . ,Πm, andΠE are selected independently and uniformly at random fromΠA with dimensions

n1, . . . , nm, andnE respectively.

Proof: Let Alice use the broadcast channelN times by sending matricesXA[1], . . . , XA[N ] of the form (19).

As mentioned before, in every time-slott, each of the legitimate terminals sends publicly the channel transfer matrix

it has received.

Then, let us definêθJ , ⌊NθJ ⌋ for all J and consider the following set of inequalities

θ̂J1
+ · · ·+ θ̂Jk

+N dim(ΠE) ≤

dim

(

N
⊕

t=1

UJ1
[t] + · · ·+

N
⊕

t=1

UJk
[t] +

N
⊕

t=1

ΠE[t]

)

, (24)

where “⊕” is the direct sum operator. Each of̂UJi
,
⊕N

t=1 UJi
[t] is a subspace of anN × nA dimensional space

⊕N

t=1 ΠA[t]. Similarly, we haveΠ̂E ⊑
⊕N

t=1 ΠA[t] whereΠ̂E ,
⊕N

t=1 ΠE[t]. It can be easily seen that if the set

of inequalities (22) are satisfied then the set of inequalities (24) are also satisfied.

Now, by using Lemma 7, Alice can find a set of orthogonal subspaces Û ′
J with dimensionθ̂J (that are also

orthogonal toΠ̂E w.h.p.). By applying Lemma 8, one would observe that if Aliceuses a basis of̂U ′
J (θ̂J linear

independent vectors from̂U ′
J ) to share a secret keyKJ with all terminals inJ , then this key is secure from Eve

and all other legitimate terminals inJ c w.h.p.Using each keyKJ , Alice can send a message of sizeθ̂J (ℓ−nA) log q

secretly to the terminals inJ . In order to share the keyKJ , Alice sends publicly a set of coefficients for each

terminal inJ so that each of them can construct the subspaceÛJ from their own received subspace. Note that

even having these coefficients, Eve cannot recover any information regardingKJ (for more discussion see [18]).

Up untill now, the problem of sharing a keyK among legitimate terminals have been reduced to a multicast

problem where Alice would like to transmit a message (i.e., the shared keyK) to a set of terminal where therth

one has a min-cut
∑

J∋r θ̂J . From the main theorem of network coding (e.g., see [2], [3],[19], [20]), we know

that this problem can be solved by performing linear networkcoding where the achievable rate is as follows

Rs ≤

[

1

N
min

r∈[1:m]

∑

J∋r

θ̂J

]

(ℓ− nA) log q. (25)
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By increasingN , the achievable secrecy rate will be arbitrarily close to

Rs ≤

[

min
r∈[1:m]

∑

J∋r

θJ

]

(ℓ − nA) log q, (26)

and we are done.

Lemma 8. Consider a set ofnA packets denoted by the rows of a matrixXA ∈ FnA×ℓ
q of the formXA = [I M ],

where M ∼ Uni

(

F
nA×(ℓ−nA)
q

)

. Assume that Eve has overheardnE independent linear combinations of these

packets, represented by the rows of a matrixXE ∈ FnE×ℓ
q . Then for everyk packetsy1, . . . , yk that are linear

combinations of the rows ofXA, if the subspaceΠY = 〈y1, . . . , yk〉 is orthogonal to〈XE〉 we have

I(y1, . . . , yk;XE) = 0. (27)

Proof: The proof is stated in Appendix B.

A. Special Case: Achievability Scheme for Two Terminals

For simplicity and without loss of generality we assume thatnB ≤ nA andnE ≤ nA. The key generation scheme

starts by Alice broadcasting a messageXA[t] at timet of the form of (19). Then, Theorem 3 states that the secrecy

rateRs is achievable if

Rs ≤ [dim(UB +ΠE)− dim(ΠE)] (ℓ− nA) log q, (28)

whereUB = ΠB \s ΠE (for convenience we have replacedU{B} with UB). BecauseUB ∩ ΠE = {0}, we have

Rs ≤ [dim(UB)] (ℓ − nA) log q

= [dim(ΠB)− dim(ΠB ∩ ΠE)] (ℓ− nA) log q

=
[

nB − (nB + nE − nA)
+
]

(ℓ− nA) log q

= [min[nA, nB + nE]− nE] (ℓ− nA) log q, bits/matrix channel use, (29)

where this is the same as the upper bound given in Theorem 2. This is obvious whennA ≤ nB + nE. On the other

hand, if nA > nB + nE, we can reduce the number of injected packets by Alice in every time-slot fromnA to

nB + nE (there is no need to use more thannB + nE degrees of freedom).

Remark: Note that in the above scheme, as long asnE < nA, the secrecy rate is non-zero.

Now, we compare the derived secrecy rate with the case where no feedback is allowed. First let us assume that

nB ≥ nE. Then, in the non-coherent network coding scenario introduced in §II-C, it can be easily verified that

the channel from Alice to Eve is astochastically degraded(for the definition refer to [21, p. 373]) version of the

channel from Alice to Bob.

So by applying the result of [22] or [23, Theorem 3], for the secret key sharing capacity we can write

Cs = max
PX

A

[I(XA;XB)− I(XA;XE)]

= max
PΠ

A

[I(ΠA; ΠB)− I(ΠA; ΠE)] , (30)
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where the sufficiency of optimization over subspaces follows from [7, Theorem 1]. Similar to the proof of Lemma 5

(because in the proof of Lemma 5, we also maximize an expression that contains subtraction of two mutual

information similar to (30)), one can show that

Cs = [nB − nE](ℓ− nB) log q, (31)

which is positive only ifnB > nE (obviously for the casenB < nE we haveCs = 0 as well, because even for a

weaker eavesdropper, whennB = nE, we haveCs = 0). �

The above comparison demonstrates the amount of improvement of the secret key generation rate we might gain

by using feedback.

B. Special Case: Achievability Scheme for Three Terminals

As an another example, here we consider the three trusted terminals problem (i.e.,m = 2). As before, we assume

that nA < ℓ and for the convenience we suppose thatnB = nC ≤ nA andnE ≤ nA.

In order to characterize the achievable secrecy rate, we need to find the dimension of subspacesUB, UC, and

UBC and their sums (includingΠE as well). We assume that the field sizeq is large. We know thatΠB, ΠC, and

ΠE are chosen uniformly at random fromnA-dimensional spaceΠA. SubspacesΠBC andΠBE are also distributed

independently and uniformly at ranodm inΠB. Similarly, the same is true forΠBC andΠCE in ΠC.

We have


















UB = ΠB \s (ΠBC +ΠBE)

UC = ΠC \s (ΠBC + ΠCE)

UBC = ΠBC \s (ΠBCE),

(32)

so we can write

dim(UB) = dim(ΠB)− dim(ΠBC +ΠBE)

(a)
= dim(ΠB)−min [dim(ΠBC) + dim(ΠBE), dim(ΠB)]

(b)
= nB −min [dim(ΠBC) + dim(ΠBE), nB]

= [nB − dim(ΠBC)− dim(ΠBE)]
+

(c)
=
[

nB − (2nB − nA)
+ − (nB + nE − nA)

+
]+

, (33)

where (a) follows from Lemma 1 becauseΠBC andΠBE are chosen independently and uniformly at random from

ΠB, (b) is true becauseq is large, and (c) follows from Lemma 1. Note that because we have assumednB = nC it

follows thatdim(UC) = dim(UB).
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Similarly, for the dimension ofUBC we can write

dim(UBC) = dim(ΠBC)− dim(ΠBCE)

= dim(ΠBC)− [dim(ΠBC) + nE − nA]
+

= min[nA − nE, dim(ΠBC)]

= min
[

nA − nE, (2nB − nA)
+
]

. (34)

Proposition 1. From the construction, the subspacesUB, UC, andUBC are complementary. The same holds forUB,

UBC, andΠE and similarly forUC, UBC, andΠE w.h.p.

