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Abstract

We emphasize the need for input-dependent
regularization in the context of conditional
density models (also: discriminative models)
like Gaussian process predictors. This can
be achieved by a simple modification of the
standard Bayesian data generation model un-
derlying these techniques. Specifically, we
allow the latent target function to be a-
priori dependent on the distribution of the
input points. While the standard genera-
tion model results in robust predictors, data
with missing labels is ignored, which can be
wasteful if relevant prior knowledge is avail-
able. We show that discriminative mod-
els like Fisher kernel discriminants and Co-
Training classifiers can be regarded as (ap-
proximate) Bayesian inference techniques un-
der the modified generation model, and that
the template Co-Training algorithm is related
to a variant of the well-known Fxpectation-
Mazximization (EM) technique. We propose
a template EM algorithm for the modified
generation model which can be regarded as
generalization of Co-Training.

1. Introduction

There are two basic paradigms for supervised classi-
fication: the generative and the discriminative one.
Within the former, we try to model the generative
process for input points conditioned on each of the
classes. While this is a very powerful and flexible ap-
proach, it is often very difficult to model real-world
class-conditional distributions, especially if the ob-
served data is sparse and is represented in a high-
dimensional space. In this paper, we are concerned
with discriminative models which, instead of modelling
class regions, try to model the boundaries between
them. Applied to the same problem, discriminative
methods often use many fewer parameters and behave
more robustly than generative ones. A major draw-
back of discriminative methods is, however, that there

is no natural way to deal with missing or uncertain
information.

The structure of the paper is as follows. In section
2, we formalize our setting and introduce the stan-
dard Bayesian data generation model for discrimina-
tive methods. We show that under this generation
model, data with missing class labels is useless for
Bayesian inference. In section 3, we introduce and dis-
cuss a modification of this model which leads to input-
dependent regularization. In section 4, we give some
examples of input-dependent regularization in the lit-
erature. Section 5 shows how Co-Training(Blum &
Mitchell, 1998) can be regarded as Bayesian inference,
and how the basic Co-Training algorithm is related
to Ezpectation-Mazimization (EM). We also propose
a template EM algorithm for the modified generation
model.

2. The standard Bayesian data
generation model

Let X be the space of input points ¢, T = {1,...,c}
the set of (class) labels t. We are given a labeled sam-
ple D; = {(x1,t1),...,(xn,ts)} drawn independently
and identically distributed (i.i.d.) from an unknown
distribution P(x,t). Let X; = {x1,...,xn}, T} =
{t1,...,tn}. Furthermore we have access to an un-
labeled sample D,, = X, = {®nt1,-.., Tnim drawn
iid. from P(x) = >, P(x,t). We can regard the
missing labels T, = {tn11,...,tn+m} as latent data.
The goal is to predict the class label ¢ on unseen
examples x with small generalization error e(§) =
Pr{g(zx) # t}, where the probability is over P(x,t).

The Bayesian approach to discrimination is to build
a model of the data generation process, encode avail-
able prior knowledge in prior distributions and then
turn the Bayesian handle to make inference. However,
being within the discriminative paradigm, we are in-
terested in modelling P(t|x) rather than the class dis-
tributions P(x|t). Within the standard Bayesian gen-
eration model, we choose a model class {P(t|x,0)}
and encode what we believe to know about the (un-



known) P(t|z) in the prior distribution P(0). For ex-
ample, @ might be the weights of a multi-layer per-
ceptron, for which the usage of a weight-decay prior
P(0) (being a zero-mean Gaussian) has become pop-
ular (e.g. MacKay, 1991). Or in the case of Gaus-
sian process classification (e.g. Williams, 1997), 6 is
a latent function, P(0) a Gaussian process distribu-
tion, and P(t|x,0) are simply models for the noise.
Even if we do not have strong prior knowledge about
P(t|x), we can use the principle of Occam’s razor (e.g.
MacKay, 1991) and penalize complicated models by as-
signing low prior probability to them.! This is known
as reqularization. Both weight-decay and Gaussian
process priors can be seen as regularization.

In order to arrive at a complete generation model, we
also have to specify a model class { P(x|u)} and a prior
P(p). The Bayesian approach to discrimination is to
assume that these settings specify how the data has
been generated. Namely, we first sample 8 ~ P(0)
and p ~ P(w), then independently (conditioned on 6
and p) x; ~ P(x|p), t; ~ P(tlx;,0), i = 1,...,n,
and ®; ~ P(x|p), i = n+1,...,n + m. Under
this assumption, consistent inference is done by con-
ditioning on the data, i.e. computing the posterior
P(0|Dy;, D,,), and prediction uses this “updated” be-
lief via P(t|z,D;,D,) = [ P(t|xz,0)P(6|D;, D,,)d6.>
This data generation model is shown in figure 1.

Figure 1. Standard data generation model

If this data generation assumption is correct, Bayesian
prediction can be shown to be optimal, however, it re-
mains a valid strategy even if the assumption is vi-
olated (or “partially correct”, for example we could
have P(tlx) = P(t|x,0) for some 6 which has been
sampled from a distribution different from the prior
P(0)), and frequently outperforms other classification

"However, the notion of a “complicated model” fre-
quently depends on what we know about the task.

2Note that the posterior P(u|D;, D.,) is not required
for prediction.

schemes on tasks where prior knowledge is available
and can be encoded.

Under this model, 8 and p are a-priori independent,
ie. P(@,un) = P(0)P(p). The likelihood factors as

P(Dy, Dy|0, p) = P(T1| X1, 0) P(Xy, Do),

which implies that P(@|D;, D,) x P(T;|X;,0)P(8),
ie. P(|D;,D,) = P(0|D;), and 0 and p are a-
posteriori independent. Furthermore, P(0|D;, u) =
P(0|D;). This means that neither knowledge of the
unlabeled data D, nor any knowledge of p changes the
posterior belief P(0|D;) of the labeled sample. There-
fore, in the standard data generation model, unlabeled
data cannot be used for Bayesian inference, and mod-
elling the input distribution P(x) is not necessary.

This fact is often seen as advantage of the standard
model, since it implies that discrimination is robust
w.r.t. assumptions of how the input data is distributed.
However, it also means that we have to neglect unla-
beled data D,, (even if available in great quantities) or
available prior knowledge about P(x), both of which
might improve discrimination significantly (Blum &
Mitchell, 1998; Nigam, McCallum, Thrun & Mitchell,
1998; Miller & Uyar, 1996). We also have to ask our-
selves if we really believe in a prior independence of
6 and p for a given real-world task. Is it sensible to
assume that knowledge about the input distribution
does not influence the information we have (a-priori)
about P(t|z)? As an example, suppose we want to
regularize models P(t|x, 8) according to their smooth-
ness (e.g. the weight-decay prior). Is it sensible to en-
force this requirement globally, i.e. to penalize a model
for being rough in regions where examples x almost
never fall into? We are on the safe side accepting this
assumption, but also risk to ignore valueable informa-
tion sources®. Furthermore, in certain experimental
settings or learning tasks, this assumption is clearly
violated (e.g. in the Co-Training setting, as discussed
in section 5).

3. A modification to the standard data
generation model

In section 2 we have motivated that treating 8 and p,
i.e. the variables responsible for modelling P(¢|x) and
P(x), as a-priori independent might have drawbacks
in many applications. The modification we suggest in
this section is to simply drop this independence re-
quirement. In other words, we construct a prior P(0)

3The bare (empirical) fact that unsupervised learning
techniques are often successful on real-world data indi-
cates strongly that ignoring unlabeled data in classification
might be suboptimal.



over O by choosing conditional priors P(0|u) and then
building the mixture

P(0) = / P(O]1) (1) dps. 1)

This way of construction P(€) from distributions con-
ditioned on the input distribution p is referred to
as input-dependent regularization. The modified data
generation model is shown in figure 2.

