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Abstract

This is a small observation concerning scale mixtures and their log-concavity.

A function f(x) ≥ 0, x ∈ R
n is called log-concave if

f (λx + (1 − λ)y) ≥ f(x)λf(y)1−λ (1)

for all x,y ∈ R
n, λ ∈ [0, 1]. Log-concavity is important in applied Bayesian Statistics,

since a distribution with a log-concave density is easy to treat with many different approx-
imate inference techniques. For example, log-concavity implies unimodality. Log-concave
distributions over few variables can be sampled from using a generic Markov chain Monte
Carlo technique called adaptive rejection sampling [3]. For certain approximate inference
techniques such as expectation propagation [5, 6], log-concavity of all sites means that the
algorithm can be implemented in a numerically stable manner and tends to converge quickly,
while in the absense of log-concavity it can fail badly.

Many well-known densities are log-concave, for example the Gaussian or the Gamma ∝
xa−1e−bxI{x>0}, the latter for a ≥ 1. In the Bayesian context it is important to note that
exponential family densities are in general log-concave in their natural parameters (but not
necessarily in their data argument).

A very important result concerning log-concave functions has been given by Prékopa (see [1],
Sect. 1.8). Namely, if f : R

n1 × R
n2 → R is (jointly) log-concave, so is g(x) =

∫

f(x,y)dy ,
where the integral is over all of R

n2 .

In this note, we are interested in scale mixture distributions [4] P (x) = E[N(x|h, s)] with
some mixing distribution P (s) over the variance. We give a sufficient condition for P (x) to
be log-concave, and show that the condition is not necessary. Since concavity is preserved
under linear transformations, we can assume w.l.o.g. that h = 0.

We have that

P (x) =

∫

exp
(

−(1/2)x2/s − (1/2) log s + log P (s) + C
)

ds.

First, (x, s) 7→ x2/s is convex on R × R>0 (see [2], Sect. 3.1.5). Therefore, if log P (s) −
(1/2) log s is concave there, we see that the function

g(x, s) = P (s)s−1/2e−(1/2)x2/sI{s>0}

1



is log-concave on R
2. To see that, invoke Eq. 1 for x = (x, sx), y = (y, sy). If sx ≤ 0 or

sy ≤ 0, the r.h.s. is zero. Otherwise, λsx + (1 − λ)sy > 0, and the inequality follows from
the concavity of log g.

We have shown that if P (s)s−1/2 is log-concave on R, then the scale mixture P (x) =
E[N(x|h, s)] is log-concave as well.

This condition is not necessary. The Laplace density P (x) = τe−τ |x| is a scale mixture under
the exponential P (s) = λe−λsI{s>0}, with λ = τ2/2 [4, 7]. However, log P (s)− (1/2) log s =
−λs − (1/2) log s is strictly convex for s > 0.
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