Now we may write the linear program stated in Theorem 3 as follows

maximize min [θB + θBC, θC + θBC] (ℓ− nA) log q

subject to θB ≤ dim(UB +ΠE)− nE

θC ≤ dim(UC +ΠE)− nE

θBC ≤ dim(UBC +ΠE)− nE

θB + θC ≤ dim(UB + UC +ΠE)− nE

θB + θC + θBC ≤ dim(UB + UC + UBC +ΠE)− nE.

(35)

Because of the symmetry in the problem (nB = nC), for the optimal solution we should haveθB = θC. Knowing

this and using Proposition 1, we may furthur simplify the above linear program as follows

maximize [θB + θBC] (ℓ− nA) log q

subject to θB ≤ 1
2 [dim(UB + UC +ΠE)− nE] , α1

θBC ≤ dim(UBC) , α2

2θB + θBC ≤ dim(UB + UC + UBC +ΠE)− nE , α3.

(36)

From the definitions ofα’s, we can easily observe that,α3 ≥ 2α1, α3 ≥ α2, andα3 ≤ 2α1 +α2. Hence,θB + θBC

gets its maximum at the point(θB, θBC) = (α3−α2

2 , α2). Thus, for the maximum acheivable secrecy rate we have

Rs =

[

α2 + α3

2

]

(ℓ − nA) log q. (37)

As mentioned before, we assume that subspacesUJ ’s are chosen uniformly at random fromΠJ . So ΠE and

UJ ’s are independent and forα3 we can write

α3 = min[dim(UB) + dim(UC) + dim(UBC) + dim(ΠE), nA]− nE

= min[dim(UB) + dim(UC) + dim(UBC), nA − nE]

= min[2 dim(UB) + dim(UBC), nA − nE]. (38)

Finally, for the secrecy rate (acheivable asymptotically wheneq goes to infinity) we have

Rs = min

[

dim(UB) + dim(UBC),
1

2
(nA + dim(UBC)− nE)

]

(ℓ− nA) log q. (39)
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Example 1. As an example, here we compare the achievable secret key sharing rate among three legitimate terminals

(i.e.,m = 2) as derived in(39) with the upper bound stated in Theorem 2. We consider two symmetric setup where

for the first one we havenA = 60, nB = nC = 15 (see Fig. 2(a)) and for the second one we havenA = 60,

nB = nC = 45 (see Fig. 2(b)). In each of these situations, we depict the upper and lower bounds on the secret key

generation rate as a function of the number of packets (degrees of freedom) received by Eve, i.e.,nE.
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(a) m = 2, nA = 60, andnB = nC = 15.
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(b) m = 2, nA = 60, andnB = nC = 45.

Fig. 2. A comparison between the achievable secrecy rate of Theorem 3 and the upper bound given by Theorem 2 for two cases: (a) when

m = 2, nA = 60, andnB = nC = 15 and (b) whenm = 2, nA = 60, andnB = nC = 45.
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APPENDIX A

SIMPLIFYING THE MUTUAL INFORMATION FOR A NON-COHERENTNETWORK CODING CHANNEL

Let us consider a non-coherent network coding channel described by the following matrix channel

Y [t] = F [t]X [t], (40)

whereX [t] ∈ Fnx×ℓ
q , Y [t] ∈ F

ny×ℓ
q , andF [t] ∈ F

ny×nx
q is an uniformly at random chosen transfer matrix which

is independently chosen for every time-slott. For simplicity we assume thatℓ ≥ max[nx, ny].

As stated in [7, Theorem 1], in order to find the capacity of (40) we can instead focus on an equivalent subspace

channel described by a transition probability as follows

PΠY |ΠX
(πy |πx) ,



















ξ(ny, dim(πy))q
−ny dim(πx) if πy ⊑ πx,

0 otherwise.

(41)

In this work we focus on largeq regime, so we can approximate the above transition probability as follows

PΠY |ΠX
(πy|πx) = 1{dimπx≤ny}1{πy=πx} +

1{dimπx>ny}1{dimπy=ny}1{πy⊑πx}
[

dimπx

ny

] . (42)

From here on we assume that the input distribution is uniformover all subspaces having the same dimension,

namely

P [ΠX = πx] = αdx

[

ℓ

dx

]−1

, (43)

wheredx = dimπx andαdx
= P [dimΠX = dx].