Figure 2. Modified data generation model in which 6 is
allowed to depend on the input distribution .

The sampling process is modified in that we first sam-
ple g ~ P(p), then @ ~ P(0|p), i.e. conditioned on p.
Afterwards we sample independently (conditioned on
0 and p) x; ~ P(x|p), t; ~ P(tle;,0), i=1,...,n,
and ®; ~ P(z|p), i =n+1,...,n+ m. It is obvi-
ous that (in general) under this generation model the
posterior belief P(0|D;, D,,) depends both on the un-
labeled data D, and on the prior P(u). Note that
the standard model of section 2 is a special case of the
modified model.

Equation (1) can be seen as an instance of hierarchical
Bayesian design (e.g. Berger, 1985). This technique
allows us to create a prior which encodes complicated
knowledge, by introducing new variables (called hyper-
parameters or nuisance parameters), then specifying
prior distributions conditioned on the values of these
parameters. Each of these conditional priors can be
quite definitive, but if we place vague priors on the hy-
perparameters, the final marginal prior, obtained by
integrating the hyperparameters out (as in (1)), will
also be vague. Indeed we can regard p as nuisance pa-
rameter, since it is integrated out for prediction. How-
ever, direct evidence of p is available via D,, (and also
X)), while hyperparameters in hierarchical designs are
usually buried high up in the hierarchy.

How can we (possibly) gain from information about p,

such as D,? We have:
POID.D,) = [ P(6,ulDi, D.)d
x [ POIXLO)PCL D) POLW)PGe) i (2)
. P(T1|Xz,0)/P(0|H)P(H|X1,Du) dp.

This should be compared to the posterior under the
standard generation model, namely P(8|D;, D,)
P(T;|X,,0)P(0). If D, is large, P(u|X;, D,) will
be quite definitive (or peaked), i.e. the average over
P(O|p) in the last line of (2) will concentrate on a
small region (for p). Since the conditional P(0|u)
are usually more specific than the marginal P(0),
we see that the posterior belief in @ should in gen-
eral be narrower under the modified than under the
standard model. An extreme case of this argument
is analyzed in (Castelli & Cover, 1995). They make
the strong assumptions that the input distribution is
known completely and that all class-conditional dis-
tributions P(x|t) can be learned from unlabeled data
only*. Thus, given an infinite amount of unlabeled
data D,, P(u|D,) is a delta peak at fi (say), leading
to P(0|D;,D,) x P(T;|X;,0)P(0|f). Now, only ¢!
values for 6 have non-zero probability under P(0|f)
(remember that the class-conditional distributions can
be inferred exactly from P(x) = P(x|ft), therefore
only the assingment of these distributions to class la-
bels remains to be done). In general, the gain on non-
trivial tasks will be much less substantial, even if an
unlimited number of unlabeled examples is available.

3.1 Why additional unlabeled data can hurt
instead of help

It has been observed that using unlabeled data in ad-
dition to a set of labeled data occasionally hurts in-
stead of being beneficial, w.r.t. generalization error
(e.g. Zhang & Oles, 2000). In the context of this pa-
per, we can motivate several possible reasons for such
failures. First, the unlabeled data might have been
used in an unfortunate way which is neither a Bayesian
analysis nor a valid approximation to such, and there-
fore not in the scope of this paper. Second, established
“black box algorithms” for supervised or unsupervised
learning might have been used in a way which is not
appropriate for the new “semi-supervised” problem.
For example, the EM algorithm has frequently been
used together with rather poor joint models for inputs
and targets®. While such poor models are frequently

4The latter assumption is very strong, and we do not
see a general way satisfy it in reality.
5A good example are Naive Bayes models.



well-suited and successful for classification based on
labeled data, using them in an EM approach together
with unlabeled data can be very problematic. A poor
model, trained on a very small amount of labeled data,
will usually confidently (but largely randomly!) label
up the (potentially large) set of unlabeled data. In a
few rounds, the EM algorithm will have converged into
a poor local maximum of the joint likelihood which will
often generalize worse than the initial model inferred
from the labeled data only.

