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Abstract

We consider a group ofn 4+ 1 trusted nodes that aim to create a shared secretk@yer a network in the
presence of a passive eavesdropper, Eve. We assume a lomeaolmerent network coding broadcast channel (over a
finite field F,) from one of the honest nodes (i.e., Alice) to the rest of thealuding Eve. All of the trusted nodes
can also discuss over a cost-free public channel which & @lsrheard by Eve.

For this setup, we propose upper and lower bounds for thetskey generation capacity assuming that the field
sizeq is very large. For the case of two trusted terminals=£ 1) our upper and lower bounds match and we have
complete characterization for the secrecy capacity in déingel field size regime.

I. INTRODUCTION

For communication over a network performing linear netwookling, Cai and Yeung [1] introduced the problem
of securing a multicast transmission against an eavesdroppparticular, consider a network implementing linear
network coding over a finite field,. Let us assume that the min-cut value from the source to ezx#iver isc.
From the main theorem of network coding [2], [3] we know thasaurce can send information at rate equal to
the min-cutc to the destinations, in the absence of any malicious eawppdr. Now, suppose there is a passive
eavesdropper, Eve, who overheararbitrary edges in the network. Tlsecure network codingroblem is to design
a coding scheme such that Eve does not obtain any informabtont the messages transmitted from the source
to destinations. Cai and Yeung [1] showed that the secrepgaity for this problem is: — p and can be achieved
if the field sizeq is sufficiently large. Later this problem formulation hasbenvestigated in many other works.
Feldmanet al. [4] showed that by sacrificing a small amount of rate, one inigid a secure scheme that requires
much smaller field size. Rouayhebal.[5] observed that this problem can be considered as a gérstiah of the
Ozarow-Wyner wiretap channel of type Il. Siled al. [6] proposed a universal coding scheme that only employs
encoding at the source.

In contrast to the previous work, in this paper we study thebj@m of secret key sharing among multiple
terminals when nodes can send feedback over a public chaffeetonsider a source multicasting information over

a network at rate equal to the min-cuto the destinations. We also assume that the relay node®indtwork
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perform linear randomized network coding which is modelgdabnon-coherent transmission scheme. Motivated
by [7], [8], we model a non-coherent network coding scenbgia multiplicative matrix channel over a finite field
F, with uniform and i.i.d. distribution over transfer matricen every time-slot.

The problem of key agreement between a set of terminals vaitiess to noisy broadcast channel and public
discussion channel (visible to the eavesdropper) was eduiti [9], where some achievable secrecy rates were
established, assuming Eve does not have access to the mo&jchst transmissions. This was generalized in [10],
[11] by developing (non-computable) outer bounds for secrates. However, to the best of our knowledge, ours
is the first work to consider multi-terminal secret key agneat over networks employing randomized network
coding, when a passive eavesdropper has access to the asba@nsmissions.

Our contributions in this paper are as follows. For the dekogg sharing problem introduced above, we propose
an asymptotic achievability scheme assuming that the fiekldsis large. This scheme is based subspace coding
and can be extended for arbitrary number of terminals. Utiegresult of [9], we derive an upper bound for this
problem. Form = 1, the proposed lower bound matches the upper bound ansktiret key generation capacity
characterized. However, fon > 2, depending on the channel parameters, the upper and lowedbuight match
or not.

The paper is organized as follows. i we introduce our notation and the problem formulation grdsent
some preliminaries. I§lll, we state a general upper bound for the key generatioaagpand evaluate it for the

non-coherent network coding broadcast channel. The maintseof the paper are presentedsii.

II. NOTATION AND SETUP
A. Notation

All vectors are column vectors unless otherwise stateded-imatrices are denoted by bold uppercase letters
and normal uppercase letters denote the random matricesis&fed) to denote the row span of a matri&. For
convenience, we also use: j| to denote{i,i + 1,...,;j} wherei, j € Z.

Let IT be an arbitrary vector space of finite dimension defined ovénite field F,. Supposdl; andIl, are
two subspaces offl, i.e., II; C IT andIl; C II. We usell; N1, to denote the common subspaces of bdth
andlIl; andIl; + I, as the smallest subspace that contains bottandIl,. Two subspacell; andIl; are called
orthogonalif II; NIy = {0}. Two subspace$l; andIl, of IT are calledcomplementaryf they are orthogonal
andIly + II; = II.

Now, consider two subspac&k, andIl,. We define the subtraction df, from II; by U = II; \, II, where
U is any subspace difl; which is complementary withl; N Il,. Note that, givenl; andIly, U is not uniquely
defined.

For notational convenience, wheh is a set, byll ; we meanll; £ N;c 711;.
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B. Preliminaries

Definition 1 (Grassmannian and Gaussian coefficient [12], [13he Grassmanniatir(¢, d), is the set of all

d-dimensional subspaces of tlialimensional space over a finite fie}, namely,
Gr(t,d)q = {m T F, : dim(r) = d}. (1)

The cardinality ofGr(¢, d), is the Gaussian coefficient, namely,
d-1 4,
12N B ¢ -1
o), 2o =TT Gy @

Definition 2. We defineS(¢, m), to be the set (sphere) of all subspaces of dimension atmasthe ¢-dimensional
spaceF?, namely

min[m,¢]
S(m)g 2 | Gr(f,d)y = {x CF,: dim(r) < min[m, (]}. (3)
d=0

Definition 3 (see [7]) We denote by (n,d) the number of different x ¢ matrices with elements from a finite
field F,, such that their rows span a specific subspage_ Fg of dimension! where0 < d < min[n, ¢]. Note that

&(n,d) does not depend ofiand depends om, only through its dimensiod [7, Lemma 2].

For simplicity, in the rest of the paper, we will drop the stiijst ¢ in the previous definitions whenever it is

obvious from the context.

Lemma 1. Suppose thak subspacedly,..., I, with dimensionsiy, ..., dy, are chosen uniformly at random

from Fj. Then with high probability (probability of order — O(q~1)) we have
dim (IT; + -+ -+ Iy) = min [dy + -+ + d, 0], (4)
and
dim (Tl; M-~ NT) = [dy + -+ dy, — (k= 1)n] " . (5)
Note that if one of the subspaces, for exaniple be a fixed subspace then the above results still hold.

Proof: These results follow from [14, Corollary 1] by using indwction the number of subspaces. [ |

C. Problem Statement

We consider a set ofn + 1 > 2 honest nodesTy, ..., T,,, (T stands for “terminal”) that aim to share a
secret keykC among themselves while keeping it concealed from a passiversary, Eve. Eve does not perform
any transmissions, but is trying to eavesdrop on (overhi&)communications between the honest nodes. For
convenience, sometimes we will refer to notig T, To, ..., as “Alice,” “Bob,” “Calvin,” and so on.

We assume that there exists a non-coherent network codiaglbast channel (which is going to be defined more
pricesely in the followig) from Alice to the other terminalmcluding Eve). Also we assume that the legitimate

terminals can publicly discuss over a noiseless rate utddrpublic channel.
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Consider a non-coherent linear network coding commurdnagcenario where at every time-stolice injects
a set ofna vectors (packets) of length(over some finite field,) into the network, denoted by the row vectors of

the matrix Xa[t] € IFQA”. Each terminalT; receivesn; randomly chosen linear combinations of the transmitted

vectors, namely for € {Ty,...,T,,,E}, we havé

where F;.[t] € Fy~*"» is chosen uniformly at random among all possible matrices iadependently for each

receiver and every time-slot. So for the channel transitiombability we can write
Px,..x,, xe|Xa(T1, - s T, TE|ZA) = Pxy|x, (TE[2A) ﬁ Px, 1 x,(i|zA), (7)
i=1
where for eachr € {T4,...,T,,,E} we have [7, Sec IV-A]
g AR it (z,) £ (za)
Py, x4 (r]za) = (8)

0 otherwise

Note that in this setup we do not assume any?C8lthe transmitter or receivers.

I1l. UPPERBOUND

A. Secrecy Upper Bound for Independent Broadcast Channels

The secret key generation capacity among multiple termifveithout eavesdropper having access to the broadcast
channel) is completely characterized in [9]. By using thésuit, it is possible to state an upper bound for the
secrecy capacity of the key generation problem among nhelltggminals where the eavesdropper has also access
to the broadcast channel. This can be done by adding a dunmmyngd to the first problem and giving all the
eavesdropper’s information to this dummy node and let itadipipate in the key generation protocol. By doing
so, the secret key generation rate does not decrease. Hegramribining [9, Theorem 4.1] and [9, Lemma 5.1],

the following result can be stated.

Theorem 1. The secret key generation capacity is upper bounded asafsllo

C, < in | H (X0 Xe) — ApH(Xp|Xpe, Xe) | 9
S P Ay | X0 Xe) Bc%;m} PR o

where A([0 : m]) is the set of all collections = {\g : B C [0:m], B # 0} of weights0 < A\p < 1, satisfying

> Ap=1, Vie[o:m]. (10)

BC[0:m],ieB

1During the paper, we us€; andi interchangeably when they are used as subscript. So inefedd, we sometimes writeX; . At some
points, we also us&,, Xg, Xc, etc., to denote foXy, X1, Xo, etc.

2Channel state information.
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Note that in the above expression for the upper bound, it ssipte to change the order of maximization and

minimization [9, Theorem 4.1].

Now, for our problem where the channel from Alice to the ottegminals are assumed to be independent, we

can further simplify the upper bound given in Theorem 1, asestin Corollary 1.

Corollary 1. If the channels from Alice to the other terminals are indejmn, as described i), then the upper

bound stated in Theorem 1, for the secret key generationaigpia simplified to

Cs <max min I(Xo; X;|Xg) (11)
Px, je[l:m]
< i 1(Xo; X;| XE). 12
S Din max (Xo; X;| Xe) (12)
Proof: For the proof please refer to Appendix B. |

Remark: Note that (11) is the best upper bound one might hope for aepi@ddent broadcast channel using the
results of [9].

Remark: Using [15, Theorem 7] or [16, Theorem 2], we observe that thenbl given in (12) is indeed tight for the
two terminals problem where we have the Markov chalfis«++ Xa <> Xg (when the channels are independent)

or Xa <> Xg <> Xg (when the channels are degraded).

B. Upper Bound for Non-coherent Channel

In the previous section, we have shown that the secret kegrggon rate for our problem can be upper bounded
by (12). Now, we need to evaluate the above upper bound fondimecoherent network coding channel defined in
§ll-C.

Lemma 2. For the joint distribution of the form

Px,x; xe (xa, i, E) = Px, (va) Px, x5 (il7a) Pxg) x, (TE|2A) (13)

the mutual informatiod (Xa; X;| Xg) is a concave function dPx, (za) for fixed Py, | x, (xi|za) and Px,|x, (zg|za).

Proof: TBA. [ |
Similar to [7, Definition 5], here we define an equivalent gdr® broadcast channel from Alice to the rest of
terminals as follows. We assume that Alice sends a subspace S(¢,na) wherellp = (Xa) and each of the
legitimate terminals receiveld; € S(¢,n;) and Eve receive$lg € S(¢,ng) wherell; = (X;) andIlg = (Xg),
respectively. The channel transition probabilities amejpendent and for each receiveis defined as follows
&(ny, dim(m;))g " mma)if m C o,
P, (mi|ma) £ (14)
0 otherwise

where the functiort is defined ingll-B.
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Lemma 3. For every input distributionPx, there exists an input distributio®;, such thatl(Xa; X;|Xg) =

I(ITa; 11;|TIg) and vice-versa.
Proof: We can expand (Xa; X;|Xe) = I(Xa; X;Xg) — I(Xa; Xe). Using [7, Theorem 1], by defining
IIp = (Xa) andIl,. = (X,) for r € {Tq,..., T,,, Te}, We can write
I(Xa; Xi| Xg) = I(Xa; X3 Xg) — I(Xa; Xe)
= I(ITa; IL; + IIg) — I(T1a; I1E)
(@
< I(TIa; 10, Tg) — I(TTa; I1E)
= I(IIa; I1;|TIE) (15)

where (@) is true because of the data processing inequaplitiea on the Marcov chaifil; +IIg <> (IL;, IIg) <> Ia.

On the other hand, again by applying data processing ingguak can write
I(Xa; Xi| Xe) = [(Xa; X Xe) — 1(Xa; Xg)
@> [(TIa; 11, TTg) — I(Xa; XE)
© [(ITas 11, Tlg) — I(T1a: M)
= I(I; IL; |TIE) (16)

where (a) is true because of the Marcov chdih, Ilg) < (X;, Xg) <> Xa <> IIa and (b) is true because of [7,

Theorem 1]. Hence we are done. [ |
So by Lemma 3, in order to maximiz& X 4; X;| Xg) with respect toPx, it is sufficient to solve an equivalent

problem, i.e., maximizd (I1a; I1;|TIg) with respect toPy,; which is seemingly a simpler optimization problem

than the original one.

Lemma 4. The input distribution that maximize&IIa;I1;|IIg) is the one which is uniform over all subspaces

having the same dimension.

Proof: By the concavity ofl(ITa; I1;|TIg) with respect toPy,, that is stated in Lemma 2, the proof follows

by an argument very similar to [7, Lemma 8]. |
Lemma 5. Asymptotically in the field size we have
max I(XA; X1|XE) = Imax I(HA; Hi|HE)
= (min[na, n; + ng] — ng) (¢ — min[na, n; + negl) log q. a7

Proof: For the proof refer to Appendix B. [ |
Thus, by using the upper bound given in (12) and Lemma 5 we tsvdollowing result for the upper bound

on the secret key generation rate, as stated in Theorem 2.
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Theorem 2. The secret key generation rate in a non-coherent networkngoscenario, which is defined il-C,

is upper bounded by

Cs < _Ir[llin] [(min[na,n; + ng] — ng) (¢ — min[na, n; + ngl)]logq. (18)
e|lim

Remark: Note that ifng = na then the secret key generation rate is zero because Eve isvearfpl that she

overhears all of the transmitted information.

IV. ASYMPTOTICACHIEVABILITY SCHEME FORARBITRARY NUMBER OF TERMINALS

Here in this section, we describe our achievability schearetfe secret key sharing problem among multiple
terminals in a non-coherent network coding setup.
Without loss of generality, let us assume tha < ¢. Moreover, in this work we focus an the asymptotic regime

where the field size is large. Suppose that Alice broadcasiessageX[t] at time-slott of the following form
Xall = | Lnpns M1 ] (19)

where M [t] € IFZAX“_”A) is a uniformly at random distributed matrix. The rest of tegate terminals and Eve
receive a linear transformed version & [¢] according to the channel introduced in (6).

For each terminat € {Ty,..., T,,, Te}, we define the subspadé. = (X,.). Then, for everyr # T, we have
II, C TIa. Because of (19), after broadcastig[t], the legitimate terminals learn the channel state and fevea
the channel transfer matricds.[t], » € [1 : m], publicly over the public channel. Thus Alice can also remathe
subspace$l, for all of the legitimate terminals.

Now, for each non-empty subsgt C [1 : m] of legitimate receivers, let us define the subspégeas follows

Ug 217\ (Z g + HEJ> , (20)
ISVAS
wherell 7 = N;e 711, I; 7 = I1I; N 117, andIlg; = IIg N 11 7. By definition, U7 is the common subspace among
the receivers in7 which is orthogonal to all of the subspaces of other termsinas., it is orthogonal tél;, i € 7°¢,
andIlg (see also Fig. 1). Note that the subspabiess are not uniquely defined. However, from the definition of

T 1]

the operator ", it can be easily shown that the dimension of ed¢h is uniquely determined and equal to
dim(Uy) = dim(Il7) — dim <Z Ly + HEJ> . (21)
ieJge
If Alice had the subspacHg observed by Eve, she would be able to construct subsgagiss but she does not
haveIlg. However, because the subspate&s andIlg are chosen independently and uniformly at random from
ITa, and because the field sizeis large, Alice, by applying Lemma 1, can find the dimensiorea€hU ;s w.h.p.
Then it can be easily observed that (e.g., see [14, Lemmd B]jce chooses a uniformly at random subspace of

IT; with dimensiondim(U 7) then it satisfies (20) w.h.p., so it can be a possible caneliftatl/ ;.

SIf ¢ < na then Alice can reduce the number of injected packets intmétaork fromna to some smaller number) wheren), < /.
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Now, consider2™ — 1 different non-empty subsets ¢f : m]. To each subset # J C [1 : m], we assign a

parameted ; > 0 such that the following set of inequalities hold,
9.71 +- 4+ ejk < dim (Ujl +e Ujk + HE) - dlm(HE)a (22)

for any k € [1: 22" ~1 — 1] and any different selection of subsefs, ..., 7. Note that the right hand side of
the inequalities defined in (22) depend on the actual choicgubspaced/;’s. But, as described above, in the
following we assume thal/;'s are chosen uniformly at random frohh.

If Alice knows the subspacHg, then we can state the following result.

Lemma 6. There exists subspacé8; C U such thatdim(U’;) = 67 for all ) # J C [1: m], andU’’s and
Ilg are orthogonal subspaces (i.elim(Ile + ), U’ ) = dim(Ilg) + ; 07,) if and only if6;'s are non-negative
integers and satisfy22).

Proof: The proof of this lemma is based on [17, Lemma 4] and can bedfaumppendix B. |

Fig.1 depicts pictorially the relation between subspané®duced in the above discussions.

Fig. 1. The relations between subspatgs, U’s, andU’’s for the case ofn = 2.
Although in practice Alice only knows the dimension It (w.h.p.), but still she can find subspsdé$ C Uy
such that the result of Lemma 6 holds w.h.p., as stated in L&mm

Lemma 7. Alice can find subspacds’, C Uy such thatdim(U;) = 65 forall § # 7 C [1 : m], andU’;’s
are orthogonal subspaces arid;’s andIIg are orthogonal subspaces w.h.p., if and only if's are non-negative

integers and satisfy22).

Proof: For the proof refer to Appendix B. [ |

Then, we have the following result.

Theorem 3. The secret key sharing rate given by the solution of the atig convex optimization problem can
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be achieved
maximize  [min,e(1.m) 2. 75, 0] (£ —na)logq
subject to 07 >0, VJC[1:m], J#0, and
07, +---+07 <
dim Uy, + -+ + Ug, + Ig) — dim(ITe)
Yk, YT T 04 7 C[1:ml,
Ji # Jj it i # j,

where for every7, U is chosen uniformly at random froii; with the dimension calculated K1) under the

(23)

assumption thakly, . .., IL,,, andIlg are selected independently and uniformly at random fibxwith dimensions

ni,...,Nm, andng respectively.

Proof: Let Alice use the broadcast chanméltimes by sending matrice¥a[1],. .., Xa[N] of the form (19).
As mentioned before, in every time-slgteach of the legitimate terminals sends publicly the chbimaesfer matrix
it has received.

Then, let us defind ; £ | N6.7] for all 7 and consider the following set of inequalities

éj1 +-‘réjk +Nd1m(HE) <

dim (@ Uz, t] +---+@Ujk[t] +EBHE[t]>, (24)

where ‘" is the direct sum operator. Each 6731. = @115\]:1 U [t] is a subspace of alV x na dimensional space
@ivzl I1A[t]. Similarly, we havellg C EBivzl IIA[t] wherellg £ EBiV:l IIg[t]. It can be easily seen that if the set
of inequalities (22) are satisfied then the set of inequali{4) are also satisfied.

Now, by using Lemma 7, Alice can find a set of orthogonal subspéf& with dimensionéj (that are also
orthogonal tollg w.h.p.). By applying Lemma 8, one would observe that if Alicses a basis olf7"7 (0 linear
independent vectors fronﬁ’j) to share a secret ke ; with all terminals in.7, then this key is secure from Eve
and all other legitimate terminals {fi° w.h.p.Using each kel 7, Alice can send a message of s&ﬁ(f—nA) log ¢
secretly to the terminals it7. In order to share the kei 7, Alice sends publicly a set of coefficients for each
terminal in 7 so that each of them can construct the subsgagefrom their own received subspace. Note that
even having these coefficients, Eve cannot recover anynrdgton regardindC; (for more discussion see [18]).

Up untill now, the problem of sharing a ke§ among legitimate terminals have been reduced to a multicast
problem where Alice would like to transmit a message (ilee, shared keyC) to a set of terminal where theth
one has a min-cu}_ ;. 67. From the main theorem of network coding (e.g., see [2], [B], [20]), we know

that this problem can be solved by performing linear netwenlling where the achievable rate is as follows

R, <

1 .
=i 01 (0= na)logq. 25
Nré?ff}n];:ar J‘| (£ —na)logq (25)
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10

By increasing/N, the achievable secrecy rate will be arbitrarily close to

min Y "0 J] (¢ —na)loggq, (26)
and we are done. [ |

Lemma 8. Consider a set ofip packets denoted by the rows of a matiix € IF{;AX‘ of the formX, = [I M],

where M ~ Uni (]FZ}AX“_"A)). Assume that Eve has overheatg independent linear combinations of these

packets, represented by the rows of a matkix € F;E“. Then for everyk packetsyy, ...,y that are linear
combinations of the rows oX,, if the subspacély = (y1,...,yx) is orthogonal to(Xg) we have

I(yl,...,yk;XE):O. (27)

Proof: The proof is stated in Appendix B. [ |

A. Special Case: Achievability Scheme for Two Terminals

For simplicity and without loss of generality we assume that< na andng < na. The key generation scheme
starts by Alice broadcasting a messaxg[t| at timet of the form of (19). Then, Theorem 3 states that the secrecy
rate R, is achievable if

Ry < [dim(Us + IIg) — dim(Ilg)] (€ — na) log g, (28)
whereUg = Ilg \ IIg (for convenience we have replacég; with Ug). Becausd/g N Ilg = {0}, we have
Ry < [dim(Ug)] (¢ — na)logq
= [dim(IIg) — dim(ITg N IIg)] (¢ — na)logq
= [ng — (ng + ne —na)"| (£ —na)logq
= [min[na, ng + ng| — nel (€ — na) logg, bits/matrix channel use (29)

where this is the same as the upper bound given in Theoremig.isTbbvious whema < ng + ng. On the other
hand, if na > ng + ng, we can reduce the number of injected packets by Alice inyetiere-slot fromna to
ng + ng (there is no need to use more thag + ng degrees of freedom).

Remark: Note that in the above scheme, as longhas< na, the secrecy rate is non-zero.

Now, we compare the derived secrecy rate with the case whefeeuback is allowed. First let us assume that
ng > ng. Then, in the non-coherent network coding scenario intceduin §lI-C, it can be easily verified that
the channel from Alice to Eve is stochastically degrade@for the definition refer to [21, p. 373]) version of the
channel from Alice to Bob.

So by applying the result of [22] or [23, Theorem 3], for therst key sharing capacity we can write

Cs = max [I(Xa; Xg) — I(Xa; Xg)]

XA

= max [I(HA;HB) — I(HA;HE)] s (30)

A
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11

where the sufficiency of optimization over subspaces fadlérem [7, Theorem 1]. Similar to the proof of Lemma 5
(because in the proof of Lemma 5, we also maximize an exmmedsiat contains subtraction of two mutual

information similar to (30)), one can show that
Cs = [ng — ng| (€ — ng)logg, (31)

which is positive only ifng > ng (obviously for the caseig < ng we haveCy = 0 as well, because even for a
weaker eavesdropper, wheg = ng, we haveC, = 0). [ |
The above comparison demonstrates the amount of improveshéme secret key generation rate we might gain

by using feedback.

B. Special Case: Achievability Scheme for Three Terminals

As an another example, here we consider the three trusteéhids problem (i.eqn = 2). As before, we assume
thatna < ¢ and for the convenience we suppose that= nc < na andng < na.

In order to characterize the achievable secrecy rate, wd teeéind the dimension of subspac&s, Uc, and
Ugc and their sums (includinglg as well). We assume that the field sizes large. We know thatlg, Tlc, and
IIg are chosen uniformly at random frony-dimensional spac&l,. Subspace$lgc andIlge are also distributed
independently and uniformly at ranodm Iifs. Similarly, the same is true fdigc andIlcg in Ilc.

We have

Ug =g \s (IIgc + IgE)
Uc = ¢ \s (e + Ice) (32)
Usc = Hgc \s (ITace),

SO we can write
dlm(UB) = dlm(HB) - dim(HBc + HBE)

@ dim(Ilg) — min [dim(IIgc) + dim(I1gg), dim(IIg)]

® g — min [dim(Ilgc) 4 dim(Ilgg), ng]

= [ng — dim(ITgc) — dim(ITge)]*

©

= [TLB — (2TLB — TLA)+

— (ng +ng — nA)ﬂ—Ir , (33)

where (a) follows from Lemma 1 becauBgc andIlge are chosen independently and uniformly at random from
IIg, (b) is true because is large, and (c) follows from Lemma 1. Note that because we lgsumeaig = nc it

follows thatdim(Uc) = dim(Us).
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12

Similarly, for the dimension ot/gc we can write
dim(UBc) = dim(HBc) — dim(HBCE)
= dim(Tlgc) — [dim(ITgc) + ng — na] "
= min[na — ng, dim(Igc)]

= min [nA —ng, (2ng — nA)+] . (34)

Proposition 1. From the construction, the subspadés, Uc, andUgc are complementary. The same holds &gy,

Ugc, andIlg and similarly forUc, Ugc, andIIg w.h.p.

Now we may write the linear program stated in Theorem 3 ag\d|

maximize min [fg + Ogc, Oc + Osc] (¢ — na)loggq
subject to g < dim(Ug + IIg) — ng
Oc < dim(Uc + g) — ng (35)
Ogc < dim(Ugc + IIg) — ne
0 + 0c < dim(Ug + Uc + lg) — ng
0g + Oc + Osc < dim(Ug + Uc + Ugc + Ig) — ne.
Because of the symmetry in the problemny (= nc), for the optimal solution we should havg = 6. Knowing

this and using Proposition 1, we may furthur simplify the abdéinear program as follows

maximize [0g + Ogc] (¢ — na)loggq

subject to g < % [dim(Ug + Uc + g) — ng] = ay (36)
Opc < dim(Upc) £ s

20 + Opc < dim(Ug + Uc + Usc + IIg) — ng = as.

From the definitions of’'s, we can easily observe thaty > 2«1, ag > as, andas < 2a; + as. Hence 0 + ¢

gets its maximum at the poirits, fsc) = (*25%, az). Thus, for the maximum acheivable secrecy rate we have

a9 + Qs

R = |25 (0 a) o (37)

As mentioned before, we assume that subspatgs are chosen uniformly at random frobh;. So Il and

Us’s are independent and fer; we can write
a3 = min[dim(Ug) + dim(Uc) + dim(Usc) + dim(Ilg), na] — ne
= min[dim(Ug) + dim(Uc) + dim(Usc), na — negl
= min[2dim(Ug) + dim(Usc), na — nel. (38)
Finally, for the secrecy rate (acheivable asymptoticalheneq goes to infinity) we have

1
Ry = min |dim(Ug) + dim(Ugc), 5 (na + dim(Usc) — ng) | (¢ — na)loggq. (39)
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Example 1. As an example, here we compare the achievable secret kapglate among three legitimate terminals

(i.e.,m = 2) as derived in(39) with the upper bound stated in Theorem 2. We consider two symecnsetup where

for the first one we have, = 60, ng = nc = 15 (see Fig. 2(a)) and for the second one we haye= 60,

ng = nc = 45 (see Fig. 2(b)). In each of these situations, we depict thEeupnd lower bounds on the secret key

generation rate as a function of the number of packets (@sgcé freedom) received by Eve, i.eg,

Fig. 2.

60

40

Lower Bound
= = = Upper Bound | -

R,/10-n,) x log q]

10 20

(@) m =2, np =60, andng = nc = 15.

60

R,/[(-n,) x logq]

Lower Bound
= = = Upper Bound | -

60 70

10 20 30 40 50

(b) m = 2, na = 60, andng = nc = 45.

A comparison between the achievable secrecy ratehedbfem 3 and the upper bound given by Theorem 2 for two caagsvien

m =2, ny = 60, andng = nc = 15 and (b) whenm = 2, ny = 60, andng = nc = 45.
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APPENDIXA

SIMPLIFYING THE MUTUAL INFORMATION FOR ANON-COHERENTNETWORK CODING CHANNEL
Let us consider a non-coherent network coding channel ibestby the following matrix channel
Y[t] = F[t] Xt], (40)
where Xt] € IFZ}”", Y[t] € IFZyXZ, and F[t] € F;*™"* is an uniformly at random chosen transfer matrix which

is independently chosen for every time-stofFor simplicity we assume thdt> max[n, n,].

As stated in [7, Theorem 1], in order to find the capacity of)(#@ can instead focus on an equivalent subspace

channel described by a transition probability as follows
&(ny, dim(m,))g " 0= if 7y, o,
Priy 1y (g |72) 2 (41)
0 otherwise
In this work we focus on large regime, so we can approximate the above transition prababg follows

1 dim 7, >ny, 1 dim 7, =n, 1 Ty Cmy
Prty iy (my 72) = L my <y} Ly =y + — } [{dimﬂ B “2

ny
From here on we assume that the input distribution is unifousr all subspaces having the same dimension,
namely

/ —1
P[szwm]zadm [d] , (43)
whered, = dim 7, anday, =P [dimIIx = d,].
Then, for P, we can write
Py (my) = Z Priyng (my|72) Prix (72)
1 dim 7y =n 1 Ty Cmg
- Z L, =m,} Prix () + Z ! [din?jrm]{ - }PHX (m2)
dim 7, S:;:lzi.n[nr,ny] ny<di71.;f7'71§nz Ty
< ]]-{dim my=ny} Qd,
= PHX (Wy)]]-{dimﬂ'ygmin[nz,ny]} + Z Z [dz} : [ g}
dp=ny,+1 _Tei ny dy
dim 7=,y
— PHX (ﬂ-y)]]'{dim Ty <min[ng,ngl} + ZI |: - "y :| 7]]-{dimd7ry:ny} . % (44)
: do —my]  [50] [4.]

de=ny+1

Now, we use the following relation (see [7, Lemma 17], [13]dd24]) to further simplify the expression in front

of the summation
0 —ny ] [de] [t
dy —ny| [Ny o Ny | [ de '
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Then for P, we have

Ny é —1
PHY (Wy) = PHX (Wy)]l{dim Ty <min[ng,nyl} + Z ]]-{dim my=n}d, |:7’L :|
de=ny+1 Y

. 2
= PHX (ﬂ-y)]]-{dimwygmin[nx,ny]} + P [dlm HX > ny]]]-{dimrry:ny} |:TL j|
Y

. e
= PHX (Wy)]]-{dim Ty <min[ng,n, —1]} +P [dlm Hx = ny]]]-{dim Ty=Ny } |:TL :| : (45)
Yy
Hence, by definition, for the mutual informatidiIly; ITy-) we can write
min[n,,d,]

Pr1y 1y (y |72
I(IIx;Ily) = Z Z Z Z Priy (72) Py 1y (7| 72) log ’;HX(WQ)
=0 Ty Ty y "'y

dim 7w,=d, dim 7y =d,,

Ty Eme
min[ng,ny|

_ ad, ]]'{Wy:ﬂ"r}
= Z Z Z > El{wy:mlogm

Tt dy=0 Tyt
dim 7, =d, dim 7w, =d,,
myCmg

Ty

ad, Yd,>n 3 ldy=n,} o Ldo>n,} Lid,=n,)
+ Lin,<n.} Z Z Z Z m y[dm] os P y(ﬂy)[d]
Y

de=n,+1 Ny

dim ﬂ'm_d dlm TFy—dy,
Ty

min{ng,ny)

