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Abstract—This paper presents a novel approach to capture
light field in camera arrays based on the compressive sens-
ing framework. Light fields are captured by a linear array
of cameras with overlapping field of view. In this work, we
design a redundant dictionary to exploit cross-cameras correlated
structures in order to sparsely represent cameras image. We show
experimentally that the projection of complex synthetic scenes
into the designed dictionary yield very sparse coefficients.

Index Terms—Redundant Dictionary, Compressive Sensing,
Light Fields, l1-minimization.

I. INTRODUCTION

The growing flood of data, particularly due to the emergence
of image processing systems with multiple visual sensors,
causes an increasing need to quickly process large data sets
in compressed domain. Newly introduced light field cameras
are one of the widely used class of computational cameras.
In order to tackle the large amount of data, we employ the
Compressive Sensing (CS) technique [1] that has superiority
over traditional schemes because of low complexity in the
encoder and universality with respect to scene model.

II. LIGHT FIELD RECOVERY SCHEME

The CS technique holds for signals that are sparse either
in their standard coordinate or in any orthogonal basis. Al-
though bases such as Fourier and wavelet can provide a good
representation of signals, they are generic and not specific
enough to very restrictive class of signals. An alternative signal
representation is to consider a redundant dictionary.
The geometric features of a signal are the heart of dictionary
design. A piecewise constant function is sparsely represented
in the 1D wavelet domain. For epipolar images (EPI) sim-
ilar to fig. 1(a), it would be best to consider the reordered
version of the image grid to have a piecewise-constant-like
images [2]. The reordering process is described by selecting
a direction η, which is as parallel as possible to the real
geometry of the curve. As it is shown on Fig. 1(b), we select
grid points Lη and reorder the image grid according to the
indices of image samples on these lines Fig. 1(c). Afterwards,
we make a piecewise smooth 1D discrete function f from
the reconstructed image, which can be sparsely represented
using 1D wavelet domain. Selecting a proper direction η for
reordering lines is a crucial task. In the case of EPIs with
different directions, we do not have a preferential orientation.
Therefore, we can benefit from a redundant dictionary, which
consists of the concatenation of several reordered wavelet
transform Φr with different directions η. Hence, the designed
dictionary Ψ =

[
Φr

1,Φ
r
2, · · · ,Φr

γ

]
benefits from different

(a)

L✓

(b) (c)

Fig. 1: The reordering example of EPI. (a) Original E image. (b) Parallel
reordering lines Lη to capture regularity along direction η. (c) Reordered 2D
EPI along Lη .

reordering directions to exploit the geometry induced by the
natural correlations within light field images. For the camera
array, we stack all the cameras image to make an image
volume X ∈ Ri×j×k. The image volume would have EPI
structure along (i, k)-planes. In addition, a suitable 1D wavelet
transform can be applied to sparsify X along the remaining
dimension. To achieve an efficient representation, we reshape
X into a matrix X̂ ∈ Rik×j whose columns contain the
information of (i, k)-planes. Following the discussion above,
there exists a sparse matrix of coefficients Θ ∈ Rγik×j such
that X̂ = ΨΘΓT where Ψ ∈ Rik×γik is the previously
defined dictionary transform along (i, k)-plane and Γ ∈ Rj×j
denotes the 1D wavelet basis along j dimension. Thus, if we
rewrite X̂ and Θ matrices in vectorial format, we will have
X̂vec = ΩΘvec with Ω = Ψ ⊗ Γ ∈ Rnk×γnk, where ⊗
denotes the Kronecker product between two matrices and Ω
is the dictionary that is applied to encode the whole image
volume into a sparse vector Θvec. The following convex
problem can be applied to reconstruct X from the compressive
measurements,

argmin
Θvec∈Rγnk

‖Θvec‖1 subject to ‖Y − ÂΩΘvec‖2 ≤ ε. (1)

Here Â contains the same elements as A (a block diagonal
measurement matrix for the camera array), and is reshaped
with respect to X̂vec = ΩΘvec so that ÂX̂vec = AX . This
optimization can be solved iteratively using Douglas-Rachford
splitting method [3]. The experimental results demonstrate the
superiority of our methods by about 3 dB in compare with the
state-of-the-art 3D wavelet transform.
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