Third, the prior assumptions encoded via the struc-
ture of the model and the prior distributions might
have been wrong for the problem at hand. This
happens if the conditional priors P(0|u) enforce cer-
tain constraints very rigidly, and the true distribution
P(x,t) happens to break some of them. In this case,
the factor [ P(6|p)P(p|Xi, Dy)dp in (2) will assign
very low probability to models P(t|x,8) close to the
true P(t|x), and if the labeled dataset D; is rather
small, the posterior P(6|Dy, D,) will concentrate on
a wrong region. This effect usually becomes stronger
with growing D,,. In constrast to this, the standard
model replaces this factor by P(#) which is not af-
fected by D,. Since P(0) is vague, but “on average”
encodes a correct bias, as opposed to the systemati-
cally wrong one just described, predictions using the
standard model can outperform input-dependent reg-
ularization.

Care must be taken towards these caveats when de-
signing the conditional priors P(@|w). While it is
tempting (or maybe most feasible) to encode con-
straints rigidly, this should be done only if these are
somewhat unquestionable. Since, via D,, we obtain
direct strong evidence about u, we cannot rely on the
fact that using a vague prior P(u) results in a vague
marginal P(0). We also have to ensure that the condi-
tional P(0|p) are sufficiently vague w.r.t. unsure prior
knowledge.

4. Examples and related work

In this section we argue that Fisher kernel discrim-
inants (Jaakkola & Haussler, 1998) and Co-Training
(Blum & Mitchell, 1998) can be seen as instances of
input-dependent regularization.

Fisher kernels are covariance functions used in Gaus-
sian process (or Support Vector machine) predictors,
which are constructed based on a separate model
P(x|p) of the input distribution P(x), fitted to i.i.d.
unlabeled data D,,. Specifying a covariance kernel is
equivalent to specifying the geometry of the feature
space in which kernel methods can be regarded as lin-

ear discriminants (however, the linear feature space
induced by a kernel can be very complex, usually of
very high or infinite dimension). Regularization of
these machines works, in a nutshell, by penalizing
discriminants by their squared norm in the feature
space. Therefore, the Fisher kernel performs input-
dependent regularization. More specifically, let K, be
the Fisher kernel corresponding to the input distribu-
tion po. Then, P(0|p) is a zero-mean Gaussian process
distribution with covariance function K, (recall that in
Gaussian process classification, € is a function, and its
prior is a distribution over functions). A full Bayesian
analysis is intractable in this case, so that Fisher ker-
nel discrimination usually works in two steps. First,
we compute a model £ with maximum posterior prob-
ability P(p|D,, X;). We then approximate this pos-
terior by the delta peak at fi, which is reasonable if
D, is large. Using this approximation, the posterior in
(2) becomes x P(T;|X;,0)P(0|f). In a second step,
we predict using this posterior, which usually involves

further approximations®.

The recently proposed Co-Training paradigm is an
even more direct example of input-dependent regular-
ization. In the original “noiseless” formulation, hard
constraints on the target function are encoded in con-
ditional priors, since these constraints depend on the
input distribution. This view on Co-Training will be
developed in section 5.

5. Co-Training as Bayesian inference

In this section, we show that Co-Training (Blum
& Mitchell, 1998) can be seen as Bayesian infer-
ence under the modified generation model of section
3, using input-dependent regularization. The ba-
sic Co-Training algorithm is a “hard” variant of the
Ezpectation-Mazimization (EM) algorithm. We also
propose a template EM algorithm for the modified gen-
eration model, which can be seen as generalization of
Co-Training.