= _ Z Z a;m log P, (72)

i =l
l Oédz dm
- ]]-{ny<nz} Z Z m 1Og PHY (Wy) n ’ (46)
de=ny+1 4 7oy, ‘e Y
where in the last liner, is an arbitrary subspace withm 7, = n,. So finally we can write
min(ng,ny] Ne dy
IMly)=— Y aglogte —Tpcnys > ag, log [ SEPdimIx >nyl| . (47)
d,=0 [dgj de=ny+1 [ny}
APPENDIX B
PROOFS
Proof of Corollary 1: First, note that we can write
H(X{0:m)|X€) @ Z H(Xi| XE, X[0:5-1))
j=0
b m
2 H(Xo|Xe) + Y H(X,|Xo), (48)

j=1
where (a) follows from the chain rule and (b) follows from tinelependence of the channels. Similarly, for every

B C [0: m] we can expand] (Xp|Xpg-, Xg) as follows

H(Xp|Xpe, Xe) = H(Xo|Xpe, Xe) + > H(X;|Xo). (49)
jeB
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Now, from Theorem 1, we know that for evelye A([0 : m]) there exists a distributiof’x,, such thatC is upper

bounded by

Cy < H(Xjo.m|Xe) = > ApH(Xp|Xpe, Xg)

BC[0:m)]
= H(Xo|Xe) + Y H(Xj|Xo) = Y Ap |H(XolXpe,Xe) + > H(X;|Xo)
j=1 BC[0:m)] jeB
D Xe) Y AsH(XXe Xe) - SOHOGIX) -3 Y AsH(X/X0)
BCl[0:m], 0e B Jj=1 j=1 BC[0:m], jEB
b
QH(XoXe) - Y. ApH(Xo|Xpe, Xe)
BC[0:m], 0B
= Y ApI(Xe; Xpe|Xe), (50)

BC[0:m], 0B
where in (a) we have changed the order of summation ¢wand B, and (b) follows from (10). In order to find
the best upper bound we proceed as follows. For exeand Px, we can write

AS > ApI(Xo; Xpe|XE)
BC[0:m], 0eB

> s min /(Xo; X;| Xe)
BC[0:m], 0eB 7€

Y

> A I(Xo; X;]1X
~ BC Z Bﬂén[lurln] (Xo; Xj1Xe)
C[0:m], 0eB

= min I(Xo; X;|Xg). (51)

JE[1:m]
Let us definei = argminjey.) I(Xo; X;j|Xe). Then, note thalp = Ap. = 1 where B = {i} is a valid choice
according to the condition of Theorem 1, i.e., they sati§fy)( Now, for this choise we have the chain of inequalities
in (51) is satisfied with equalities.

Combining all of the above arguments, for the secrecy uppent we can write

Cs <max min I(Xo; X;|Xg)

Px, je[lim]

< min maxI(Xo; X;|Xg). (52)
jE€[1:m] Px,

[ ]
Proof of Lemma 5:By using Lemma 2 and Lemma 3, we conclude that in order to maritfh( Xa; X;| Xe)
with respect toPx,, it is sufficient to maximizel (I15; IT;|IIg) for and equivalent subspace channel introduced in
(14). Also Lemma 4 indicates that considering input disiifns that are uniform over all subspaces having the
same dimension is sufficient.

Let us assume

P[lTs = ma] = H (53)
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whered = dimwa anday = P [dim T4 = d]. Now, define

f & I(Tp; I;|TTg) = I(Tla; T TTE) — I(Ta; Tg), (54)
and the goal is to maximiz¢ with respect toy;s.
We consider two cases as follows.
First case:n; + ng < na
Then, by applying the results of Appendix A, specially (4%g can write
n;+ng o na [ d ]
f=- Z adlogTd— Z aglog %P[dimHAzni—i—nE]
d=ng+1 [d} d=n;+ng+1 [n71+ng]
na d ]
+ > aalog [[";] P [dim I > nE]‘| . (55)
NEg

d=ng+1
Now we have to maximizg with respect to the input distributiory;. We know that the mutual information

is a concave function with respect tg’s. This allows us to use the Kuhn-Tucker theorem to solve dtwevex

optimization problem. According to this theorem, the sepasbabilitiesa, 0 < i < na, maximize the mutual

information if and only if there exists some constansuch that

6% =\ Vk: a} >0,
o
(56)
ALl <X Yk oaf =0,

where0 < k < na, >.*,af =1, anda* is the vector of the optimum input probabilities of choosBupspaces

of certain dimension,
. T
o =[ag - ap |- (57)
Taking the derivative fof < k& < ng we have
of
It 58
Sar = (58)
for £k = ng we have
A P [dim TTa > ng] (59)

ﬁ — Z o IOge = loge
Y| P[dimIIa > ne]| PldimIa > ng] °

aak d=ng+1
for ne < k < n; +ne we have
k
of Qg ) P [dim ITa > ng]
—— =—log — —loge + log | == P [dimIIp > ng|| + =————loge, (60)
Oay, m [ni] P [dim s > ng]
for k = n; + ng we have
k
6f Q [n } . P [dirn IIp > nE]
— = —log— —loge+log | ==P[dimIIa > ng]| + =——————loge
Oy, [ﬁ] [n@ P [dimTIa > ng]
P [dim ITp > n; + ng]
— 1 61
P [dimIIa > n; + ng o8¢ (61)
DRAFT
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and finally forn; + ng < k < na we have

of _ M
Doy L]

k
—log [%P [dim ITp > n; + ngl
ni+ng

P[dimIIa > ng]
P [dlm HA Z TLE]

