Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Student works
  4. Bayesian methods for Support Vector machines and Gaussian processes
 
master thesis

Bayesian methods for Support Vector machines and Gaussian processes

Seeger, Matthias  
1999

We present a common probabilistic framework for kernel or spline smooth- ing methods, including popular architectures such as Gaussian processes and Support Vector machines. We identify the problem of unnormalized loss func- tions and suggest a general technique to overcome this problem at least ap- proximately. We give an intuitive interpretation of the effect an unnormalized loss function can induce, by comparing Support Vector classification (SVC) with Gaussian process classification (GPC) as a nonparametric generalization of logistic regression. This interpretation relates SVC to boosting techniques. We propose a variational Bayesian model selection algorithm for general nor- malized loss functions. This algorithm has a wider applicability than other previously suggested Bayesian techniques and exhibits comparable perfor- mance in cases where both techniques are applicable. We present and discuss results of a substantial number of experiments in which we applied the vari- ational algorithm to common real-world classification tasks and compared it to a range of other known methods. The wider scope of this thesis is to provide a bridge between the fields of probabilistic Bayesian techniques and Statistical Learning Theory, and we present some material of tutorial nature which we hope will be useful to researchers of both fields.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

bayes-svm.pdf

Access type

openaccess

Size

1.36 MB

Format

Adobe PDF

Checksum (MD5)

d4fab79bb2e72d17c679643126dbab35

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés