ISI:000309943200034
Shuman, David
Ricaud, Benjamin
Vandergheynst, Pierre
A Windowed Graph Fourier Transform
New York, Ieee
http://infoscience.epfl.ch/record/175341/files/WGFT_SSP_2012.pdf
The prevalence of signals on weighted graphs is increasing; however, because of the irregular structure of weighted graphs, classical signal processing techniques cannot be directly applied to signals on graphs. In this paper, we define generalized translation and modulation operators for signals on graphs, and use these operators to adapt the classical windowed Fourier transform to the graph setting, enabling vertex-frequency analysis. When we apply this transform to a signal with frequency components that vary along a path graph, the resulting spectrogram matches our intuition from classical discrete-time signal processing. Yet, our construction is fully generalized and can be applied to analyze signals on any undirected, connected, weighted graph.
2012-03-01T17:12:08Z
http://infoscience.epfl.ch/record/175341
http://infoscience.epfl.ch/record/175341
Text