+log P[dim IIn > ngl| + loge

P [dim s > n; + ng]
P[dimIIa > n; + ng]

loge. (62)

We can easily check that for large the input distribution that has,,, .., = 1 anda; = 0 for i # n; + ng

satisfies the Kuhn-Tucker conditions. For this distribnfiove have

0<k<ng : ;Tfk =0<A,
k=ng : ;Tfk:loge</\, 1
ng <k <mn;+ne : ;Jk =log[F][L] <A (63)
— . of _ ¢ nitnel[£7 1 _
k =N + nE ) m - log [niJrnE] [ nE E} [nE] - A’
—1 —1
n;+ng<k<na : ;Tfk = loge + log [fE} [ni] — log [nan} [man] <A
So we have
max [ (TTa; I |TIg) = A
G M
= log
n; + ng ne Nng
_ 10g |:€ - nE]
7
~n;({ —n; —ng)logq. (64)
Second casen; + ng > na
For this case the functioffi becomes
na oy nA I:d}
f=- Z aglog —= + Z aglog n; P[dimIIa > ng]| . (65)
d=ng+1 [d} d=ng+1 [ng}

Similar to the previous case, we can apply the Kuhn-Tuckeorttim to find the optimal input distributiom’s.

Taking derivative for0 < k < ng, we have

of
A 66
By 0, (66)
for £k = ng we have
of & loge _ P[dimTIa > ng]
dan 2. e LP’ [ Tin S ne]| ~ PldimTia > ng] 08¢ 67)

d=ng+1
and finally forng < k < na we have

OF e
dor 0

k
[nE} [dlm HA Z TLE]

[ne]

P[dimIIa > ng]
CICHR A 2 TEL ) o e 68
T B dimTia > ng] 022° (68)

loge + log
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We can easily check that for large the input distribution that has,,, = 1 anda; = 0 for i # na satisfies the

Kuhn-Tucker conditions. For this distribution, we have

0<k<ng : %:O<)\,
k=n . 2L —oge < A,
i 830? ) kireq—t (69)
ng <k<na : mzlog[w} [nE} <,
_ . of _ C1mmarr et _
k= A © o Bag log [nA] [nﬂ [nE] = A
So for the second case, we have
max I (ITa; I [TIg) = A
PHA
Bl
= log
A ne ne
e
= log
na — ne
~ (na —ng)(f —na)logg. (70)
Combining the first and the second case we get the desirell, nesmely,
rgaXI(HA; IL;|[TIg) = (min[na, n; + ng| — ng)(f — min[na, n; + nel) logg. (71)
A
[ |

Proof of Lemma 6:Let us addUg = IIg to 2 — 1 subspace$/;’s, where) # 7 C [1 : m]. Then from the

assumption of the lemma, fdre [1 : 2™ — 1] and any selection of subsefg, - - - , J,, we have also
9]1 +-~-+9jk < dim(Ujl +~-~—|—ng —|—HE)—dim(HE)
<dmUgzp +---+Ug,). (72)
Now by definingfe = dim(Ilg), we can apply [17, Lemma 4] to the set of subspaées and Ug to show that
there exist subspacés; = Us such thatdim(U’;) = 67 for ) # J C [1 : m], andU{ = IIg where all of them
are complementary. Note that in the above argument, we tigve IIg because we séz = dim(IIg) (which is

an integer number). [ |

Proof of Lemma 7:Let us assume that Alice hak. Then she can create subspatéss such that by using

Lemma 6, fork € [1: 2™ — 1] and any selection of subsef, ..., 7, we have
dim(U%, +---+U%, +g) =07 + -+ 07, + dim(Ilg), (73)

which means that

07 + -+ 0z +dim(Ilg) < na. (74)

Now, suppose that Alice does not have accesdgoFrom the proof of Lemma 6, we know that for ahyand

any subsetsr, ..., Jr we have also

6‘51+"'+9.7kSdim(U.71+"'+UJk)a (75)
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so by using [17, Lemma 4] Alice can find subspa€&ss such that they are complementary atich(U’;) = 67
for every subsety.

From Alice’s point of viewlIlg, is chosen independently and uniformly at random frim So by (74) and
applying Lemma 1, the subspatk is complementary to all’’;’'s w.h.p and we are done. ]

Proof of Lemma 8: Construct matrixy” that has as rows the packets . .., y;. Then note that we can write

Y
Xe

A
e

Xa = [I M}, (76)

e

where M is a uniformly random matrix and € F’;X”A is the coefficients ol packets.

We now proceed by expanding (Y| Xg). We have
H(Y|Xe) = H(Y, Xg) — H(XE)
= H(AM, FeM) — H(FeM)
= [tk (B) — rk (Fg)] (¢ — na) log g, 77
whereB = 4 € Fy~*"A. Now the only way that we havBl (Y| Xg) = H(Y) is that B becomes a full rank

FE
matrix.

Now, to prove the assertion of the lemma, we note that crgat@ttorsy; uniformly at random is equivalent to

selecting the elements of matrix independently and uniformly at random from the fi&lgl In this case we can

write
P[B is full-rank = (¢" — (J";)M-(-%A(CJ::)_ g
S (78)
which goes tol asq goes to infinity. i
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