Then, forPΠY
we can write

PΠY
(πy) =

∑

πx

PΠY |ΠX
(πy |πx)PΠX

(πx)

=
∑

πx:
dimπx≤min[nx,ny ]

1{πy=πx}PΠX
(πx) +

∑

πx:
ny<dimπx≤nx

1{dimπy=ny}1{πy⊑πx}
[

dimπx

ny

] PΠX
(πx)

= PΠX
(πy)1{dimπy≤min[nx,ny]} +

nx
∑

dx=ny+1

∑

πx:
πy⊑πx,

dimπx=dx

1{dimπy=ny}
[

dx

ny

] ·
αdx
[

ℓ
dx

]

= PΠX
(πy)1{dimπy≤min[nx,ny]} +

nx
∑

dx=ny+1

[

ℓ− ny

dx − ny

]1{dimπy=ny}
[

dx

ny

] ·
αdx
[

ℓ
dx

] . (44)

Now, we use the following relation (see [7, Lemma 17], [13], and [24]) to further simplify the expression in front

of the summation
[

ℓ− ny

dx − ny

][

ℓ

ny

]

=

[

dx

ny

][

ℓ

dx

]

.
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Then forPΠY
we have

PΠY
(πy) = PΠX

(πy)1{dimπy≤min[nx,ny ]} +

nx
∑

dx=ny+1

1{dimπy=n}αdx

[

ℓ

ny

]−1

= PΠX
(πy)1{dimπy≤min[nx,ny ]} + P [dimΠX > ny]1{dimπy=ny}

[

ℓ

ny

]−1

= PΠX
(πy)1{dimπy≤min[nx,ny−1]} + P [dimΠX ≥ ny]1{dimπy=ny}

[

ℓ

ny

]−1

. (45)

Hence, by definition, for the mutual informationI(ΠX ; ΠY ) we can write

I(ΠX ; ΠY ) =

nx
∑

dx=0

∑

πx:
dimπx=dx

min[ny,dx]
∑

dy=0

∑

πy :
dimπy=dy,

πy⊑πx

PΠX
(πx)PΠY |ΠX

(πy|πx) log
PΠY |ΠX

(πy |πx)

PΠY
(πy)

=

min[nx,ny ]
∑

dx=0

∑

πx:
dimπx=dx

dx
∑

dy=0

∑

πy:
dimπy=dy,

πy⊑πx

αdx
[

ℓ
dx

]1{πy=πx} log
1{πy=πx}

PΠY
(πy)

+ 1{ny<nx}























nx
∑

dx=ny+1

∑

πx:
dimπx=dx

ny
∑

dy=0

∑

πy :
dimπy=dy,

πy⊑πx

αdx
[

ℓ
dx

]

1{dx>ny}1{dy=ny}
[

dx

ny

] log
1{dx>ny}1{dy=ny}

PΠY
(πy)

[

dx

ny

]























= −

min[nx,ny]
∑

dx=0

∑

πx:
dimπx=dx

αdx
[

ℓ
dx

] logPΠY
(πx)

− 1{ny<nx}











nx
∑

dx=ny+1

∑

πx:
dimπx=dx

αdx
[

ℓ
dx

] log

[

PΠY
(πy)

[

dx

ny

]]











, (46)

where in the last lineπy is an arbitrary subspace withdim πy = ny. So finally we can write

I(ΠX ; ΠY ) = −

min[nx,ny ]
∑

dx=0

αdx
log

αdx
[

ℓ
dx

] − 1{ny<nx}







nx
∑

dx=ny+1

αdx
log

[[

dx

ny

]

[

ℓ
ny

]P [dimΠX ≥ ny]

]







. (47)

APPENDIX B

PROOFS

Proof of Corollary 1: First, note that we can write

H(X[0:m]|XE)
(a)
=

m
∑

j=0

H(Xi|XE, X[0:j−1])

(b)
= H(X0|XE) +

m
∑

j=1

H(Xj |X0), (48)

where (a) follows from the chain rule and (b) follows from theindependence of the channels. Similarly, for every