5.1 Co-Training and the notion of
compatibility

For clarity, we will stick with the noiseless case dis-
cussed in (Blum & Mitchell, 1998). Let X = XD x
X@) be the finite or countable input space. If @ =
(™, x?), the ) should be regarded as different
“views” on . For example, if  is a Web page, =1

5This is true for Gaussian process predictions using the
Fisher kernel. Support Vector discrimination is a non-
Bayesian technique which follows the paradigm of Mawi-
mum Entropy discrimination (Jaakkola, Meila & Jebara,
1999).



might be the text on the page, while (?) might be the
text on hyperlinks referring to this page. We are also
given spaces ©U) of concepts oU ), mapping XU) into
{1,2}, 7=1,2,7 and set © = O x O, Elements
0 = (0'V,0?) € © will be referred to as concepts over
X, although they are not in the strict sense, since usu-
ally 8 (D)) £ 0@ (@) for some x = (&, 2?) €
X. Whenever 80 (z®) = 0@ (2?2), we will write
0(z) = 6 (zM) for convenience. We assume that
both classes ©U) are learnable. If A C X, we say
that a concept 8 = (8, 0®) is compatible with A
it 0V (zW) = 0@ (@) for all z = (V) 2?) € A.
Denote by ©(A) the space of all concepts compatible
with 4.8 If Q(x) is a distribution over X with sup-
port S = supp Q(x) = {z|Q(x) > 0}, we say that a
concept @ is compatible with the distribution @ if it is
compatible with S.

In the Co-Training setting, there is an unknown in-
put distribution P(x). A target concept 6 is sampled
from some unknown distribution over O, and the data
distribution is P(t|x) = Ijgx)=s if 8 € O({x}), 1/2
otherwise®. However, the central assumption is that
the target concept 0 is compatible with the input dis-
tribution P(z). This implies that the target concept
can be learned using only one of the views, i.e. from
DY = (@Y t,))i =1,...,n} for one j € {1,2} only,
it x; = (:Bgl), :Bgz)) and n is large enough. It also im-
plies that we can make use of unlabeled data D, by
observing that from D, C supp P(x) it follows that
the target concept must lie in ©(supp P(xz)) C ©(D,,),
which means that even prior to having seen any labeled
data, we can shrink the effective concept space from
O to O(D,).

A simple sequential algorithm, described in subsection
5.3, can be used for the Co-Training setting. The ba-
sic idea is that we train two classifiers 8 in paral-
lel, each of which only sees the X) part of the input
points. For each new unlabeled point, we produce a
“pseudolabel” using one of the classifiers as predictor,
then train the other one on the augmented dataset.
Thus, the classifiers teach each other in turns, and this
“switching” teacher-student relationship is backed by
the compatibility assumption.

"For simplicity, we discuss two-class classification only.

8In order not to run into trivial problems, we assume
that ©(A) is never empty, which can be achieved by adding
the constant concept 1 to both 128

9Here, I is 1 if E is true, 0 otherwise. The scenario is
called noiseless because the only source of randomness is
the uncertainty in the target function.

5.2 Co-Training as Bayesian inference

The compatibility assumption of subsection 5.1 is a
prior assumption which can be encoded as follows. We
model P(x) by {P(x|pn)} and a prior P(u) > 0. For
convenience, we introduce a further variable S which
is deterministically related to p via S = supp P(z|p),
and we choose conditional priors P(0|S) as:

P(8]S) = fs(0)I1pco(s)y, S C &, (3)

where fs(@) > 0, and all P(6]S) are properly nor-
malized. For example, if O(S) is finite, we can
choose fs(@) = |©(S)|7!. As already mentioned
above, we have a noiseless setting, i.e. P(t|x,0) =
(1/2)(1{9(1)(x<1>):t} + I{g(2)(x(2)):t}). The data genera-
tion works as already described in section 3. First, we
sample g ~ P(p) and set S = supp P(z|n). Condi-
tioned on S, we sample the target concept @ ~ P(615)
(see (3)). Afterwards we sample independently (condi-
tioned on @ and u) x; ~ P(x|p), t; ~ P(t|x;,0), i =
L...,nyand ®; ~ P(x|p), i=n+1,...,n+m.10

From (2) we see that the posterior belief in 0 is

P(OID1,D,) x P(TIX1.6) [ POIS)P(SIXi. D) dS

.....

It is easy to see that P(@|D;,D,) # 0 iff 8 is con-
sistent with D; and 8 € O(D, U X;). Namely, if
0 ¢ (D, U X;), then P(0]|S) = 0 for all S which
include D,, and X;, and P(S|D,,X;) = 0 for all other
S. On the other hand, if 8 € ©(D, U X;), then we
have P(0]S) > 0 and P(S|D,,X;) > 0 at least for
S = D, U X;. Therefore, the set of all @ for which
P(60|Dy, D,) > 0 is identical to the remaining version
space''. Co-Training, in the sense defined in (Blum
& Mitchell, 1998), can therefore be seen as a way of
updating a Bayesian posterior belief by conditioning
on labeled and unlabeled data. Eventually, this proce-
dure converges to a belief which allows only concepts
which agree with the target concept on the support of
P(x), and Bayesian prediction on future * ~ P(x)
coincides with the target concept.

If the data is not sufficient to pinpoint one concept,
the concrete behaviour of Bayesian inference (with
the generation model just described) depends on the
bias induced by fg(@) in the conditional priors and

'9Note that P(t|z:,0) # 1/2 since 6 is compatible with
the support of P(x) which includes ;.

"For a noiseless learning scenario, the version space is
the set of all concepts which are consistent with all the
observed data.



to some extent also on the prior P(S), while a Co-
Training algorithm depends on the biases used for
learning in the spaces ©U) (see subsection 5.3). Since
both frameworks are quite general, it seems reasonable
to state that (approximate) Bayesian inference with
conditional priors based on the notion of compatibility
between different views (representations) on examples
and Co-Training are two sides of the same coin. This
observation might have advantages for both fields. The
idea of split representations, which has been proposed
originally in the field of unsupervised learning (De Sa,
1993; Becker & Hinton, 1992) but has been transferred
to the problem of “semi-supervised” learning in (Blum
& Mitchell, 1998), might become a key technique for
constructing conditional priors. On the other hand,
the Bayesian view on Co-Training might help to deal
with issues like noisy labels, learning biases and con-
cept combination methods in a principled rather than
heuristical way. For example, if we allow for noisy la-
bels, the conditional priors based on the support (3)
might be to rigid, in the sense discussed in subsection
3.1. More “careful” conditional priors P(@|w) could
then be constructed as monotonic increasing functions
of Prp(xm){O(l)(:B(l)) = 0@ (z®)}, as mentioned
in (Blum & Mitchell, 1998). If we do conditional
density estimation rather than classification in the
spaces ©U) | ie. fit models P(t|z),0Y)), even more
interesting scores like Ep(x,)[[(t1,t@|z)], t0) ~
P(tjz@ 0Y), j = 1,2, could be used to construct
P(0|p) (see also Becker, 1992). Here, I denotes mu-
tual information.

5.3 Co-Training as Expectation Maximization

In this subsection, we describe the Co-Training algo-
rithm and show how it can be related to the power-
ful Fzpectation-Mazimization (EM) algorithm (Demp-
ster, Laird & Rubin, 1977).

The basic Co-Training algorithm proposed in (Blum
& Mitchell, 1998) works as follows. Initialize the pair
0V ,0?) ¢ © by training on the labeled data D;
only. A growing working set is initialized with D;.
The algorithm is incremental, adding unlabeled points
one by one. Each time a new point is added, one of
the 0V is picked at random, the label of the new
point is predicted using this concept, and the point
together with the pseudolabel is added to the work-
ing set. Finally, both 0 are updated by retraining
on the new working set'2. This basic scheme is quite
flexible, for example unlabeled points can be added in

12 A variant only retrains the one 0 which has not been
used to label the new point. These two variants do not
show significantly different behaviour.

small batches rather than sequentially, or the order in
which the points are added can be determined using
heuristics. Furthermore, once all points of D, have
been added, 0" and 6@ might not agree on points @
in the test set, and other heuristics have to be used to
combine them.

The EM algorithm is a general method for finding
Mazimum Likelihood (ML) or Mazimum A-Posteriori
(MAP) estimates in the presence of missing data. In
the generalized formulation of (Hinton & Neal, 1997),
we maintain a current estimate and a (completely fac-
torized) distribution @ over the missing data, and it-
erate E steps (in which @ is updated) and M steps
(in which we update the estimate). In a generally
inferior stochastic EM algorithm (Celeux & Diebolt,
1985), instead of maintaining and propagating the @
distribution, we compute @ in each iteration, sample
the hidden data from @ and use it to update the esti-
mate. This variant cannot be considered to be an EM
technique, since it does not come with the same con-
vergence guarantees, however it is obviously related.

We are after a MAP estimate of (6, S) (recall that S =
supp P(x|p)), and the missing data are the missing
labels T,,. We choose a sequential variant of EM, in
which the estimate is initialized by training on D; only
(S is initialized with X;), and new points from D,, are
added one at a time. This resembles Co-Training and
seems reasonable in the light of subsection 3.1. In
order not to get buried by notation, we will denote
the unlabeled points currently used by the algorithm
by Xy, i.e. Xy ={®nt1,...,Tnts} initeration s. Also
Ty = {tn+1,- - tnts}, and t,1s is added in iteration
s.

At the beginning of iteration s, we add a new un-
labeled point, which enlarges the “effective” missing
data T,,. Next, we perform a partial E step to update
the @ distribution, which amounts to computing'3
Q(tnts) = P(tnts|Di, Xu,0) = P(tnys|®nis, 0) and
sampling ¢y, 45 ~ Q(t’l’b+8) = (1/2)(1{9(1)(xg«}ls):tn%—s} +

1{9(2)(}(535):%“}). Note that @ remains the same on

the other missing labels, and their “pseudolabel” val-
ues in T, (sampled in earlier iterations) remain un-
changed. This is equivalent to choosing one of the
0% at random and setting t,1, = o) (mfj}rs) tnts
is added to T,,. In the M step we update (8, S) so as
to increase the posterior on the data (D, X, T,). We

13In the standard (stochastic) EM algorithm, we would
have to update @) over all missing variables T, namely set
it to P(Tu|Xu,0). However, in the formulation of (Hin-
ton & Neal, 1997) partial E and M steps are also allowed,
possibly resulting in slower convergence.



do this by first setting'* S = X, then retraining both
0(1),9(2) on the augmented data. It is obvious that
this algorithm is equivalent to the basic Co-Training
scheme described above.

A major benefit of this view on Co-Training is that
we can easily generalize the basic scheme to more re-
alistic settings, such as label noise or less rigid pri-
ors (see subsection 3.1), while remaining in the estab-
lished frameworks of (approximate) Bayesian inference
and Expectation-Maximization with their strong prob-
abilistic, non-heuristic foundations. A step in this di-
rection is done in the next subsection.

5.4 A Bayesian generalization of Co-Training

By generalizing the “hard” EM view on Co-Training,
given in subsection 5.3, we can derive an EM algorithm
to obtain a MAP estimate of 8 for the general data
generation model of section 3. We are dealing with
noisy labels, i.c. noise models P(t|z@ 8. These
can be combined in an intuitive way as P(t|x,0)
P(tjz®, 0M)P(t|z?,0®), which amounts to sim-
ply adding the log odds. For details on the following
derivation, see (Jordan, Gharamani, Jaakkola & Saul,
1999). Using Jensen’s inequality, we derive a varia-
tional lower bound of the log joint'® w.r.t. T,, and p
as follows:

log P(D1, X, 0) =log Y [ P(11, T, X X 0,10) d
Ty

2 Z/Q(TU”IJ’)IOg P(E7Tu’Xl7XU797IJ,) d
Ty

Q(Tu, 1)
(4)

It is easy to see that the distribution which
maximizes the bound is given by Q(T,,p) =
QTIQW), QT.) = P(T)Xu0), Qu)
PO|p)P(X;, Xy|pp)P(p). The maximizer for Q(u)
is intractable in general, but we can choose the best
variational distribution from a tractable family (e.g.
the Gaussian family), by maximizing the relevant part
of the lower bound,

P(O|p)P(Xy, Xou|p)P(p)
Q(w) s,

w.r.t. Q(p) from this family only. We follow the
scheme and the notations of subsection 5.3 and choose
a sequential variant of EM with partial @) updates in

/ Q(p)log (5)

4This choice surely increases the posterior. The old
value for S does not include x,+s and therefore gives rise
to posterior probability 0 once &, is added.

5 Maximizing the log posterior w.r.t. 8 is equivalent to
maximizing the log joint.

the E steps (note that here, the @ distribution over
the missing variables consists of the product of Q(7T%)
and Q(p)). Again, the estimate 8 is initialized by
training on D; only. An important difference to the
algorithm in subsection 5.3 is that here the variables
in T}, remain hidden, with our uncertainty about them
encoded in Q(T%,), they are not fixed to “pseudolabel”
values. Iteration s of our algorithm consists of:

1. Add @45 to Xy, tpys to Ty,. Update Q(T,,) par-
tially by setting Q(tn+s) = P(tnts|Tnts, @) and
leaving it unchanged on the other variables.

2. Update Q(p) by maximizing (5) w.r.t. Q(p)
within a fixed family.

3. Update the estimate 6 by maximizing the lower
bound (4) for fixed Q. This is tractable since the
family for @Q(p) has been chosen accordingly.

Even if applied to the Co-Training setting, there are
several differences between this EM algorithm and the
basic Co-Training procedure. First, Co-Training re-
sembles stochastic EM by simply sampling and filling
in missing labels, while EM maintains and propagates
(via Q) a “soft” distribution over these labels. Second,
in EM both 81 and 8 are combined in the E step to
update the missing label uncertainties Q(t,s), while
Co-Training chooses one of them at random, which
then determines Q(t,+s) alone. As for the EM algo-
rithm, the high flexibility of the probabilistic setting
immediately suggests a host of variations. For exam-
ple, we could update larger parts of (or the complete)
Q(T,) in the E steps, thus possibly refining incorrect
earlier uncertainty estimates. The order in which new
points are added could be determined using greedy se-
lection with probabilistic criteria such as the entropy of
Q(tnyi) = P(tnyi|®nyi, @) for candidate points @44
not yet included in X,. Finally, we could even try to
obtain a more accurate approximation to P(0|D;, D,,)
than a MAP one, by employing Variational Bayesian
techniques (Attias, 1999). The validity of such ap-
proaches will have to be tested carefully in compar-
isons on real-world tasks, since there is always the pos-
sibility that greater flexibility and power comes with
a lack of robustness (see subsection 3.1).

6. Conclusions

We have given a detailed discussion of the standard
Bayesian data generation model for discriminative ar-
chitectures and shown that unlabeled data or side in-
formation about the input distribution cannot be used
for inference. A simple modification of the genera-
tion model was proposed which gives us the neces-



sary flexibility to explore “semi-supervised” learning
in the Bayesian discriminative context. By construct-
ing conditional priors which perform input-dependent
regularization, information about the input distribu-
tion can be used to guide inference and prediction. A
particularly clear instance of this, namely Co-Training,
has been discussed in detail. Finally, we have proposed
a template EM algorithm for MAP estimation within
the modified generation model, a special case of which
can be regarded as a generalization of Co-Training.

This paper provides a clarifying overview and gives
theoretical and algorithmic ideas, however, in the
present form, lacks backing by experimental results.
To round it up by providing such is a pressing issue
(note that many of the methods tested in (Nigam &
Ghani, 2000) are also cases of the framework devel-
opped here). Furthermore it will be interesting to com-
pare this framework to other general methods for the
“semi-supervised” problem. In the long term, finding
general methods to construct meaningful, yet tractable
conditional priors (such as the method of multiple
views and compatibility, as exploited by Co-Training)
and developping algorithms for approximate Bayesian
inference using these priors, are important topics for
future work.
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