B ( [0 : m] we can expandH(XB|XBc , XE) as follows

H(XB|XBc , XE) = H(X0|XBc , XE) +
∑

j∈B

H(Xj |X0). (49)
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Now, from Theorem 1, we know that for everyλ ∈ Λ([0 : m]) there exists a distributionPX0
such thatCs is upper

bounded by

Cs ≤ H(X[0:m]|XE)−
∑

B([0:m]

λBH(XB|XBc , XE)

= H(X0|XE) +

m
∑

j=1

H(Xj |X0)−
∑

B([0:m]

λB



H(X0|XBc , XE) +
∑

j∈B

H(Xj |X0)





(a)
= H(X0|XE)−

∑

B([0:m], 0∈B

λBH(X0|XBc , XE) +

m
∑

j=1

H(Xj |X0)−
m
∑

j=1

∑

B([0:m], j∈B

λBH(Xj |X0)

(b)
= H(X0|XE)−

∑

B([0:m], 0∈B

λBH(X0|XBc , XE)

=
∑

B([0:m], 0∈B

λBI(X0;XBc |XE), (50)

where in (a) we have changed the order of summation overj andB, and (b) follows from (10). In order to find

the best upper bound we proceed as follows. For everyλ andPX0
we can write

A ,
∑

B([0:m], 0∈B

λBI(X0;XBc |XE)

≥
∑

B([0:m], 0∈B

λB min
j∈Bc

I(X0;Xj|XE)

≥
∑

B([0:m], 0∈B

λB min
j∈[1:m]

I(X0;Xj |XE)

= min
j∈[1:m]

I(X0;Xj |XE). (51)

Let us definei = argminj∈[1:m] I(X0;Xj |XE). Then, note thatλB = λBc = 1 whereBc = {i} is a valid choice

according to the condition of Theorem 1, i.e., they satisfy (10). Now, for this choise we have the chain of inequalities

in (51) is satisfied with equalities.

Combining all of the above arguments, for the secrecy upper bound we can write

Cs ≤ max
PX0

min
j∈[1:m]

I(X0;Xj |XE)

≤ min
j∈[1:m]

max
PX0

I(X0;Xj |XE). (52)

Proof of Lemma 5:By using Lemma 2 and Lemma 3, we conclude that in order to maximize I(XA;Xi|XE)

with respect toPXA
, it is sufficient to maximizeI(ΠA; Πi|ΠE) for and equivalent subspace channel introduced in

(14). Also Lemma 4 indicates that considering input distributions that are uniform over all subspaces having the

same dimension is sufficient.

Let us assume

P [ΠA = πA] = αd

[

ℓ

d

]−1

, (53)
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whered = dimπA andαd = P [dimΠA = d]. Now, define

f , I(ΠA; Πi|ΠE) = I(ΠA; ΠiΠE)− I(ΠA; ΠE), (54)

and the goal is to maximizef with respect toαis.

We consider two cases as follows.

First case:ni + nE ≤ nA

Then, by applying the results of Appendix A, specially (47),we can write

f = −
ni+nE
∑

d=nE+1

αd log
αd
[

ℓ
d

] −
nA
∑

d=ni+nE+1

αd log

[
[

d
ni+nE

]

[

ℓ
ni+nE

]P [dimΠA ≥ ni + nE]

]

+

nA
∑

d=nE+1

αd log

[
[

d
nE

]

[

ℓ
nE

]P [dimΠA ≥ nE]

]

. (55)

Now we have to maximizef with respect to the input distribution,αi. We know that the mutual information

is a concave function with respect toαi’s. This allows us to use the Kuhn-Tucker theorem to solve theconvex

optimization problem. According to this theorem, the set ofprobabilitiesα∗
i , 0 ≤ i ≤ nA, maximize the mutual

information if and only if there exists some constantλ such that


















∂f
∂αk

∣

∣

∣

α
∗

= λ ∀k : α∗
k > 0,

∂f
∂αk

∣

∣

∣

α
∗

≤ λ ∀k : α∗
k = 0,

(56)

where0 ≤ k ≤ nA,
∑nA

i=0 α
∗
i = 1, andα∗ is the vector of the optimum input probabilities of choosingsubspaces

of certain dimension,

α
∗ =

[

α∗
0 · · · α∗

nA

]T

. (57)

Taking the derivative for0 ≤ k < nE we have

∂f

∂αk

= 0, (58)

for k = nE we have

∂f

∂αk

=

nA
∑

d=nE+1

αd

[

log e

P [dimΠA ≥ nE]

]

=
P [dimΠA > nE]

P [dimΠA ≥ nE]
log e, (59)

for nE < k < ni + nE we have

∂f

∂αk

= − log
αk
[

ℓ
k

] − log e+ log

[
[

k
nE

]

[

ℓ
nE

]P [dimΠA ≥ nE]

]

+
P [dimΠA > nE]

P [dimΠA ≥ nE]
log e, (60)

for k = ni + nE we have

∂f

∂αk

= − log
αk
[

ℓ
k

] − log e + log

[
[

k
nE

]

[

ℓ
nE

]P [dimΠA ≥ nE]

]

+
P [dimΠA > nE]

P [dimΠA ≥ nE]
log e

−
P [dimΠA > ni + nE]

P [dimΠA ≥ ni + nE]
log e, (61)
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and finally forni + nE < k ≤ nA we have

∂f

∂αk

= + log

[
[

k
nE

]

[

ℓ
nE

]P [dimΠA ≥ nE]

]

+
P [dimΠA > nE]

P [dimΠA ≥ nE]
log e

− log

[
[

k
ni+nE

]

[

ℓ
ni+nE

]P [dimΠA ≥ ni + nE]

]

−
P [dimΠA > ni + nE]

P [dimΠA ≥ ni + nE]
log e. (62)

We can easily check that for largeq, the input distribution that hasαni+nE
= 1 andαi = 0 for i 6= ni + nE

satisfies the Kuhn-Tucker conditions. For this distribution, we have










































0 ≤ k < nE : ∂f
∂αk

= 0 < λ,

k = nE : ∂f
∂αk

= log e < λ,

nE < k < ni + nE : ∂f
∂αk

= log
[

k
nE

][

ℓ
nE

]−1
< λ,

k = ni + nE : ∂f
∂αk

= log
[

ℓ
ni+nE

][

ni+nE

nE

][

ℓ
nE

]−1
= λ,

ni + nE < k ≤ nA : ∂f
∂αk

= log e+ log
[

k
nE

][

ℓ
nE

]−1
− log

[

k
ni+nE

][

ℓ
ni+nE

]−1
< λ.

(63)

So we have

max
PΠ

A

I(ΠA; Πi|ΠE) = λ

= log

[

ℓ

ni + nE

][

ni + nE

nE

][

ℓ

nE

]−1

= log

[

ℓ− nE

ni

]

≈ ni(ℓ − ni − nE) log q. (64)

Second case:ni + nE > nA

For this case the functionf becomes

f = −
nA
∑

d=nE+1

αd log
αd
[

ℓ
d

] +

nA
∑

d=nE+1

αd log

[
[

d
nE

]

[

ℓ
nE

]P [dimΠA ≥ nE]

]

. (65)

Similar to the previous case, we can apply the Kuhn-Tucker theorem to find the optimal input distributionα∗
i ’s.

Taking derivative for0 ≤ k < nE, we have
∂f

∂αk

= 0, (66)

for k = nE we have

∂f

∂αk

=

nA
∑

d=nE+1

αd

[

log e

P [dimΠA ≥ nE]

]

=
P [dimΠA > nE]

P [dimΠA ≥ nE]
log e, (67)

and finally fornE < k ≤ nA we have

∂f

∂αk

= − log
αk
[

ℓ
k

] − log e+ log

[
[

k
nE

]

[

ℓ
nE

]P [dimΠA ≥ nE]

]

+
P [dimΠA > nE]

P [dimΠA ≥ nE]
log2 e. (68)
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We can easily check that for largeq, the input distribution that hasαnA
= 1 andαi = 0 for i 6= nA satisfies the

Kuhn-Tucker conditions. For this distribution, we have






























0 ≤ k < nE : ∂f
∂αk

= 0 < λ,

k = nE : ∂f
∂αk

= log e < λ,

nE < k < nA : ∂f
∂αk

= log
[

k
nE

][

ℓ
nE

]−1
< λ,

k = nA : ∂f
∂αk

= log
[

ℓ
nA

][

nA

nE

][

ℓ
nE

]−1
= λ.

(69)

So for the second case, we have

max
PΠ

A

I(ΠA; Πi|ΠE) = λ

= log

[

ℓ

nA

][

nA

nE

][

ℓ

nE

]−1

= log

[

ℓ− nE

nA − nE

]

≈ (nA − nE)(ℓ− nA) log q. (70)

Combining the first and the second case we get the desired result, namely,

max
PΠ

A

I(ΠA; Πi|ΠE) = (min[nA, ni + nE]− nE)(ℓ−min[nA, ni + nE]) log q. (71)

Proof of Lemma 6:Let us addUE , ΠE to 2m − 1 subspacesUJ ’s, where∅ 6= J ⊆ [1 : m]. Then from the

assumption of the lemma, fork ∈ [1 : 2m − 1] and any selection of subsetsJ1, · · · ,Jk, we have also

θJ1
+ · · ·+ θJk

≤ dim (UJ1
+ · · ·+ UJk

+ΠE)− dim(ΠE)

≤ dim (UJ1
+ · · ·+ UJk

) . (72)

Now by definingθE , dim(ΠE), we can apply [17, Lemma 4] to the set of subspacesUJ ’s andUE to show that

there exist subspacesU ′
J ⊑ UJ such thatdim(U ′

J ) = θJ for ∅ 6= J ⊆ [1 : m], andU ′
E
= ΠE where all of them

are complementary. Note that in the above argument, we haveU ′
E
= ΠE because we setθE = dim(ΠE) (which is

an integer number).

Proof of Lemma 7:Let us assume that Alice hasΠE. Then she can create subspacesU ′
J ’s such that by using

Lemma 6, fork ∈ [1 : 2m − 1] and any selection of subsetsJ1, . . . ,Jk, we have

dim(U ′
J1

+ · · ·+ U ′
Jk

+ΠE) = θJ1
+ · · ·+ θJk

+ dim(ΠE), (73)

which means that

θJ1
+ · · ·+ θJk

+ dim(ΠE) ≤ nA. (74)

Now, suppose that Alice does not have access toΠE. From the proof of Lemma 6, we know that for anyk and

any subsetsJ1, . . . ,Jk we have also

θJ1
+ · · ·+ θJk

≤ dim (UJ1
+ · · ·+ UJk

) , (75)
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so by using [17, Lemma 4] Alice can find subspacesU ′
J ’s such that they are complementary anddim(U ′

J ) = θJ

for every subsetJ .

From Alice’s point of viewΠE, is chosen independently and uniformly at random fromΠA. So by (74) and

applying Lemma 1, the subspaceΠE is complementary to allU ′
J ’s w.h.p and we are done.

Proof of Lemma 8:Construct matrixY that has as rows the packetsy1, . . . , yk. Then note that we can write




Y

XE



 =





A

FE



XA =





A

FE





[

I M

]

, (76)

whereM is a uniformly random matrix andA ∈ Fk×nA

q is the coefficients ofY packets.

We now proceed by expandingH(Y |XE). We have

H(Y |XE) = H(Y,XE)−H(XE)

= H(AM,FEM)−H(FEM)

= [rk (B) − rk (FE)] (ℓ− nA) log q, (77)

whereB =





A

FE



 ∈ FnA×nA

q . Now the only way that we haveH(Y |XE) = H(Y ) is thatB becomes a full rank

matrix.

Now, to prove the assertion of the lemma, we note that creating vectorsyi uniformly at random is equivalent to

selecting the elements of matrixA independently and uniformly at random from the fieldFq. In this case we can

write

P [B is full-rank] =
(qnA − qnE) · · · (qnA − qnA−1)

qnA(nA−nE)

= 1−O(q−1), (78)

which goes to1 as q goes to infinity.
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